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ABSTRACT 
In the search for a robust and efficient algorithm to be used for 
computer virus detection, we have developed an artificial immune 
system genetic algorithm (REALGO) based on the human 
immune system’s use of reverse transcription ribonucleic acid 
(RNA).  The REALGO algorithm provides memory such that 
during a complex search the algorithm can revert back to and 
attempt to mutate in a different “direction” in order to escape 
local minima.  In lieu of non-existing virus generic templates, 
validation is addressed by using an appropriate variety of function 
optimizations with landscapes believed to be similar to that of- 
virus detection. It is empirically shown that the REALGO 
algorithm finds “better” solutions than other evolutionary 
strategies in four out of eight test functions and finds equally 
“good” solutions in the remaining four optimization problems.      

Categories and Subject Descriptors 
K.6.5 [Management of Computing and Information Systems]: 
Security and Protection – Invasive Software 

General Terms: Algorithms, Computer Security. 

Keywords: Computer Virus, Security, Detection, Memetic, 
Genetic Algorithms, RNA, Function Optimization 

1.      INTRODUCTION 
Contemporary computer systems are integral in daily life with 

regard to accomplishing increasing complex tasks.  With this 
complexity we have created system vulnerabilities.  There are so 
many interdependencies and relationships between entities in a 
computer system that a malicious user does not need to find a 
vulnerability to attack, rather they decide which one to attack. 
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In 1995, the first year the Computer Emergency Response 
Team (CERT) Coordination center published statistics for 
vulnerabilities, they reported 171 different vulnerabilities.  In 
2004, the number has increased to 3,780 [2].  In 1995, there were 
2,412 security incidents reported.  The number has had an 
exponential increase to 137,529 in 2003 [2].  Viruses exploit these 
vulnerabilities to infect their hosts.  CERT has stopped counting 
separate incidents in search for a more meaningful statistic of 
attacks since it is easy to attack a computer system. Of course, 
other computer security issues with increasing concern include 
Trojan horses, bots, backdoors, dialers, worms, adware, and 
spyware. The proposed AIS system can also be used to address 
these threats as well as viruses. 

Currently most virus protection for computers is implemented 
using signature recognition derived after analyzing known viruses 
[22].  Although this method has been somewhat successful to 
date, we are rapidly approaching a time when such methods will 
be inadequate.  As viruses are constantly mutated and tweaked to 
avoid detection, the signature list becomes larger and larger 
possibly approaching seven figures.  Another problem is that 
viruses are only detected after they have been initially discovered, 
analyzed, and signatures have been distributed.  This process can 
be very slow and wastes precious time while a fast replicating 
virus quickly renders a networked computing system useless. 

What is required is a system that can combine known 
information from past viruses with a type of prediction for future 
viruses.  Utilizing a computing system based on an artificial 
immune system may be able to achieve this.  If a computer can be 
“immunized” initially and “learn” from viruses and other 
computers, and use that knowledge with evolutionary algorithms 
to come up with new signatures for probable viruses, we can 
effectively eliminate viruses before they ever have time to 
replicate. A variety of AIS operators have been suggested for this 
purpose [4,5]. This paper proposes a new type of artificial 
immune system (AIS) to detect computer viruses based on the 
REtrovirus ALGOrithm (REALGO).  REALGO is based on the 
concept of reverse transcription RNA (see Figure 1) as found in 
biological systems [14]; i.e., Reverse Transcription Ribonucleic 
Acid (RNA). 

In the following sections, generic AIS design is addressed 
(Section 2), the process of reverse transcription RNA is discussed 
and symbolically described as it applies to computer virus 
detection in an AIS.  Next, the REALGO is mapped into the 
algorithm domain (Section 3), the computational domain is 
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presented in Section 4, and the design of experiments (Section 5) 
and results are detailed (Section 6).  Lastly, conclusions and 
future work are discussed in Sections 7 and 8 respectively.  

