
A Retrovirus Inspired Algorithm for Virus Detection
& Optimization

Kenneth S. Edge, Gary B. Lamont, and Richard A. Raines
Department of Electrical and Computer Engineering
Graduate School of Engineering and Management

Air Force Institute of Technology
Wright-Patterson AFB, Dayton, OH USA 45433

kenneth.edge@afit.edu, gary.lamont@afit.edu, and richard.raines@afit.edu

ABSTRACT
In the search for a robust and efficient algorithm to be used for
computer virus detection, we have developed an artificial immune
system genetic algorithm (REALGO) based on the human
immune system’s use of reverse transcription ribonucleic acid
(RNA). The REALGO algorithm provides memory such that
during a complex search the algorithm can revert back to and
attempt to mutate in a different “direction” in order to escape
local minima. In lieu of non-existing virus generic templates,
validation is addressed by using an appropriate variety of function
optimizations with landscapes believed to be similar to that of-
virus detection. It is empirically shown that the REALGO
algorithm finds “better” solutions than other evolutionary
strategies in four out of eight test functions and finds equally
“good” solutions in the remaining four optimization problems.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information Systems]:
Security and Protection – Invasive Software

General Terms: Algorithms, Computer Security.

Keywords: Computer Virus, Security, Detection, Memetic,
Genetic Algorithms, RNA, Function Optimization

1. INTRODUCTION
Contemporary computer systems are integral in daily life with

regard to accomplishing increasing complex tasks. With this
complexity we have created system vulnerabilities. There are so
many interdependencies and relationships between entities in a
computer system that a malicious user does not need to find a
vulnerability to attack, rather they decide which one to attack.

The views expressed in this article are those of the authors and do not
reflect the official policy of the United States Air Force, Department of
Defense, or the U.S. Government.

Copyright 2006 Association for Computing Machinery.
ACM acknowledges that this contribution was authored or co-authored by
an employee, contractor or affiliate of the U.S. Government. As such, the
Government retains a nonexclusive, royalty-free right to publish or
reproduce this article, or to allow others to do so, for Government
purposes only.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

In 1995, the first year the Computer Emergency Response
Team (CERT) Coordination center published statistics for
vulnerabilities, they reported 171 different vulnerabilities. In
2004, the number has increased to 3,780 [2]. In 1995, there were
2,412 security incidents reported. The number has had an
exponential increase to 137,529 in 2003 [2]. Viruses exploit these
vulnerabilities to infect their hosts. CERT has stopped counting
separate incidents in search for a more meaningful statistic of
attacks since it is easy to attack a computer system. Of course,
other computer security issues with increasing concern include
Trojan horses, bots, backdoors, dialers, worms, adware, and
spyware. The proposed AIS system can also be used to address
these threats as well as viruses.

Currently most virus protection for computers is implemented
using signature recognition derived after analyzing known viruses
[22]. Although this method has been somewhat successful to
date, we are rapidly approaching a time when such methods will
be inadequate. As viruses are constantly mutated and tweaked to
avoid detection, the signature list becomes larger and larger
possibly approaching seven figures. Another problem is that
viruses are only detected after they have been initially discovered,
analyzed, and signatures have been distributed. This process can
be very slow and wastes precious time while a fast replicating
virus quickly renders a networked computing system useless.

What is required is a system that can combine known
information from past viruses with a type of prediction for future
viruses. Utilizing a computing system based on an artificial
immune system may be able to achieve this. If a computer can be
“immunized” initially and “learn” from viruses and other
computers, and use that knowledge with evolutionary algorithms
to come up with new signatures for probable viruses, we can
effectively eliminate viruses before they ever have time to
replicate. A variety of AIS operators have been suggested for this
purpose [4,5]. This paper proposes a new type of artificial
immune system (AIS) to detect computer viruses based on the
REtrovirus ALGOrithm (REALGO). REALGO is based on the
concept of reverse transcription RNA (see Figure 1) as found in
biological systems [14]; i.e., Reverse Transcription Ribonucleic
Acid (RNA).

In the following sections, generic AIS design is addressed
(Section 2), the process of reverse transcription RNA is discussed
and symbolically described as it applies to computer virus
detection in an AIS. Next, the REALGO is mapped into the
algorithm domain (Section 3), the computational domain is

103

presented in Section 4, and the design of experiments (Section 5)
and results are detailed (Section 6). Lastly, conclusions and
future work are discussed in Sections 7 and 8 respectively.

