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ABSTRACT

Metaheuristics have often been shown to be effective for dif-
ficult combinatorial optimization problems. The reason for
that, however, remains unclear. A framework for a theory
of metaheuristics crucially depends on a formal representa-
tive model of such algorithms. This paper unifies/reconciles
in a single framework the model of a black box algorithm
coming from the no-free-lunch research (e.g. Wolpert et al.
[25], Wegener [23]) with the study of fitness landscape. Both
are important to the understanding of meta-heuristics, but
they have so far been studied separately. The new model is
a natural environment to study meta-heuristics.

Categories and Subject Descriptors

F.2 [Theory of Computation]: ANALYSIS OF ALGO-
RITHMS AND PROBLEM COMPLEXITY

General Terms
Algorithms, Theory
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INTRODUCTION

During the last 20 years many algorithms (metaheuris-
tics) have been proposed to efficiently explore search spaces
on which no knowledge is available [2]. Usually a search al-
gorithm tries to infer the position of good new solutions in
the search space based on previously sampled solutions.

Many metaheuristics are inspired by powerful natural or
physical processes. Ant Colony Optimization (ACO), Evo-
lutionary Algorithms (EAs) and Simulated Annealing (SA)
are examples of such algorithms. ACO and EAs are inspired
by nature; SA is inspired by the annealing process of metals.

These and other metaheuristics have been applied suc-
cessfully to an ever increasing number of hard combinato-
rial optimization problems such as TSP, vehicle routing, job
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shop scheduling, and bin packing. However, in many cases,
their remarkable empirical success is not associated to cor-
respondingly robust theoretical foundations.

It is of a particular interest to study the different search
algorithms in one, single framework. The motivations for
this are:

e Even though different metaheuristics are inspired by
different processes they are all designed to perform
well in the black box scenario, and, indeed, results ob-
tained for the black box scenario have implications for
all metaheuristics at the same time.

Despite the apparent differences, metaheuristics have a
lot in common. This has led to the development of hy-
brid metaheuristics which are often proven to be more
powerful than the traditional ones. Furthermore, there
are general common properties which are expected to
affect performance of all metaheuristics as identified in
[2].

Wolpert and Macready were perhaps the first to consider
the general properties of the black box scenario. With their
No-free-lunch theorem (NFLT) [25] they put an end to the
hope of developing a general-purpose robust optimization
algorithm by proving that such an algorithm does not exist.

Despite the vast impact of the NFLT, its implication on
real-world problems and real-world algorithms is not clear.
In particular, it is argued that the set of problems that the
NFLTSs consider is not related to real-world problems. Cul-
berson [5] showed that the number of problems considered
by the NFLTs is much higher than the one considered by
the class of NP or even PSPACE problems. English [9,
8] made similar arguments using the notion of Kolmogorov
complexity [10]. Droste, Jansen and Wegener [6] described
the NFLTs scenario as non-realistic and, finally, Igel and
Toussaint [11] made similar arguments for the sharper ver-
sion of the NFL [21].

It seems clear that, in order to obtain meaningful results,
it is essential to consider more realistic scenarios. Wegener
et al. [23, 24, 7] describe black-box algorithms as random-
ized decision trees and use Yao’s minimax principle to de-
rive lower bounds for the black-box complexity of particular,
more realistic, classes of problems (e.g., NIAH and unimodal
functions).

It is well known that search spaces which corresponds to
real world problems include many symmetries (e.g., auto-
morphisms of a TSP graph). Rowe, Vose and Wright [19,
20] investigate this scenario for GA. They formally define a
notion of structure in the search space, and study the condi-



tions for which mutation and crossover respect the symme-
tries induced by the structure. In section 3 we consider the
symmetries of the search space in a similar way, albeit, us-
ing different notation. In section 4 we generalize this notion
(i.e., symmetries in the search space) for the case of fitness
landscapes. We define the orbit of a function f w.r.t. the
symmetries of the search space as a structural class of prob-
lems. We argue that this is a natural way to group problems
in the black box scenario.