2. COMPUTER VIRUS DETECTION   
AIS Design encompasses self-organization, self-regulation, 

primary and secondary immune system responses, clonal 
selection, adaptation and diversification, knowledge extraction 
and generalization, a network structure, metadynamics, memory, 
and knowledge of self and non-self [4,5,19,21,23] as evolved 
from biological immune system (BIS) constructs. Many of these 
processes are a hierarchical network integration of others and use 
a combination of the same operators to define their associate 
interactions.  For example, clonal selection followed by somatic 
hypermutation are elements of self-organization, adaptation and 
diversification, and positive selection and negative selection relate 
to self and non-self.  Note that clonal selection followed by 
somatic hypermutation with high selection pressure is usually 
defined as affinity maturation.  The antigen-antibody BIS pattern 
matching is accomplished by specialized proteins attached to B-
cells that bind with antigens. Of course, such proteins are 
generated by DNA through RNA processing (Figure 1).  These 
proteins then, as appropriate, become gene libraries for use as 
initial antibodies.  B-cell computational antibodies usually 
correspond to an AIS analyzing computer input streams for 
viruses, where as file structures with embedded viruses map to the 
combined B-cell and T-cell helper situation matching the MHC 
protein, the equivalent partial antigen [4, 23]. The major vehicles 
for the AIS adaptation process to virus protection relate to 
changes in the computational antibody structures through some 
form of mutation. In particular, the use of an affinity maturation 
model of antibody clones provides for new virus exploration.  
This brief mapping of AIS to BIS discussion is quite limited with 
more details found in [4, 23]. In our proposed augmented virus 
protection AIS, the reverse transcription RNA process is 
formulated as an innovative adaptive computational operator.  

 Most contemporary virus detectors use a scanning engine to 
match input streams or file structures against known virus 
signatures (antigens) [22].  A major AIS computational problem 
with this contemporary approach is that every virus signature 
must be stored and compared to every computer input stream or 
file.  This implies a lot of pattern matching computation and yet it 
still fails to detect viruses that have not already been identified 
and cataloged.  

The REtrovirus ALGOrithm (REALGO) operates by 
employing a random antibody initiation process and then, using 
known virus signatures (antigens), “trains” these antibodies 
through a genetic algorithm (GA).  A distance measure is usually 
employed as a fitness function representing the distance 
(Euclidian, Hamming …) between antigen bit-string and the 
antibody bit string.  After an initial learning phase, the antibodies 
are released into the computer system to recognize virus patterns.  
The antibodies constantly evolve using mutation (affinity 
maturation) in order to try to identify new viruses, adapting and 
diversifying the antibody memory.  When a new virus is detected 
in a trusted network a new retrovirus signature is created and sent 
to other network systems in order to “immunize” them.  To keep 
the number of antibodies to a minimum and increase performance, 
a temporal aspect is employed.  Basically, antibodies that have 
not  

 
Figure 1 – Reverse Transcription in the human body [17] 

been used can die after a specified time period (metadynamics) [8, 
23].  If an antibody is deemed particularly important, it can be 
protected from elimination using a protection flag.  On the other 
hand, antibodies that have been activated previously can trigger a 
secondary response (Figure 2), as is done in the biological 
immune system, as related to memory. Thus, in response to a 
repeated attack, the memory provides for increased efficiency 
(identification speed) and effectiveness. 

 
Figure 2 – Antibody Primary and Secondary Response [13] 

An important concept of antibody development for detecting 
virus attacks is in the knowledge extraction or learning phase.  
This phase is further decomposed into two distinct parts; training 
for positive selection and negative selection.  Positive selection is 
the ability of the antibody to detect a virus.  Negative selection 
ensures that the antibody does not trigger on the computer’s 
concept of “self”.  We do not want the antibody to identify a 
normal process or file (self) as a virus.  The antibodies can be 
trained for positive selection by using a genetic algorithm on the 
initial population of randomly generated antibodies using a 
comparison operator against known virus signatures.  This 
effectively trains the antibodies to detect known viruses.  It is 
important to note, that these antibody to virus signature pairs are 
probably not exact matches.  Instead they match within a 
specified threshold [10, 23] given a distance metric.  Because they 
are not exact matches, we must also filter the newly trained 
antibodies against detecting self using negative selection 
techniques. 