2. COMPUTER VIRUS DETECTION
AIS Design encompasses self-organization, self-regulation,

primary and secondary immune system responses, clonal
selection, adaptation and diversification, knowledge extraction
and generalization, a network structure, metadynamics, memory,
and knowledge of self and non-self [4,5,19,21,23] as evolved
from biological immune system (BIS) constructs. Many of these
processes are a hierarchical network integration of others and use
a combination of the same operators to define their associate
interactions. For example, clonal selection followed by somatic
hypermutation are elements of self-organization, adaptation and
diversification, and positive selection and negative selection relate
to self and non-self. Note that clonal selection followed by
somatic hypermutation with high selection pressure is usually
defined as affinity maturation. The antigen-antibody BIS pattern
matching is accomplished by specialized proteins attached to B-
cells that bind with antigens. Of course, such proteins are
generated by DNA through RNA processing (Figure 1). These
proteins then, as appropriate, become gene libraries for use as
initial antibodies. B-cell computational antibodies usually
correspond to an AIS analyzing computer input streams for
viruses, where as file structures with embedded viruses map to the
combined B-cell and T-cell helper situation matching the MHC
protein, the equivalent partial antigen [4, 23]. The major vehicles
for the AIS adaptation process to virus protection relate to
changes in the computational antibody structures through some
form of mutation. In particular, the use of an affinity maturation
model of antibody clones provides for new virus exploration.
This brief mapping of AIS to BIS discussion is quite limited with
more details found in [4, 23]. In our proposed augmented virus
protection AIS, the reverse transcription RNA process is
formulated as an innovative adaptive computational operator.

 Most contemporary virus detectors use a scanning engine to
match input streams or file structures against known virus
signatures (antigens) [22]. A major AIS computational problem
with this contemporary approach is that every virus signature
must be stored and compared to every computer input stream or
file. This implies a lot of pattern matching computation and yet it
still fails to detect viruses that have not already been identified
and cataloged.

The REtrovirus ALGOrithm (REALGO) operates by
employing a random antibody initiation process and then, using
known virus signatures (antigens), “trains” these antibodies
through a genetic algorithm (GA). A distance measure is usually
employed as a fitness function representing the distance
(Euclidian, Hamming …) between antigen bit-string and the
antibody bit string. After an initial learning phase, the antibodies
are released into the computer system to recognize virus patterns.
The antibodies constantly evolve using mutation (affinity
maturation) in order to try to identify new viruses, adapting and
diversifying the antibody memory. When a new virus is detected
in a trusted network a new retrovirus signature is created and sent
to other network systems in order to “immunize” them. To keep
the number of antibodies to a minimum and increase performance,
a temporal aspect is employed. Basically, antibodies that have
not

Figure 1 – Reverse Transcription in the human body [17]

been used can die after a specified time period (metadynamics) [8,
23]. If an antibody is deemed particularly important, it can be
protected from elimination using a protection flag. On the other
hand, antibodies that have been activated previously can trigger a
secondary response (Figure 2), as is done in the biological
immune system, as related to memory. Thus, in response to a
repeated attack, the memory provides for increased efficiency
(identification speed) and effectiveness.

Figure 2 – Antibody Primary and Secondary Response [13]

An important concept of antibody development for detecting
virus attacks is in the knowledge extraction or learning phase.
This phase is further decomposed into two distinct parts; training
for positive selection and negative selection. Positive selection is
the ability of the antibody to detect a virus. Negative selection
ensures that the antibody does not trigger on the computer’s
concept of “self”. We do not want the antibody to identify a
normal process or file (self) as a virus. The antibodies can be
trained for positive selection by using a genetic algorithm on the
initial population of randomly generated antibodies using a
comparison operator against known virus signatures. This
effectively trains the antibodies to detect known viruses. It is
important to note, that these antibody to virus signature pairs are
probably not exact matches. Instead they match within a
specified threshold [10, 23] given a distance metric. Because they
are not exact matches, we must also filter the newly trained
antibodies against detecting self using negative selection
techniques.

To filter the antibodies, we use a fitness function to match
them against known good processes and programs in the computer
(self). It is critical that the computer system has not already been

104

compromised by a virus since it would filter out the specific virus
detection capability. If an antibody matches a good process string
or program string within a certain threshold, it must be discarded.
To ensure that our final population is of the desired size, enough
antibodies in the positive selection phase must be generated so
that some may be discarded. If we drop below the desired
population during negative selection training, we must randomly
generate new antibodies and train them with positive selection. If
after negative selection training, an extra number of antibodies
exist; simply discard the ones with the lowest positive selection
fitness values.