The efficiency of metaheuristics strongly depends on the
choice of representation and operators. Respecting the sym-
metries of the search space is an important property of an
efficient search-operators — in fact, designing such operators
is, perhaps, the main motivation for [19, 20, 13]. In sec-
tion 5 we define a generic model of random search heuristics
which explicitly assumes that the search operators respect
the structure of the search space. The motivations for this
are twofold, firstly, this is true for many metaheuristics (in
particular, whenever the search operators are defined over
the structure, they respect the structure). Moreover, even if
for some metaheuristics (or representations) this is not the
case at the present, arguably, given the active, fruitful re-
search on principled design, this will be the case in the near
future. Our model is constructed such that it has identi-
cal performance over all functions which belong to the same
structural class.

The implications of this are twofold. Firstly, thanks to our
way of grouping problems for the black box scenario on the
basis of structure, it is now possible to explore how classes
of real-world problems connect to the black box scenario.
We follow this approach in [3]. Secondly, a unified realistic
model for metaheuristics can be an important starting point
for the development of a meaningful theoretical framework.
We discuss some of the possible implications of our model
for future research in section 6. It is important to stress that
by “realistic” we mean that we aim to describe in detail the
common properties of existing metaheuristics. We do not
consider, at this stage, other important aspects of realistic
search algorithm like space restrictions.

2. MOTIVATIONS

There is a gap between the theoretical study of meta-
heuristics and the way that they are used in practice. On
one hand, metaheuristics strongly depend on the structure of
the search space, yet, formal models of black-box heuristics
make not attempt to model and use this structure explicitly,
hiding it, instead, within some probability distribution.

On the other hand, the extensive research done in the
field of fitness landscapes (e.g., [16]) focuses on the struc-
ture alone, ignoring that it is meaningful to study the fea-
tures of a landscape only as long as the search operators are
“matched” to the landscape structure.

In this paper, we combine the notions of formal model
of black-box heuristics and fitness landscapes into one in-
tegrated framework. This provides a natural setting where
to define and study meta-heuristics. As we argue in section
5, many pre-existing metaheuristics fit our framework. Fur-
thermore, we give some formal results that although easy
and intuitive are very powerful and general and can be ex-
tended to much less obvious results. The contribution of
this paper is, therefore, a change in perspective on how to
formally model meta-heuristics.
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3. STRUCTURE

It is a common conjecture (that has been elaborated in the
literature on NFLTs) that real-world problems have struc-
ture. Metaheuristics exploit this structure to find solutions
efficiently (that is, without using problem-specific knowl-
edge). The notion of structural search space was formally
defined in [19, 20]. Row, Vose and Wright consider the situa-
tion where there is a group of permutations which act on the
search space. They define, this way, the many symmetries
often arises in combinatorial search spaces and study the
conditions for which mutation and crossover respect these
symmetries. In this section we follow a similar approach,
however, rather than considering the automorphisms of a
graphs we use the notion of metric-spaces and isometry
transformation.

The neighborhood structure is often defined by a metric
function d : X x X — R that gives the distance between
any two points in the search space X. The tuple (X,d) is
also called a metric space. Consider all the transformations
o : X — X. Some of them (the trivial one being o(z) = )
preserve the distance relation between any two points in the
search space. That is, the distance between the points x,y
for example equals the distance between o(z),o(y). More
formally:

Definition 1. Let (X, d) be a metric space. The transfor-
mation 6 : X — X is a distance preserving transformation
(or an isometry) if:

Va,y € X d(z,y) = d(o"(x),0"(y))

The isometry group is the set of all isometries under function
composition.

We give two examples of distance preserving transforma-
tions. In the first, we consider the Euclidean N-space in
which X is infinite. In the second, we consider the Ham-
ming distance defined over a binary string of size n. Note
that the transformation on a finite space can be seen as a
permutation of X.

Consider the Euclidean N-space, which is real N-space
RY with the Euclidian distance metric, in which the distance
is:

The translation o.(z) = z +a where a € R, is an isometry
over the metric space (d, RY). Naturally:

Vo,y d(z,y) = [lz —yll = llx +a—y—all
=l(z +a) = (y + a)|| = d(oa(2),0a(y))

Any continuous search space, when represented on digi-
tal computer, is essentially finite. Since we are interested
to investigate search algorithms which run on a digital com-
puter we can assume that the search space X, although quite
large, as well as the space of all possible fitness values Y,
is finite. For this reason we restrict our attention to finite
search spaces. Since for a finite search space, translation is
essentially a permutation (e.g., a rotation), we will use the
term distance preserving permutation.