To filter the antibodies, we use a fitness function to match 
them against known good processes and programs in the computer 
(self).  It is critical that the computer system has not already been 
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compromised by a virus since it would filter out the specific virus 
detection capability.  If an antibody matches a good process string 
or program string within a certain threshold, it must be discarded.  
To ensure that our final population is of the desired size, enough 
antibodies in the positive selection phase must be generated so 
that some may be discarded.  If we drop below the desired 
population during negative selection training, we must randomly 
generate new antibodies and train them with positive selection.  If 
after negative selection training, an extra number of antibodies 
exist; simply discard the ones with the lowest positive selection 
fitness values. 

The REALGO AIS as designed incorporates all of the salient 
features mentioned at the beginning of this section. It is important 
to observe that similar systems for detecting computer attacks 
were developed and implemented by Forrest, et al in [7, 12], 
Harmar, et al in [10, 11], and Williams, et al [24].  The main 
difference is our use of the RNA as a memory structure the search 
can use to revert back to a previous “good” solution if the search 
stagnates and fails to produce a better solution.  After reverting 
back to this “good” solution, the search can proceed in a different 
“direction” to try and find a “better” solution.  This operation is 
expected to increase the performance of the search algorithm in 
both efficiency and effectiveness.   

3. A SYMBOLIC REALGO MODEL  
In order to formally understand and apply the REALGO 

algorithm, a symbolic notation is discussed.  The symbolic 
notation is provided for the reader who desires detailed 
comprehension of the algorithm.  The following symbolic model 
is based on notation for genetic algorithms in [1]: 

Initializing the time variable and the population of antibodies 
is generated randomly, 

t:=0; 

3.1 initialize: 1(0) : { (0),..., (0)} u
uP a a I= ∈

ur uur
 

Next the population of antibodies is evaluated against the 
training antigens (known virus signatures).  For the first iteration 
this evaluation is equal to zero as we have not yet imported any 
antigens. 

3.2 evaluate: 1(0) :{ ( (0),..., (0)}uP f x x
ur uur

; 

3.3 while not terminate (P (t)) do 

The termination condition is based on a threshold of matching 
the antibodies to the antigens.  If not terminating, then the RNA 
structure is imported which consists of antigens.  In our 
application, the antigens are a string of virus signatures.  For the 
first iteration, they are known virus signatures from previous virus 
knowledge bases. 

3.4 import RNA:   

1( ) : { ( ),..., ( )} u
uV t v t v t I= ∈

ur uur
 ; 

After importation, the population is compared with the 
imported RNA and the population member is replaced with the 
RNA with probability p1 if its fitness is higher. A protection 
variable is checked that allows the algorithm to protect population 
members.  We do not want to replace members that have 
previously had a high probability of matching to a known virus. 

Select RNA: ( ) : ( )k ja t v t=
r r

with probability p1 

 if ( ( )) ( ( )) {1,.., }kjf v t f a t j n> ∀ ∈
uur r

 

and 1kρ ≠  (Cell is not protected); 

3.5 mutate: 

To create new antibodies mutate members of the population to 
create λ children 

{ , ', }'' ( ) : ' ( ' ( )) {1,..., }k ka t m a t kτ τ β λ= ∀ ∈
r r

; 

As part of the process of selecting the next generation of 
antibodies, evaluation of the children just produced  

3.6 evaluate: 

1 ..., ''''( ) : { '' ( ), ( )}:aP t a t tλ=
r r

 

1{ ( '' ( ),..., ( '' ( )}f x t f x tλ

r r
; 

Now, check to see if the antibodies are failing to match any 
antigens by a specified threshold.  If so, then further check if the 
string evolved from a RNA strand.  If it did, then, revert back to 
the RNA string (memory) with probability p2.  The purpose of this 
check is to revert back to a known good starting point if the 
search for a good antibody stagnates.  This operation allows the 
algorithm to explore from a known good starting point but in a 
different direction than one that produced the stagnant solution. 