The REALGO AIS as designed incorporates all of the salient
features mentioned at the beginning of this section. It is important
to observe that similar systems for detecting computer attacks
were developed and implemented by Forrest, et al in [7, 12],
Harmar, et al in [10, 11], and Williams, et al [24]. The main
difference is our use of the RNA as a memory structure the search
can use to revert back to a previous “good” solution if the search
stagnates and fails to produce a better solution. After reverting
back to this “good” solution, the search can proceed in a different
“direction” to try and find a “better” solution. This operation is
expected to increase the performance of the search algorithm in
both efficiency and effectiveness.

3. A SYMBOLIC REALGO MODEL
In order to formally understand and apply the REALGO

algorithm, a symbolic notation is discussed. The symbolic
notation is provided for the reader who desires detailed
comprehension of the algorithm. The following symbolic model
is based on notation for genetic algorithms in [1]:

Initializing the time variable and the population of antibodies
is generated randomly,

t:=0;

3.1 initialize: 1(0) : { (0),..., (0)} u
uP a a I= ∈

ur uur

Next the population of antibodies is evaluated against the
training antigens (known virus signatures). For the first iteration
this evaluation is equal to zero as we have not yet imported any
antigens.

3.2 evaluate: 1(0) :{ ((0),..., (0)}uP f x x
ur uur

;

3.3 while not terminate (P (t)) do

The termination condition is based on a threshold of matching
the antibodies to the antigens. If not terminating, then the RNA
structure is imported which consists of antigens. In our
application, the antigens are a string of virus signatures. For the
first iteration, they are known virus signatures from previous virus
knowledge bases.

3.4 import RNA:

1() : { (),..., ()} u
uV t v t v t I= ∈

ur uur
 ;

After importation, the population is compared with the
imported RNA and the population member is replaced with the
RNA with probability p1 if its fitness is higher. A protection
variable is checked that allows the algorithm to protect population
members. We do not want to replace members that have
previously had a high probability of matching to a known virus.

Select RNA: () : ()k ja t v t=
r r

with probability p1

 if (()) (()) {1,.., }kjf v t f a t j n> ∀ ∈
uur r

and 1kρ ≠ (Cell is not protected);

3.5 mutate:

To create new antibodies mutate members of the population to
create λ children

{ , ', }'' () : ' (' ()) {1,..., }k ka t m a t kτ τ β λ= ∀ ∈
r r

;

As part of the process of selecting the next generation of
antibodies, evaluation of the children just produced

3.6 evaluate:

1 ..., ''''() : { '' (), ()}:aP t a t tλ=
r r

1{ ('' (),..., ('' ()}f x t f x tλ

r r
;

Now, check to see if the antibodies are failing to match any
antigens by a specified threshold. If so, then further check if the
string evolved from a RNA strand. If it did, then, revert back to
the RNA string (memory) with probability p2. The purpose of this
check is to revert back to a known good starting point if the
search for a good antibody stagnates. This operation allows the
algorithm to explore from a known good starting point but in a
different direction than one that produced the stagnant solution.

If 1('' ())kf x t ε∃ <
r

then (If fitness falls below threshold)

If 1kξ = (RNA based cell indicator)

2() : () with Probability pk ka t v t=
r uur

 (Revert back to RNA)

In order to exploit an area of good solutions, the algorithm
spawns new strands of RNA if a particular antibody evaluates
very high based on a set threshold. If it does, the algorithm
creates n copies to be used in developing the next generation.

If 2('' ())kf x t ε∃ >
r

 then (If fitness is above threshold
value)

1() : { (),..., ()} n
nV t v t v t I= ∈

ur uur
 (Create n copies of RNA)

The next generation is now determined using μ λ+ selection

by selecting the best μ individuals out of the μ λ+ population
[6].

3.7 Select: ''
()(1) : ());uP t s P tλ++ =

The time variable is iterated and the algorithm loops back to
step 6 until termination t:=t+1;

Now that positive selection is completed, the algorithm must
check the antibodies against the system’s concept of “self” to
prevent the system from attacking good processes and programs.
It is important that the system is in a known “clean” configuration
at this time. If this assumption does not hold then any viruses in
the system are identified as “self” and the algorithm will actually

105

protect them. This concept of training the antibodies against the
concept of “self” is known as “negative selection”.