The Hamming distance is defined for the bit-string rep-
resentation in the following way: du(z,y) = >, 6(zi # yi)
where §(x) = 1 if z is true, 0 otherwise. It is easy to show
that the exclusive-or (XOR) operator is a distance preserv-
ing permutation over the metric space defined by (dm, X).



LEMMA 1. Let zo € X. The permutation o (z) = z®xo
is a distance preserving permutation.

PrROOF. We need to show that:

Va,y € X du(z,y) = du (0™ (2),0%(y)).
Va,y di(z,y) =) 8w # yi)
i=1

= é(m ©yi)

- Zn;(m B (z0 B T0) ® Yi)
- i(xi @ 0) @ (0 B ys))
- i(gm(mi)) © (0™ (v1))

= du (o™ (x),0™(y))
(|

XOR is not the only way to define isometry in the binary
search space. A second way to do so is to permute some of
the bit positions in the string — since the Hamming distance
is computed per bit, this transformation is isometric as well.
Incidently, any isometry of a fixed length binary string, can
be described as a composition of a permutation and a (XOR)
mask (See [18] for more details). Naturally, structural sym-
metries exist in other combinatorial spaces as well. [19, 20]
discuss this extensively and give several examples.

4. STRUCTURE AND FITNESS
LANDSCAPE

While isometry is defined over a metric space {X,d}, a
problem in the black box scenario is defined by the triple
{X,d, f}, where f : X — Y is the fitness function. The
triple {X,d, f} is also known as a fitness landscape [17].
Many attempts have been made to characterize the proper-
ties of landscapes to discriminate difficult ones w.r.t. easy
ones. Well-known examples are isolation, multimodality,
auto-correlation and fitness distance correlation. These
methods try to characterize, one way or another, the con-
nection (correlation) between the fitness function and the
neighborhood structure. Isolation is a case in which the
neighborhood of the optimum is characterized by low fit-
ness values. Multimodality measures the number of local
optima. Auto-correlation and fitness distance correlation
measure explicitly the correlation between the fitness and
distance functions.

Naturally, the structure of a landscape does not depend
on a fitness of a particular solution but rather on the rela-
tion between the different solutions. A unimodal landscape
is unimodal regardless of the identity of the global optimum.
Consider for example the onemaz problem: f(z) =37 | .
The global optimum for this function is the string of all ones.
However, naturally, there are |X| different problems which
have exactly the same structural characteristics, namely:
Jrirge () = D01 0(%i = Ttrgr,), Where Tirgr € X speci-
fies the identity of the global optimum. It is possible to

generalize the omemax problem because it is easy to de-
fine it in terms of the relation between the fitness function
and the neighborhood structure. In particular, the fitness,
Z?zl 0(zi = Ttrgt;) of x can be written as n — du (Tirgt, ),
that is, in terms of the distance function. But is it possi-
ble to generalize other problems where this relation is more
complicated?

Based on a distance preserving permutation of a metric
space, we can now define a distance preserving permutation
of a function. We argue that such a permutation preserves
all the structural properties of the fitness landscape.

Definition 2. Let (X, d) be a metric space, o a distance
preserving permutation and ¥ the isometry group. For any
f: X—=Y:

1. The permutation o f of f is the function %f : X — Y
defined by o f(z) = f(ad_l(x)).

2. The set F = {g|30% € ,9 = o?f} is the structural
class (or the orbit ) of f.

A distance preserving permutation of a function preserves
the relations between the fitness values and the neighbor-
hood structure. It simply make explicit the many symme-
tries which exist in the space of all possible problems. We
believe that this is a good way to group problems in the
black-box scenario. While, by definition, this way preserves
the structure of the landscape, in the following we show ex-
plicitly that the fitness distance correlation (FDC), for ex-
ample, as defined by [12], is the same for a function and any
distance preserving permutation of the function.