If 1( '' ( ))kf x t ε∃ <
r

then (If fitness falls below threshold) 

If 1kξ =  (RNA based cell indicator) 

2( ) : ( ) with Probability pk ka t v t=
r uur

 (Revert back to RNA) 

In order to exploit an area of good solutions, the algorithm 
spawns new strands of RNA if a particular antibody evaluates 
very high based on a set threshold.  If it does, the algorithm 
creates n copies to be used in developing the next generation. 

If 2( '' ( ))kf x t ε∃ >
r

 then (If fitness is above threshold 
value)  

1( ) : { ( ),..., ( )} n
nV t v t v t I= ∈

ur uur
 (Create n copies of RNA)  

The next generation is now determined using μ λ+ selection 

by selecting the best μ individuals out of the μ λ+ population 
[6]. 

3.7 Select: ''
( )( 1) : ( ));uP t s P tλ++ =  

The time variable is iterated and the algorithm loops back to 
step 6 until termination t:=t+1; 

Now that positive selection is completed, the algorithm must 
check the antibodies against the system’s concept of “self” to 
prevent the system from attacking good processes and programs.  
It is important that the system is in a known “clean” configuration 
at this time.  If this assumption does not hold then any viruses in 
the system are identified as “self” and the algorithm will actually 
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protect them.  This concept of training the antibodies against the 
concept of “self” is known as “negative selection”. 

If 3( ( ))kf x t ε∃ >
r

 

 then ( ) : ( ) ( )kP t P t x t= −  

If P(t) falls below a specified number of elements then new 
ones must be generated using the positive selection part of the 
algorithm followed by negative selection until the specified 
number of antibodies is achieved.   

Now that training is complete, the algorithm is ready to release 
the antibodies into the network computer system in order to patrol 
for viruses.  As programs and/or process are started, copied, or 
accessed in any way, the antivirus scanner compares them to the 
antibodies in the system.  If they match within a specified 
threshold, then the antivirus program checks to see if the antibody 
is mature or immature.  If immature, then the program needs a 
secondary confirmation in order to take action on the suspected 
virus.  This confirmation comes from the user.  Once a virus is 
confirmed, the antibody is considered to be mature, sets a flag on 
the antibody data structure, and does not require confirmation for 
future viruses.  Signatures that are imported can also be defined to 
be mature and not require confirmation by setting the mature flag.  
This mature flag is analogous to a secondary response in the 
human immune system [7]. 

Although not implemented in this system, we envision that 
once a virus antibody is confirmed, it is uploaded to a central 
repository where it is further checked by anti virus researchers.  If 
it qualifies, the antibody could be sent to other users in order to 
vaccinate them on the new virus strain.  The advantage of this 
process is that with the first variant of a virus discovered by any 
user, the inoculation could be sent out within minutes to every 
other user which would effectively stop the propagation of the 
virus almost immediately.  This concept is discussed in [16].     

This system does not require the researchers to actively find 
the virus.  Instead, the virus antibody is sent to them 
automatically.  This would drastically reduce the amount of time 
it takes to detect new variants of viruses by using a distributed 
detection system. 

In order to search for antibodies that match new virus variants, 
the REALGO program uses a genetic algorithm with mutation to 
generate new antibodies.  If known good building blocks exist in 
any of the antibodies, they can be protected and remain intact 
throughout the operations.   