If 3(())kf x t ε∃ >
r

 then () : () ()kP t P t x t= −

If P(t) falls below a specified number of elements then new
ones must be generated using the positive selection part of the
algorithm followed by negative selection until the specified
number of antibodies is achieved.

Now that training is complete, the algorithm is ready to release
the antibodies into the network computer system in order to patrol
for viruses. As programs and/or process are started, copied, or
accessed in any way, the antivirus scanner compares them to the
antibodies in the system. If they match within a specified
threshold, then the antivirus program checks to see if the antibody
is mature or immature. If immature, then the program needs a
secondary confirmation in order to take action on the suspected
virus. This confirmation comes from the user. Once a virus is
confirmed, the antibody is considered to be mature, sets a flag on
the antibody data structure, and does not require confirmation for
future viruses. Signatures that are imported can also be defined to
be mature and not require confirmation by setting the mature flag.
This mature flag is analogous to a secondary response in the
human immune system [7].

Although not implemented in this system, we envision that
once a virus antibody is confirmed, it is uploaded to a central
repository where it is further checked by anti virus researchers. If
it qualifies, the antibody could be sent to other users in order to
vaccinate them on the new virus strain. The advantage of this
process is that with the first variant of a virus discovered by any
user, the inoculation could be sent out within minutes to every
other user which would effectively stop the propagation of the
virus almost immediately. This concept is discussed in [16].

This system does not require the researchers to actively find
the virus. Instead, the virus antibody is sent to them
automatically. This would drastically reduce the amount of time
it takes to detect new variants of viruses by using a distributed
detection system.

In order to search for antibodies that match new virus variants,
the REALGO program uses a genetic algorithm with mutation to
generate new antibodies. If known good building blocks exist in
any of the antibodies, they can be protected and remain intact
throughout the operations.

When selecting the next generation based on a fitness value,
we choose between the children generated by the REALGO
operations, the parents, and the antibodies received by other
systems. The fitness value also takes into account the age of the
antibody and the number of activations it (or its building blocks)
have encountered. If there is an “old” antibody that has rarely
been used, we might choose to delete it and generate a
replacement based on the current threats. This operation allows
the program to remain agile by maintaining a smaller signature
file. We also make the assumption that at least one system finds
the virus and passes the “vaccine” to the rest of the system. We
are basically leveraging the power of the distributed nature of the
interconnected computer systems in order to spread the burden of
maintaining a large signature file.

Figure 3 – Flowchart of REALGO algorithm

4. EVOLUTIONARY COMPUTATION
A genetic algorithm is the natural choice for both training the

antibodies and modifying antibodies in the system once they are
deployed because of the binary allele’s genotype structure. A
generic psuedocode for the complete anti virus scanner follows:

REALGO Psuedocode
1: Initialize population of antibodies (random)
2: Introduce known antigens (virus signatures)
3: for fitness of antibodies not sufficient do
4: Compare antibodies to antigens (Genetic

Algorithm)
5: Evaluate antigens based on bit matching to

antibodies
6: Select x number with highest fitness
7: Generate children via mutation
8: end for
9: if antigens based on bit matching match known
 good programs/processes then discard
10: while (true) do
11: if programs/processes match antibodies

beyond specified threshold then
12: generate warning
13: Update data in antibody reflecting

number of matches (fitness)
14: if virus is confirmed then
15: send a copy of antibody

to other systems
16: clean system
17: Generate new children by mutation
18: Select parents based on fitness
19: if fitness is high (ε *average fitness) then

Initialize
&

Import RNA

Population
Trained?

No

Positive Selection Training

Negative Selection Training

Population
Trained?

No

Scanning Phase

Match
Virus?

Yes
Notify System

Evaluate
Antibodies

Generate New Antibodies

Revert to RNA Generate New RNA

Select Population

Very
High

Fitness

Very
Low

Fitness

No

106

20: generate n copies of DNA to
become RNA with prob p1

21: if fitness stagnates for g generations and
RNA exists then

22: revert back to RNA with prob p2
23: Select population based on fitness and age
24: end while

The natural data structures for the virus signatures are binary

strings. The strings are encoded with the signature data as well as
a mature flag, a protection flag, a RNA exists flag, and a pointer
to any associated RNA structure that the string initially evolved
from (Figure 4). RNA structures consist of the same types of
strings which means that nesting of the RNA structures can occur.