LEMMA 2. Let f be a function, o f a distance preserving
permutation of the function and

T'(f) = % Zz(f(xl)__ T)(d(xu xtrgt) - a_)
S (@) = T) E(d(@i, 2ergr) — d)

the fitness distance correlation of f. Then:

r(f) =r(cf)

ProoOF. We consider the FDC for one global optimum
measured on the entire search space. The permutation of a
function does not change the values of the fitness function
and the two functions are defined over the same search space.
Also, f = o4f. So, the denominator in the FDC formula is
unaffected by the permutation. Let zirg:1 be the optimum
for f and Tirgr2 = 0% (Tirge1) the optimum for o f. We need
to show:

=3 (@) = D) — @) =

30" @) = ) argiz) — D



S 0 ) — TN (s, Targez) — D) =

i

r(of)

(reordering the summation)

(0 Flo" ) ~ T A (1) atrgrz) ~ D)

a- —

(@) = (@)
=3 (@) )™ w:), orgr2) — D

(by definition: o

by definition ztrge2 = ad(xtrgtl) and,

d(zi, Terger) = d(o(x;), 0% (Tirgr1)) hence:

=3 @) = ST (0" @2), ergea) — O

% > @) = Fd(aiairgn) - D =r(f)

O

To conclude, let us go back to the example of onemax. It
is easy to map the original problem, using the xor permuta-
tion, to all the other functions that have similar structure.
Thus, the structural class F, when f is onemaz (i.e. the
structural class of onemaxz), gives the same family of func-
tions as we previously obtained by specifying explicitly the
function f(z) = n — d(Tirgt, *) . Similarly, regardless of the
complexity of the fitness function — or even without knowing
the exact formulation of the fitness function — we can rigor-
ously define a class of problems which have exactly the same
structural properties. In this next section we show that this
implies identical performance of any metaheuristic.

S. SEARCH ALGORITHMS AND
STRUCTURE

Any function f implemented in a digital computer can be
considered as a mapping between two finite sets [25]. That
is f: X =Y, where X and Y are finite. In the most general
case, a randomized search heuristic can be represented as a
mapping from a multi-set of previously visited points to a
new (not necessarily unvisited) point in X. Droste, Jansen
and Wegener [7], [23] [24] suggested a formal definition (ta-
ble 1), similar to [25, 22], of a black-box algorithm.

This definition generalizes most, if not all, existing ran-
domized search heuristics. The number of queries (i.e., fit-
ness evaluations) made until a sufficiently good fopt is found,
is usually used in order to evaluate the performance of the
algorithm (see [25], [7] for further discussion). As mentioned
in the introduction, this definition let to very useful NFLTs
and, thanks to Yao’s minimax principle, meaningful bounds
for different classes of problems.

However, the generality of this model restricts the pos-
sible contribution of any theoretical result: the NFLTs are
critiqued for not applying to the real-world scenario. The
bounds given by Droste et al. focus on the distribution of
instances of different problems — they do not take into ac-
count the a priori biases of typical heuristics designed for
the black box scenario.

To account for this, we will modify this definition and will
argue that our modified version is still a proper generaliza-
tion of many metaheuristics. Using this prototype, we then
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Table 1: Black box algorithm

Choose some probability distribution p on S and pro-
duce a random search point z; € S according to p.
Compute f(z1).

In step t, stop if the considered stopping criteria is
fulfilled. Otherwise, depending on the properties of
1(t) = (z1, f(z1), ..., Te—1, f(wt—1)) choose some prob-
ability distribution p;) on S and produce a random
search point z; € S according to pr(;). Compute f(z¢).

prove that the expected performance of such algorithms on
any function taken from an isometry group is the same.

Informally, similarly to Droste et al. [6], we assume that
any reasonable search algorithm has no a priori preference
for specific search regions and it selects points according to
their fitness value. However, unlike previous approaches we
also explicitly assume that the algorithm decides which new
points to sample on the basis of their distance from existing
points.

Before introducing the formal model, we begin by present-
ing some terminology:

e Let X,Y be finite.
f: X—=Y.

e The multi-set I(t) = {(wzi, f(x:))} represents the
points that the algorithm has sampled (i.e., the in-
formation that the algorithm has) by time ¢.

We define the function S(z,I(t)) = {(d(z,z:), f(x:))}.
This function, given z and the multiset I(t) returns a
multiset with exactly the same number of elements as
1(t) (and with same cardinality), but where each point
previously sampled by the algorithm, x;, is replaced by
the distance d(z, z;) between z and x;. In other words,
S(w, 1(t)) describes the structural relationship between
x and the sets I(t).

A function is represented by

Informally, the search algorithm has three phases: a selec-
tion phase (select “promising” points from I(t)), an explo-
ration phase (based on the selected points - generate new
points) and an updating phase (deciding which points to
keep in I(t)). Table 2 gives a formal definition of a structural
black-box algorithm - note that for the sake of simplicity -
we denote I(t) as I.