When selecting the next generation based on a fitness value, 
we choose between the children generated by the REALGO 
operations, the parents, and the antibodies received by other 
systems.  The fitness value also takes into account the age of the 
antibody and the number of activations it (or its building blocks) 
have encountered.  If there is an “old” antibody that has rarely 
been used, we might choose to delete it and generate a 
replacement based on the current threats.  This operation allows 
the program to remain agile by maintaining a smaller signature 
file.  We also make the assumption that at least one system finds 
the virus and passes the “vaccine” to the rest of the system.  We 
are basically leveraging the power of the distributed nature of the 
interconnected computer systems in order to spread the burden of 
maintaining a large signature file. 

 
Figure 3 – Flowchart of REALGO algorithm 

 

4. EVOLUTIONARY COMPUTATION  
A genetic algorithm is the natural choice for both training the 

antibodies and modifying antibodies in the system once they are 
deployed because of the binary allele’s genotype structure.  A 
generic psuedocode for the complete anti virus scanner follows:  

REALGO Psuedocode 
1: Initialize population of antibodies (random) 
2: Introduce known antigens (virus signatures) 
3: for fitness of antibodies not sufficient do 
4: Compare antibodies to antigens (Genetic 

Algorithm) 
5:  Evaluate antigens based on bit matching to 

antibodies 
6:   Select x number with highest fitness 
7:  Generate children via mutation 
8: end for 
9:  if antigens based on bit matching match known   
 good programs/processes then discard 
10:  while (true) do  
11:  if programs/processes match antibodies  

beyond specified threshold then 
12:    generate warning 
13:   Update data in antibody reflecting  

number of matches (fitness) 
14:    if virus is confirmed then 
15:   send a copy of antibody 

to other systems 
16: clean system 
17:   Generate new children by mutation 
18:   Select parents based on fitness 
19:   if fitness is high (ε *average fitness) then 

Initialize 
& 

Import RNA 

Population 
Trained? 

No 

Positive Selection Training 

Negative Selection Training 

Population 
Trained? 

No 

Scanning Phase 

Match 
Virus? 

Yes 
Notify System 

Evaluate 
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20:   generate n copies of DNA to  
become RNA with prob p1 

21:  if fitness stagnates for g generations and  
RNA exists then 

22:    revert back to RNA with prob p2 
23:   Select population based on fitness and age 
24: end while 

 
The natural data structures for the virus signatures are binary 

strings.  The strings are encoded with the signature data as well as 
a mature flag, a protection flag, a RNA exists flag, and a pointer 
to any associated RNA structure that the string initially evolved 
from (Figure 4).  RNA structures consist of the same types of 
strings which means that nesting of the RNA structures can occur. 

S i g . . . . . . . 
M
F 

P 
F 

R
E 

 

Figure 4 – Generic Signature Data Structure 
For mutation, we use a Cauchy distribution as this has been 

shown in [25] to have the ability to make long jumps to escape 
local minima as compared to a Gaussian distribution.  A 
simulated annealing time function is also used to increase 
exploitation after an initial period of large exploration.  The 
combination of these two operators makes the search memetic.     

To calculate the fitness value, as in [7], a matching rule is 
used.  If the bits of the antigen and the antibody match for r-
contiguous bits then the fitness value is computed to be r.  The 
range of r is 0 r l≤ ≤ where l = signature string length 

Experimental data is used to determine the ε  multiplicative 
values for generating RNA and the number of generations of 
stagnation (represented as the percentage, g, of total number of 
generations in search) before reverting back to the memory RNA 
structure.  These are basically tuning parameters that determine 
the rates of exploration and exploitation.  It is assumed that the 
user has a general idea of the problem domain landscape and is 
able to initially set these parameters based on the expected search 
landscape. 