S i g
M
F

P
F

R
E

Figure 4 – Generic Signature Data Structure
For mutation, we use a Cauchy distribution as this has been

shown in [25] to have the ability to make long jumps to escape
local minima as compared to a Gaussian distribution. A
simulated annealing time function is also used to increase
exploitation after an initial period of large exploration. The
combination of these two operators makes the search memetic.

To calculate the fitness value, as in [7], a matching rule is
used. If the bits of the antigen and the antibody match for r-
contiguous bits then the fitness value is computed to be r. The
range of r is 0 r l≤ ≤ where l = signature string length

Experimental data is used to determine the ε multiplicative
values for generating RNA and the number of generations of
stagnation (represented as the percentage, g, of total number of
generations in search) before reverting back to the memory RNA
structure. These are basically tuning parameters that determine
the rates of exploration and exploitation. It is assumed that the
user has a general idea of the problem domain landscape and is
able to initially set these parameters based on the expected search
landscape.

5. DESIGN OF EXPERIMENTS
To evaluate the REALGO AIS algorithm, various procedures

are defined based in part on the assessment criteria of Garrett [8].
The first step in testing the system is to ensure that the REALGO
algorithm produces good results in complex search landscapes.
One could consider that a computer virus search landscape would
probably consist of or be close to “needles in a haystack” or delta
functions on a discrete grid. But a realistic generalized virus
landscape is not available since there are not any known complex
models of virus selection benchmarks. Thus, other evaluation
benchmarks need to be defined to evaluate the new REALGO
algorithm. Function optimization was chosen to replace virus
benchmarks for algorithm performance analysis. With the
REALGO algorithm coded in C++, it is tested against eight well
known test functions shown in Table 1 [25] that represent a
variety of desired search landscape characteristics. The initial
research is limited to these eight test functions as a proof of
concept for the algorithm. Once the desired operation of the

algorithm is confirmed based upon metrics, it would be integrated
into the detection system.

Employing this functional optimization approach, results are
averaged over 50 runs and results compared against those
presented in [25]. Tuning parameters were developed empirically
using some limited knowledge of the landscape of each problem.
For example, the f6 function was graphed in a single dimension
(Figure 5) to gain an understanding of the problem domain
landscape. It is easy to see that there is a local minimum quite a
distance away from the global minimum. This “egg carton”
landscape could be thought of as a set of delta functions on a
numerical grid possibly reflecting a virus signature landscape. In
order to be able to jump far in this landscape, the simulated
annealing time constant t was adjusted at a slower rate than a
function such as f1 (Figure 6) which requires a much finer level of
resolution in its search.

Once libraries of signatures and viruses are obtained, testing
begins with a small sample to ensure the algorithm functions as
desired in this functional optimization domain. This small sample
contains 100 antibodies. After initial validation, system testing
begins using the complete virus binary library available. 5-fold
cross validation is used to measure detection and false positive
rates [15]. The size of the libraries obtained determines the
population size and the number of virus binaries tested. Based on
similar work from [20], a binary library of 3000+ is anticipated to
be a reasonable size for comparison purposes.

REALGO system testing is executed on a single computer
platform utilizing a 2.53 GHz Pentium 4 processor with 512 MB
of RAM running the Windows XP Professional operating system.
Note that virus detection measurement rates are extremely non
standard [9]. Once data is available from the REALGO
experiments, it is compared against other published virus

Table 1 - Test Functions Used [25].

Test function S fmin

1

2
1 ()

n

i if x x
=

= ∑ [-100,100]n 0

1 12 ()
nn

i ii if x x x
= =

= +∑ ∏ [-10,10]n 0

2

1 13
() ()n n

i j j
x xf

= =
= ∑ ∑ [-100,100]n 0

1

1

2 2 2

4 1() [100() (1)]n

i i i if x x x x−

= +
= − + −∑ [-30,30]n 0

⎣ ⎦
2

15
() (0.5)n

i i
f x x

=
= +∑ [-100,100]n 0

16
() (sin())n

i i i
f x x x

=
= −∑ [-500,500]n -12569.5

2

17
() [cos(2) 10)]n

i i i
f x x xπ

=
= − +∑ [-5.12,5.12]n 0

2

18 1
()

1
cos()

4000

nn i

i i i
f x x

x

i
= =

= − +∑ ∏
[-600,600]n 0

107

-500

-400

-300

-200

-100

0

100

200

300

400

500

-600 -400 -200 0 200 400 600

Figure 5 – The graph of f6 in one dimension. This data was
used to estimate the simulated annealing constant for
mutation when the search was expanded to 30 dimensions.