This definition differs, compared to [24, 23, 7], in one im-
portant aspect: the probability distribution used to generate
new solutions p; is a function of time and, more importantly,
of S(z,I(t)) rather than I(¢). As a result it depends solely
on the fitness values and structural/neighbourhood relation-
ship between new potential samples and the points already
sampled. Naturally, the question now is: is this definition
still general enough to account for existing metaheuristics?

Blum and Roli [2] give a survey on the most impor-
tant modern metaheuristics. They distinguish between
population-based metaheuristics and metaheuristics that
use trajectory methods. We choose a representative meta-
heuristic of each class (genetic algorithm and simulated an-
nealing respectively) and show that our definition is an ap-
propriate generalization of it. As previously mentioned, our



Table 2: Structural black box algorithm

Table 4: Evolutionary Algorithm

1. Initialize I(0) by choosing m random search points
Z1, -+ ,Tm € X using some prior probability distribu-
tion po and then computing the corresponding fitness
values f(x;).

In step t, stop if the stopping criteria are fulfilled. Oth-
erwise:
(a) Choose some probability distribution p; =
p(S(x, I(t)),t) on X.
(b) Produce n random search points 1, ,&n € X
by sampling the probability distribution p;.

(c) Compute the corresponding fitness values f(x;).
(d) Set I(t+ 1) = merge(1(), { (s, f(w:))}, 1)

Table 3: Simulated Annealing (SA)

s < GeneratelnitialSolution()
T «— Ty
while termination conditions not met do
s' « PickAtRandom(N(s))
if (f(s") < f(s)) then
5« s
else

Accept s’ as new solution with probability p(T), s’, s)

endif
Update(T")
endwhile

model is only appropriate for metaheuristics with search op-
erators that respect the structure of the search space. As
previously mentioned, given the active research done in prin-
cipled design, we believe that operators which do not respect
the structure (and hence, are not captured by our model)
will be replaced, eventually, with operators which do [19].

Let us start from trajectory methods. These are char-
acterized by a trajectory in the search space. The search
process can be seen as the evolution in discrete time of a
discrete dynamical system. The algorithm starts from an
initial state and describes a trajectory in the state space.
A successor solution is either among the neighborhood of
the current solution or chosen randomly [2]. This general
description makes it clear that at unbiased trajectory meth-
ods are specific instances of our structural black box search
algorithm. As an example, we will show explicitly that Sim-
ulate annealing (SA) fits our definition.

Simulate annealing (table 3) is perhaps one of the most
studied metaheuristic. It was one of the first to use an ex-
plicit strategy to escape local minima. The fundamental
idea is to allow the selection solutions of worse quality than
the current solution, with a probability which decreases over
time.

Let us see how SA can be described by our algorithm: the
size of the multi-set I is 1. The procedure Generatelnitial-
Solution() is modelled in step 1 of our algorithm. In order to
see how the temperature parameter 7T is effectively modelled,

1091

P «— GeneratelnitialPopulation()
Evaluate(P)
while termination conditions not met do
P’ «— Select(P)
P" < Recombine(P")
P « Mutate(P")
Evaluate(P"")
P — Select(P U P")
endwhile

we just need to think of it as a function of time, i.e., T'(t).
So, although the probability of accepting solutions (in the
merge phase of our algorithm) depends on the temperature,
since the temperature is a function of time, the acceptance
probability is effectively a function of time too. The sam-
pling probability distribution p(S(z,I(t)),t) is zero for all
x such that the distance between x and the point currently
in I(t) is greater than 1 (i.e., x is not a direct neighbour
of the current search point). Otherwise, p(S(z,I(t)),t) is a
constant.

Population based methods deal in every iteration with a
set of solutions rather than a single one. It is more dif-
ficult to give a generic description (like the one given for
trajectory methods) for this kind of methods. However,
for our argument to hold, it is sufficient to demand that
all the search operators are defined over the neighborhood
structure. In particular, we focus on perhaps the most stud-
ied population based method — the evolutionary algorithm
(EA). There are several variations of EAs (e.g., Genetic Al-
gorithms, Genetic Programming, Evolutionary Strategies,
etc.). The algorithm given in table 4 is a typical one.