  

5. DESIGN OF EXPERIMENTS 
To evaluate the REALGO AIS algorithm, various procedures 

are defined based in part on the assessment criteria of Garrett [8]. 
The first step in testing the system is to ensure that the REALGO 
algorithm produces good results in complex search landscapes.  
One could consider that a computer virus search landscape would 
probably consist of or be close to “needles in a haystack” or delta 
functions on a discrete grid.  But a realistic generalized virus 
landscape is not available since there are not any known complex 
models of virus selection benchmarks.  Thus, other evaluation 
benchmarks need to be defined to evaluate the new REALGO 
algorithm.  Function optimization was chosen to replace virus 
benchmarks for algorithm performance analysis. With the 
REALGO algorithm coded in C++, it is tested against eight well 
known test functions shown in Table 1 [25] that represent a 
variety of desired search landscape characteristics.  The initial 
research is limited to these eight test functions as a proof of 
concept for the algorithm.  Once the desired operation of the 

algorithm is confirmed based upon metrics, it would be integrated 
into the detection system. 

Employing this functional optimization approach, results are 
averaged over 50 runs and results compared against those 
presented in [25].  Tuning parameters were developed empirically 
using some limited knowledge of the landscape of each problem.  
For example, the f6 function was graphed in a single dimension 
(Figure 5) to gain an understanding of the problem domain 
landscape.  It is easy to see that there is a local minimum quite a 
distance away from the global minimum.  This “egg carton” 
landscape could be thought of as a set of delta functions on a 
numerical grid possibly reflecting a virus signature landscape. In 
order to be able to jump far in this landscape, the simulated 
annealing time constant t was adjusted at a slower rate than a 
function such as f1 (Figure 6) which requires a much finer level of 
resolution in its search.  

Once libraries of signatures and viruses are obtained, testing 
begins with a small sample to ensure the algorithm functions as 
desired in this functional optimization domain.  This small sample 
contains 100 antibodies. After initial validation, system testing 
begins using the complete virus binary library available.  5-fold 
cross validation is used to measure detection and false positive 
rates [15].  The size of the libraries obtained determines the 
population size and the number of virus binaries tested.  Based on 
similar work from [20], a binary library of 3000+ is anticipated to 
be a reasonable size for comparison purposes.  

REALGO system testing is executed on a single computer 
platform utilizing a 2.53 GHz Pentium 4 processor with 512 MB 
of RAM running the Windows XP Professional operating system.  
Note that virus detection measurement rates are extremely non 
standard [9].  Once data is available from the REALGO 
experiments, it is compared against other published virus  

Table 1 - Test Functions Used [25]. 

Test function S fmin 

1

2
1 ( )

n

i if x x
=

= ∑  [-100,100]n 0 

1 12 ( )
nn

i ii if x x x
= =

= +∑ ∏  [-10,10]n 0 

2

1 13
( ) ( )n n

i j j
x xf

= =
= ∑ ∑  [-100,100]n 0 

1

1

2 2 2

4 1( ) [100( ) ( 1) ]n

i i i if x x x x−

= +
= − + −∑  [-30,30]n 0 

⎣ ⎦
2

15
( ) ( 0.5 )n

i i
f x x

=
= +∑  [-100,100]n 0 

16
( ) ( sin( ))n

i i i
f x x x

=
= −∑  [-500,500]n -12569.5 

2

17
( ) [ cos(2 ) 10)]n

i i i
f x x xπ

=
= − +∑  [-5.12,5.12]n 0 

2

18 1
( )

1
cos( )

4000

nn i

i i i
f x x

x

i
= =

= − +∑ ∏
[-600,600]n 0 
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Figure 5 – The graph of f6 in one dimension.  This data was 
used to estimate the simulated annealing constant for 
mutation when the search was expanded to 30 dimensions. 
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 Figure 6– Graph of f1 in one dimension.  This function is 
much smoother and requires a higher resolution search thus a 
smaller mutation operator which is controlled by the 
simulated annealing constant t. 

detection algorithms such as those in [20].  The false positive rate 
should be close to 0 for all non virus binaries tested.  Future work 
should include testing the artificial immune system on a 
distributed network.  As more signatures are involved in a 
distributed network, the detection rate should increase.  This 
would demonstrate the benefit of using a network of computers 
for REALGO virus detection.  With the computers on the network 
cooperating, the new viruses have little chance to propagate. 