0

5

10

15

20

25

30

-6 -4 -2 0 2 4 6

 Figure 6– Graph of f1 in one dimension. This function is
much smoother and requires a higher resolution search thus a
smaller mutation operator which is controlled by the
simulated annealing constant t.

detection algorithms such as those in [20]. The false positive rate
should be close to 0 for all non virus binaries tested. Future work
should include testing the artificial immune system on a
distributed network. As more signatures are involved in a
distributed network, the detection rate should increase. This
would demonstrate the benefit of using a network of computers
for REALGO virus detection. With the computers on the network
cooperating, the new viruses have little chance to propagate.

6. EXPERIMENTAL RESULTS
The REALGO algorithm has been tested against eight

benchmark functions as a proof of concept for the algorithm. The
associated results of the REALGO algorithm are shown in Table
2. These results are compared to those from [25] (Table 3) with
the resulting t-tests shown in Table 4.

Using a student t-test to compare the results, the REALGO
algorithm was shown to produce better results when the RNA
function was enabled on four out of the eight functions. On the
remaining functions, it produced equally good results whether or
not the RNA function was enabled. It never produced inferior
results. When compared to the FES (Fast Evolution Strategies)
algorithm from [25], REALGO outperformed FES on three of the
eight functions and produced statistically equal results on the
remaining five. When compared to CES (Classic Evolution

Strategies), REALGO outperformed on two out of the eight
functions and was shown to be statistically equal on three other
functions. Two of the three that CES performed a better search
(f1 and f2) were the same ones that CES outperformed FES on in
[25]. CES performed better on these searches due to the simpler
landscapes and the fact that CES was not burdened by the
additional overhead that FES and REALGO have. On the more
complex searches, the overhead was needed and was reflected in
the performance measurements.

To graphically illustrate the results of REALGO we have
included plots which show the means of 50 runs with a one
standard deviation error bar. The other test function plots reflect
similar pictorial results. The results for f1 and f8 are shown in
Figures 7 and 8 respectively.

Through empirical testing, design parameters have been
determined which generated the best results. These values are
shown in Table 5.

Table 2 – Results of REALGO algorithm on eight test functions.

 # Gen RNA
Mean

RNA SD No RNA
Mean

No RNA
SD

f1 750 9.44e-5 1.42e-5 1.63e-4 2.02e-5

f2 1000 3.37e-2 2.75e-3 4.44e-2 2.99e-3

f3 2500 3.54e-1 7.55e-2 4.41e-1 6.77e-2

f4 7500 3.27 4.06 3.14 4.09

f5 750 0 0 0 0

f6 4500 -12563.3 5.53e-1 -12577.3 109.689

f7 2500 9.44e-5 1.42e-5 6.16e-3 7.16e-4

f8 1000 1.52e-2 2.42e-3 2.46e-2 2.64e-3

Table 3- Results of FES and CES on eight test functions [25].

 FES Mean FES SD CES Mean CES SD

f1 2.5e-4 6.8e-5 3.4e-5 8.6e-6

f2 6.0e-2 9.6e-3 2.1e-2 2.2e-3

f3 1.4e-3 5.3e-4 1.3e-4 8.5e-5

f4 33.28 43.13 6.69 14.45

f5 0 0 411.16 695.35

f6 -12556.4 32.53 -7549.9 631.39

f7 0.16 0.33 70.82 21.49

f8 3.7e-2 5.0e-2 0.38 0.77

108

f 1

0 . 0 0 E+0 0

2 . 0 0 E- 0 5

4 . 0 0 E- 0 5

6 . 0 0 E- 0 5

8 . 0 0 E- 0 5

1. 0 0 E- 0 4

1. 2 0 E- 0 4

1. 4 0 E- 0 4

1. 6 0 E- 0 4

1. 8 0 E- 0 4

2 . 0 0 E- 0 4

0 1 2 3

RNA

No RNA

Figure 7 – Results of REALGO on function 1. The results
with RNA enabled are statistically better

f 8

0

0 . 0 0 5

0 . 0 1

0 . 0 15

0 . 0 2

0 . 0 2 5

0 . 0 3

0 1 2 3

RNA

No RNA

Figure 8 – Results of REALGO on function 8. The results
with RNA enabled are statistically better.