In EAs the size of the multi-set I is defined according to
the population size. Similarly to SA, GeneratelnitialPop-
ulation() is modelled in our first step. The actual imple-
mentation of Select(P) differs from one EA to another. The
different selection mechanisms include: tournament selec-
tion (with various tournament sizes), fitness proportional
selection, rank selection and more. Despite the differences,
all of them depend solely on the fitness of the solutions
fi, not the corresponding z;’s. The probability distribu-
tion p(S(z,I(t)),t) is sufficient, therefore, to describe all of
them.

As opposed to SA, in EAs there are two search opera-
tors: recombination and mutation. Since the two operators
are applied in sequence, it is sufficient to show that each of
them can be described by a probability distribution based
on S(z,1(t)) alone. The mutation operator is defined simi-
larly to the search operator in SA. That is, for each z € X
a mutation of a given value is the probability distribution
defined over the neighborhood B, (z). As we already argued
for SA — this depends only on S(z, I(t)).

It is more difficult to analyze the recombination opera-
tors. They are defined differently for different representa-
tions (e.g., binary-string, permutation, syntactic-trees), and
even for a given representation, usually, there is more than
one way to define recombination (e.g., for binary strings we
have one-point, two-points, uniform crossover, etc.).

Moraglio and Poli [13] introduced the notion of topological
crossovers as a class of representation independent operators



that are well-defined once a notion of distance over the so-
lution set is defined. Simply stated, topological crossovers
produce offspring on the line segment between their par-
ents. Moraglio and Poli showed how topological crossover
generalizes the notion of crossover for binary strings [13],
permutations [14] and syntactic trees [15].

Formally, a line segment between x and y is defined as:

[z;9] = {zld(z, 2) + d(z,y) = d(z,y)}

A topological uniform crossover UX is defined as the prob-
ability distribution that a solution z will be the offspring of
the parents z and y:

0(z € [z39])

[z y]l
The crossover is defined as a function of the segment [z;y]
which in turn, is a function of the distance. Therefore, by
definition, the sampling probability distribution is a function
of distances only. So, again p(S(z,I(t)),t) is sufficient to
model any kind of uniform topological crossover. It follows
that evolutionary algorithms that use uniform topological
crossover are instances of our structural black box algorithm
as well.

We showed that our algorithm can describe explicitly SA —
a representative trajectory algorithm — and a family of EAs
— representative population based algorithms. The ever in-
creasing number of different metaheuristics does not allow
us to prove that our model is applicable to all of them. How-
ever, we strongly believe that, in a similar way, the algorithm
defined in table 2 can account for many other metaheuristics.
For example, it must definitely apply to local search. Also,
we believe it may apply to tabu search and particle swarm
optimisers. But what is the advantage of using this defini-
tion? It follows from our model that any algorithm that can
be described by our definition has ezactly the same perfor-
mance on any function which belongs to the same isometry
group.

Our argument is true by the definition of the structural-
search-algorithm. However, we will make it even more gen-
eral:

pux(z|z,y) =

THEOREM 1. Let (X,d) be a metric space, 0% a distance
preserving permutation, f : X — Y a function and A, a
structural search algorithm. Let P(A|f) denotes any perfor-
mance measure defined as a function of IY . The following
holds:

V,a P(Alf) = P(Alo“(f))
PROOF. A problem in the black box scenario is defined as
a function of the triple {X, d, f}. However, by construction,
the multi-set S(z, I(t)) depends only on distance and fitness.
Since f and o?f are isometrically isomorphic, the expected
performance (i.e., the expected set of f;’s) of a structural
search algorithm for both is the same. [

6. DISCUSSION

We aim at giving the most precise definition of a black
box algorithm that is general enough to account for as many
metaheuristics as possible. Naturally, it is possible to con-
sider alternative models — in particular, some might claim
that our model is not general enough. We cannot possi-
bly prove that it is (there are simply too many metaheuris-
tics around). However, our model fits the view of many re-
searches who explore the properties of the fitness landscapes
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— rather than any particular metaheuristics. Furthermore,
the only restriction that our model has w.r.t. existing mod-
els is the requirement for it to be unbiased to any region
of the search space. We believe that this restriction, given
that a black box algorithm does not have a priori knowledge
about the problem, is quite reasonable.

This paper has formalized some intuitive results which
many might be aware of. The objective, however, is to pro-
vide a new perspective in which search algorithms in the
black box scenario can be studied. In this section we sum-
marize two possible directions which we intend to follow in
future research.