6. EXPERIMENTAL RESULTS 
The REALGO algorithm has been tested against eight 

benchmark functions as a proof of concept for the algorithm.  The 
associated results of the REALGO algorithm are shown in Table 
2.  These results are compared to those from [25] (Table 3) with 
the resulting t-tests shown in Table 4. 

Using a student t-test to compare the results, the REALGO 
algorithm was shown to produce better results when the RNA 
function was enabled on four out of the eight functions.   On the 
remaining functions, it produced equally good results whether or 
not the RNA function was enabled.  It never produced inferior 
results.  When compared to the FES (Fast Evolution Strategies) 
algorithm from [25], REALGO outperformed FES on three of the 
eight functions and produced statistically equal results on the 
remaining five.  When compared to CES (Classic Evolution 

Strategies), REALGO outperformed on two out of the eight 
functions and was shown to be statistically equal on three other 
functions.  Two of the three that CES performed a better search 
(f1 and f2) were the same ones that CES outperformed FES on in 
[25].  CES performed better on these searches due to the simpler 
landscapes and the fact that CES was not burdened by the 
additional overhead that FES and REALGO have.  On the more 
complex searches, the overhead was needed and was reflected in 
the performance measurements.  

To graphically illustrate the results of REALGO we have 
included plots which show the means of 50 runs with a one 
standard deviation error bar.  The other test function plots reflect 
similar pictorial results. The results for f1 and f8 are shown in 
Figures 7 and 8 respectively. 

Through empirical testing, design parameters have been 
determined which generated the best results.  These values are 
shown in Table 5.   

Table 2 – Results of REALGO algorithm on eight test functions. 

 # Gen RNA 
Mean 

RNA SD No RNA 
Mean 

No RNA 
SD 

f1 750 9.44e-5 1.42e-5 1.63e-4 2.02e-5 

f2 1000 3.37e-2 2.75e-3 4.44e-2 2.99e-3 

f3 2500 3.54e-1 7.55e-2 4.41e-1 6.77e-2 

f4 7500 3.27 4.06 3.14 4.09 

f5 750 0 0 0 0 

f6 4500 -12563.3 5.53e-1 -12577.3 109.689 

f7 2500 9.44e-5 1.42e-5 6.16e-3 7.16e-4 

f8 1000 1.52e-2 2.42e-3 2.46e-2 2.64e-3 

 
 

Table 3- Results of FES and CES on eight test functions [25]. 

 FES Mean FES SD CES Mean CES SD 

f1 2.5e-4 6.8e-5 3.4e-5 8.6e-6 

f2 6.0e-2 9.6e-3 2.1e-2 2.2e-3 

f3 1.4e-3 5.3e-4 1.3e-4 8.5e-5 

f4 33.28 43.13 6.69 14.45 

f5 0 0 411.16 695.35 

f6 -12556.4 32.53 -7549.9 631.39 

f7 0.16 0.33 70.82 21.49 

f8 3.7e-2 5.0e-2 0.38 0.77 
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Figure 7 – Results of REALGO on function 1.  The results 
with RNA enabled are statistically better  
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Figure 8 – Results of REALGO on function 8.  The results 
with RNA enabled are statistically better. 

 

7. CONCLUSIONS  
  The results show that the REALGO algorithm is superior for 

optimizing complex functions but not necessarily for easier ones.  
This is due to the fact that the REALGO algorithm adds 
complexity to the search that is not needed for simple searches.  
Once the complexity of the search landscape is greater than that 
of the algorithm, the REALGO algorithm becomes superior.  For 
a simple search, something as basic as a hill climber suffices.  If 
the complexity of the REALGO algorithm is used with the simple 

landscape, the efficiency is reduced because the complexity is not 
required to find the solution.  Conversely, with a complex 
function such as f6 (Figure 5), a simple hill climber usually fails 
to find the best solution resulting in very poor effectiveness.   