7. CONCLUSIONS
 The results show that the REALGO algorithm is superior for

optimizing complex functions but not necessarily for easier ones.
This is due to the fact that the REALGO algorithm adds
complexity to the search that is not needed for simple searches.
Once the complexity of the search landscape is greater than that
of the algorithm, the REALGO algorithm becomes superior. For
a simple search, something as basic as a hill climber suffices. If
the complexity of the REALGO algorithm is used with the simple

landscape, the efficiency is reduced because the complexity is not
required to find the solution. Conversely, with a complex
function such as f6 (Figure 5), a simple hill climber usually fails
to find the best solution resulting in very poor effectiveness.

Preliminary results have shown that the REALGO algorithm
does indeed provide a superior search for complex landscapes due
to its ability to revert back to a previous good solution if the
search stagnates. Rather than resetting to a new starting point, the
search is able to attempt a search in a new direction from this
previous good solution without having to waste generations for
the initial convergence. The next step is to integrate it into a
complete virus detector.

This paper has proposed a novel artificial immune system used
to detect computer viruses. The use of reverse transcription RNA
as a memory structure for a global search has not been proposed
or implemented in any literature to the authors’ knowledge. The
use of the reverse transcription RNA can also be generalized to
other global search genetic algorithms in order to increase their
performance. Additional applications of the REALGO AIS
approached could include multiple robot/UAV control, fault
diagnosis, and network intrusion detection (IDS).

8. FUTURE WORK
 Future work involves extending the functionality of the virus

detector to account for wildcards in signatures as well as
signatures of variable string length. These improvements should
allow the algorithm to increase its detection rates as it is able to
generate the signatures using better defined building blocks. The
information that is passed to future generations of antibodies only
contains the most relevant parts of the signature allowing the rest
of the antibody string structure to change to allow better matching
to unknown virus strains. Also, benchmarks for virus search
landscapes need to be develop for testing this and other AIS
algorithms.

Because this is a new innovative model, advanced concepts
such as encryption are ignored. Encryption is a very important
part of virus detection and must be accounted for in any real
world virus detection systems. Usually the encryption employed
in viruses is comparatively weak and there are many methods that
exist to deal with them. [22] discusses various method of
generating strings to detect encrypted viruses.

An alternate approach to using byte patterns for pattern
matching is that of using some type of geometric detection or
shape heuristic. [20] discusses a method of using ellipsoid

Table 4 –Student t-tests for REALGO versus algorithm
without RNA memory enabled, as well as REALGO versus

FES and CES results. * indicates statistical significance.

 RNA-No RNA RNA-FES RNA-CES

f1 2.47e—3* 1.79e-2* 3.25e-3*

f2 1.63e-4* 2.18e-2* 6.26e-4*

f3 2.13e-1 1.26e-3* 1.25e-3*

f4 9.71e-1 3.15e-1 6.26e-1

f5 1 1 4.13e-1

f6 2.68e-1 7.44e-1 5.24e-3*

f7 4.43e-3* 4.90e-1 2.93e-2*

f8 1.81e-4* 5.11e-1 4.97e-1

Table 5 – Empirically derived tuning parameters for
REALGO algorithm.

Func f1 f2 f3 f4 f5 f6 f7 f8

ε 1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03

Prob
p1

20 20 20 20 20 20 20 20

g 10% 10% 10% 10% 10% 10% 10% 10%

Prob
p2

5 5 5 5 5 5 5 5

t 500 500 0.1 500 500 0.1 500 0.1

109

detectors for negative selection. [16] also incorporates a symbolic
shape-space to represent computer files. Combining a shape
heuristic with the reverse transcription RNA memory function of
REALGO could be promising.

Architectures for distributed virus detection system are defined
in [10,11,16,18] in which REALGO could be incorporated.
The REALGO algorithm can be modified from virus detection to
a network IDS by changing the determination of self and non-self
to represent network characteristics rather than local application
characteristics.

9. REFERENCES
[1] T. Bäck, Evolutionary Algorithms in Theory and Practice.

Oxford University Press. New York 1996.
[2] Cert Coordination Center Website www.cert.org as of 16

Aug 2005.
[3] D. Dasgupta, An Immunity-Based Technique to

Characterize Intrusions in Computer Networks, IEEE
Transactions on Evolutionary Computation, Vol 6, No.
3, June 2002.

[4] D. Dasgupta, Artificial Immune Systems and Their
Applications. Springer. New York, 1999.