6.1 Classes of problems for black box algo-
rithms

Classic algorithm theory is concerned with algorithms
which are (1) designed to solve particular problems and (2)
are proved to be efficient on these problems. Outside the
context of a problem, a problem-specific algorithm has no
meaning.

Black box algorithms, on the other hand, are believed
to be generic. They are defined out of the context of any
particular problem. This is indeed one of the main obstacles
a theory for black-box algorithms has to overcome. The
basic notion of a problem (or at least, the target problems)
is not well defined.

As a consequence, the NFLTs consider for example, what
many believe to be irrelevant problems. On the other hand,
since black-box algorithms are not designed for any specific
problem, it is tempting to think about what Droste et al [6]
call the one-shot-scenario: in real-life, a black box algorithm
needs to solve only one instance (or one fitness function)
on which, however, it has no knowledge about. From the
perspective of classical algorithm theory, however [6], this
is absurd — on theory, it is possible to design an algorithm
which sample, in the first step, the global optimum.

The main point that we would like to make is that classes
of problems for the black box scenario are well defined, al-
beit, not in the usual way: any function f can be associated
with a structural class of functions on which the algorithm is
expected to perform the same. While this might have been
known for some time, it had no real impact. For example,
having this in mind, the one-shot-scenario, does not exist.
Using the zor operator as an isometry permutation (assum-
ing a binary-Hamming metric space), the global optimum,
for different functions which belong to the same structural
class, can be any solution in X. Since the algorithm is ex-
pected to have the same performance over the entire class, it
has to be more sophisticated than just picking, on the first
trial, the global optimum.

This has some implication even when trying to analyze
the performance of a black-box algorithm on well-studied
problems. It is common in computational complexity to
distinguish between a problem (e.g., TSP) and an instance
of a problem (e.g., any configuration of cities and distances).
The theory is concerned with the expected performance of
the algorithm on instances of the problem. Its performance,
naturally, on any other problems is of no relevance. While
this is certainly the case for problem-specific algorithms it
is not the case for black box algorithms.

For each (relevant) instance of a problem, a black box
algorithm is designed to perform exactly the same on the
structural group of this instance. This is the case irrespec-



tively of whether the functions from the structural class are
instances of the problem or not. When analyzing the perfor-
mance of a black box algorithm on a certain problem, one
must take into account, not only all the possible instances,
but also, the set of all possible structural classes of these
instances.

As mentioned before, different approaches to the study of
black-box algorithms focus on different aspects. The fitness
landscape approach studies the structural properties of a
problem, without considering any particular algorithm. On
the other hand, formal models tend to hide the structure
inside a probability distribution. Our model can bridge be-
tween the two approaches. For example, Droste at el.[7] used
Yao’s minimax principle to prove lower bounds for black box
algorithms. The basic idea is to use the expected run time
(w.r.t. a probability distribution on problem instances) of
a deterministic search algorithm in order to derive lower
bounds for randomized algorithms. Using our model, it is
possible to study the effect of the notion of structural classes
(which connects to the study of fitness landscape) on the
probability distribution defined over the problem instances.
We believe that this can give tighter bounds to the perfor-
mance of black box algorithms. We plan to investigate this
in future research.

As a final remark, for the NFLTs, any algorithm, the so
called black-box algorithms included, has to make an a pri-
ori assumption about the problem in order to perform better
than random search. It is often claimed that black box al-
gorithms make the right assumption about real-world prob-
lems. We would like to emphasize, that we do not make
any such claim. That is, we do not argue that black box
algorithms are particulary good for the real world scenario.
Moreover, while we argue that the performance over any
structurally identical function is similar — we do not, at this
stage, distinguish between easy structure and hard one. We
do not know whether the ”assumption” black box algorithms
make is good or bad — we simply state that they make an
assumption, and that they should be studied accordingly®.
To give additional examples, one can ask how the size of the
isometry group changes for different representations. This
is equivalent to the number of instances (i.e., isometry per-
mutations of a function) a problem (i.e., a function with
unique structural properties) in the black box scenario has.
Similarly, one can investigate how this size changes as the
size of the search space increases.