Preliminary results have shown that the REALGO algorithm 
does indeed provide a superior search for complex landscapes due 
to its ability to revert back to a previous good solution if the 
search stagnates.  Rather than resetting to a new starting point, the 
search is able to attempt a search in a new direction from this 
previous good solution without having to waste generations for 
the initial convergence.  The next step is to integrate it into a 
complete virus detector. 

This paper has proposed a novel artificial immune system used 
to detect computer viruses.  The use of reverse transcription RNA 
as a memory structure for a global search has not been proposed 
or implemented in any literature to the authors’ knowledge.  The 
use of the reverse transcription RNA can also be generalized to 
other global search genetic algorithms in order to increase their 
performance. Additional applications of the REALGO AIS 
approached could include multiple robot/UAV control, fault 
diagnosis, and network intrusion detection (IDS). 

8. FUTURE WORK 
 Future work involves extending the functionality of the virus 

detector to account for wildcards in signatures as well as 
signatures of variable string length.  These improvements should 
allow the algorithm to increase its detection rates as it is able to 
generate the signatures using better defined building blocks.  The 
information that is passed to future generations of antibodies only 
contains the most relevant parts of the signature allowing the rest 
of the antibody string structure to change to allow better matching 
to unknown virus strains. Also, benchmarks for virus search 
landscapes need to be develop for testing this and other AIS 
algorithms.  

Because this is a new innovative model, advanced concepts 
such as encryption are ignored.  Encryption is a very important 
part of virus detection and must be accounted for in any real 
world virus detection systems.  Usually the encryption employed 
in viruses is comparatively weak and there are many methods that 
exist to deal with them.  [22] discusses various method of 
generating strings to detect encrypted viruses. 

An alternate approach to using byte patterns for pattern 
matching is that of using some type of geometric detection or 
shape heuristic.  [20] discusses a method of using ellipsoid 

Table 4 –Student t-tests for REALGO versus algorithm 
without RNA memory enabled, as well as REALGO versus 

FES and CES results. * indicates statistical significance. 

 RNA-No RNA RNA-FES RNA-CES 

f1 2.47e—3* 1.79e-2* 3.25e-3* 

f2 1.63e-4* 2.18e-2* 6.26e-4* 

f3 2.13e-1 1.26e-3* 1.25e-3* 

f4 9.71e-1 3.15e-1 6.26e-1 

f5 1 1 4.13e-1 

f6 2.68e-1 7.44e-1 5.24e-3* 

f7 4.43e-3* 4.90e-1 2.93e-2* 

f8 1.81e-4* 5.11e-1 4.97e-1 

 

Table 5 – Empirically derived tuning parameters for 
REALGO algorithm. 

Func f1 f2 f3 f4 f5 f6 f7 f8 

ε  1.03 1.03 1.03 1.03 1.03 1.03 1.03 1.03 

Prob 
p1 

20 20 20 20 20 20 20 20 

g 10% 10% 10% 10% 10% 10% 10% 10% 

Prob 
p2 

5 5 5 5 5 5 5 5 

t 500 500 0.1 500 500 0.1 500 0.1 
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detectors for negative selection.  [16] also incorporates a symbolic 
shape-space to represent computer files.  Combining a shape 
heuristic with the reverse transcription RNA memory function of 
REALGO could be promising. 

Architectures for distributed virus detection system are defined 
in [10,11,16,18] in which REALGO could be incorporated.      
The REALGO algorithm can be modified from virus detection to 
a network IDS by changing the determination of self and non-self 
to represent network characteristics rather than local application 
characteristics. 
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