[5] L. de Castro and J. Timmis. Artificial Immune Systems: A
New Computational Intelligence Approach, Springer-
Verlag. 2002

[6] L. Eshelman, Genetic Algorithms. Evolutionary
Computation 1: Basic Algorithms and Operators. Bäck,
Fogel, & Michalewicz (eds.) Bristol, Institute of Physics,
2000

[7] S. Forrest and S. Hofmeyr, Immunology as Information
Processing. Design Principles for Immune System & Other
Distributed Autonomous Systems. Segel and Cohen, eds.
Oxford University Press, 2000. pp361-387.

[8] S. M. Garrett, How Do We Evaluate Artificial Immune
Systems?, Evolutionary Computation, 13(2), pp 145-178,
2005

[9] S. Gordon and R. Ford. Real world anti-virus product
reviews and evaluations – the current state of affairs. In
Proceedings of the 19th National Information Systems
Security Conference (NISSC’96), pages 526–538,
Baltimore, MD, USA, Oct. 1996. National Institute of
Standards and Technology (NIST).

[10] P. K. Hammer,and G. B. Lamont, An Agent based
Architecture for a Computer Virus Immune Systems,
Proceedings of Artificial Immune System Workshop,
Proceedings of 2000 Genetic and Evolutionary
Computation Conference

[11] P. K. Harmer, P. D. Williams, C. H. Gunsch, G. B. Lamont,
An Artificial Immune System Architecture for Computer
Security Applications, IEEE Transactions on Evolutionary
Computation, 6(3):252-280, 2002

[12] S. Hofmeyer and S. Forrest, Architecture for an Artificial
Immune System,. Evolutionary Computation, Vol 8, No. 4,
pp 443-473, 2000.

[13] S. Hofmeyer, An Immunological Model of Distributed
Detection and Its Application to Computer Security. PhD
Dissertation. University of New Mexico. 1999.

[14] S. B. Kleiboeker, Applications of Competitor RNA in
Diagnostic Reverse Transcription-PCR, Journal of Clinical
Microbiology, May 2003, p. 2055-2061, Vol. 41, No. 5

[15] R. Kohavi, A study of cross-validation and bootstrap for
accuracy estimation and model selection, IJCAI, 1995.

[16] G. B. Lamont, R. Marmelstein, D. Van Veldhuizen, A
Distributed Architecture for a Self-Adaptive Computer
Virus Immune System, in New Ideas in Optimization, eds.
Corne, Dorigo, and Glover, McGraw Hill, 1999

[17] Lecture notes from School of Molecular and Microbial
Sciences. University of Sydney, Australia.
www.biochem.usyd.edu.au/MBLG2001/BMedSci/lecture%
2013_Transcription.ppt as of 30 Aug 2005.

[18] T. Okamoto and Y. Ishida, A Distributed Approach to
Computer Virus Detection and Neutralization by
Autonomous and Heterogeneous Agents, Proceedings of
the ISADS 1999 pp. 328-331.

[19] J. Percus, O. Percus, A. Perelson, Predicting the Size of the
T-Cell Receptor and Antibody Combining Region from
Consideration of Efficient Self-Nonself Discrimination,
Proceedings of the National Academy of Sciences of the
United States of America, Vol. 90, No. 5 (Mar. 1, 1993) ,
pp. 1691-1695

[20] M. Schultz, E. Eskin, E. Zadok, S. Stolfo. Data mining
Methods for Detection of New Malicious Executables.
Proceedings on the IEEE Symposium on Security and
Privacy, 2001

[21] J. Shapiro, G. B. Lamont, and G.L. Peterson, An
Evolutionary Algorithm to Generate Hyper-Ellipsoid
Detectors for Negative Selection, Proceedings of
2005 Genetic and Evolutionary Computation Conference

[22] P. Szor. The Art of Computer Virus Research and Defense.
Addison-Wesley. New Jersey 2005.

[23] A. J Timmis, T Knight, L N De Castro, and E Hart, An
overview of artificial immune systems in R Paton, H
Bolouri, M Holcombe, J H Parish, and R Tateson, editors,
"Computation in Cells and Tissues: Perspectives and Tools
for Thought", Natural Computation Series, pages 51-86.
Springer, November 2004.

[24] P. D. Williams , K. Anchor, J. Bebo, G. Gunsch, G.
Lamont, Warthog: Towards a Computer Immune System
for Detecting “Low and Slow” Information System Attacks,
Recent Advances in Intrusion Detection, RAID, 2001

[25] X. Yao and Y. Liu, Fast Evolution Strategies, Control &
Cybernetics., vol. 26, no. 3, pp. 467–496, 1997

110