6.2 Entropy and Search

The simple intuition which we formalized in this paper
suggests that the key strategy of any black box algorithm is
(a) focus on solutions with high fitness and (b) when sam-
pling a new point, try to select one according to its distance
from such solutions. This strategy will fail in either of the
two scenarios — (1) solutions, more often than not, have sim-
ilar fitness (e.g., the NIAH) and hence most of the choices,
as to which solutions to select, are done randomly, and (2)
solutions have different fitness values, however, the notion
of proximity is not selective enough (e.g., in fully connected
graph all the solutions in the search space have the same
distance from any point. Proximity in that case is not a
good method to select which point to sample next).

'This is naturally studied in the context of fitness land-
scapes. However, in this paper we suggest a different ap-
proach, outside of that context.
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It is possible to characterize, formally, how random the
search is expected to be w.r.t. these two scenarios. At this
stage we cannot go into full, formal, details (it is still work
in progress), however, main intuition is this: Let us restrict
our attention to search algorithms that, at each stage, have
a population of size k, of which, in the selection phase, s
are selected, and accordingly k new solutions (i.e., a new
population) are generated.

The entropy, or uncertainty in the way the algorithm
searches can be defined, separately for the two stages. In
the first stage, given the fitness of the k solutions (i.e.,
{f(z1), ..., f(zk)}), let the probability distribution P} de-
fine the probability of each solution (x;) to be selected.
The entropy of the particular set can be defined as follows:
Ss = Zle Pf(zi)log(Pf(z:)). If the solutions are selected
uniformly at random, the entropy is maximal and the search
will be essentially random. The expectation of this for all
possible sets of k fitness values, will give us the entropy of
the selection phase (that is, the extent to which solutions are
picked randomly — i.e., irrespectively of their fitness value).

Similarly, once s points are selected, one can calcu-
late the probability distribution of picking any other point
in the search space. The probability of a point = to
be selected depends on its distances from the s selected
points, and hence, similarly to the previous step, the en-
tropy for a particular set of s points is defined (assuming
that I(t) represents our set of s selected points): S. =
Zg‘l P52, 1)) (Ti)10g(Ps(x,1(¢))(x:)). The entropy of the ex-
ploration phase is, similarly, the expectation of this for all
possible sets of s points (that is, the extent to which the al-
gorithm chooses to sample new solutions in a random way).

It is not trivial to define in a generic way such sets or,
moreover, given such sets, to find the corresponding proba-
bility distributions (P;c,pg(z,[(t))). However, once these is-
sues are resolved it will be possible to compare different al-
gorithms accordingly. Moreover, while S. depends solely
on the metric-space (i.e. is the same irrespectively of a
particular fitness function), Ss depends also on the fitness-
distribution of the function. Considering the NIAH, for ex-
ample, irrespectively of the selection mechanism (or, selec-
tion intensity [1]) the entropy will be maximal (i.e. given a
set of solutions with the same fitness — the algorithm will se-
lect one of them, uniformly at random). A similar approach,
i.e. measuring the information content of a fitness-function
was suggested in [4].

7. CONCLUSION

The notion of isometry, isometric isomorphism or con-
gruence mapping was studied as a natural consequence,
in mathematics and geometry to the definition of metric
spaces. The notions of isometric transformation captures
the many symmetry properties of all the ways to combine
a metric space with a fitness functions. While the NFLTs
consider |Y|'XI possible fitness functions — it is clear that
there are much less functions with a unique structure. This
is the only reasonable way to think of structure.

In this paper we formally defined a notion of a structural
class of problems. We defined accordingly a model of struc-
tural search algorithms. We proved, by construction, that
any structural search algorithm is expected to have identi-
cal performance on any function which belong to the same
isometry group (i.e. the same structural class). We showed



(using simulated annealing and evolutionary algorithms as
examples) that our model is likely to represent many ex-
isting metaheuristics. Thus, we have unified the nowadays
main approaches to the study of meta-heuristics: on the one
hand, the model considered in the NFLTs [25] and similarly
by Droste, Jansen and Wegener [23, 24, 7] and on the other
hand, the one implicitly considered by the study of fitness
landscapes [17, 16].

Establishing a none-trivial model of metaheuristics allows
an extensive exploration (which is one of our immediate ob-
jectives) of the generic behavior of such algorithms. Some
of the immediate areas of future research were considered in
section 6. The class of structural problems is of particular
interest in the context of combinatorial optimization (CO).
The representations of many CO problems is relatively well
understood. Drawing the line between classes of CO prob-
lems and the class of structural problems defined here, may
shed important light on the potential of metaheuristics for
combinatorial optimization . We make a first step towards
this direction in [3].
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