An Ant-Based Algorithm for Finding
Degree-Constrained Minimum Spanning Tree

Thang N. Bui and Catherine M. Zrncic
Computer Science Program
The Pennsylvania State University at Harrisburg
Middletown, PA 17057

{tbui, cmg212y@psu.edu

ABSTRACT

A spanning tree of a graph such that each vertex in the tree
has degree at most d is called a degree-constrained spanning
tree. The problem of finding the degree-constrained span-
ning tree of minimum cost in an edge weighted graph is well
known to be NP-hard. In this paper we give an Ant-Based
algorithm for finding low cost degree-constrained spanning
trees. Ants are used to identify a set of candidate edges
from which a degree-constrained spanning tree can be con-
structed. Extensive experimental results show that the al-
gorithm performs very well against other algorithms on a
set of 572 problem instances.

Categories and Subject Descriptors: G.2.2[Discrete
Mathematics]:Graph Theory — Graph algorithms, Network
problems, Trees; 1.2.8[Artificial Intelligence]:Problem Solv-
ing, Control Methods, and Search — Heuristic methods

General Terms: Design, Algorithms

Keywords: Ant Algorithm, Degree Constrained Spanning
Tree

1. INTRODUCTION

This paper describes an Ant-Based algorithm for the degree-
constrained minimum spanning tree (DCMST) problem. This
is an interesting, real-world problem that seems well suited
to an ant algorithm approach. Numerous genetic algorithms
have been used to solve the DCMST problem, but to our
knowledge this is the first ant algorithm for this problem.

The DCMST problem entails finding a spanning tree of
minimum cost such that no vertex in the tree exceeds a
given degree constraint. This concept is useful in designing
networks for everything from computer and telephone com-
munications to transportation and sewage system [12] [18].
For instance, switches in an actual communication network
will each have a limited number of connections available.
Transportation systems must place a limit on the number
of roads meeting in one place. Also, limiting the degree of
each node limits the potential impact if a node fails [10].

Permission to make digital or hard copies of al or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or afee.

GECCO' 06, July 8-12, 2006, Seattle, Washington, USA.

Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

11

While the unconstrained minimum spanning tree (MST)
problem can be solved easily in polynomial time, the DCMST
problem is NP-hard [9]. In fact, even approximating opti-
mal DCMST solutions within a constant factor is NP-hard
[1] [10]. Therefore, heuristics are often used to find good
solutions in a reasonable amount of time. Recent work on
this problem has focused on genetic algorithms (GAs) and
finding more efficient representations to use with those al-
gorithms.

One type of heuristic that has not been previously used to
solve the DCMST problem is the ant algorithm. Ant algo-
rithms have been used to solve many optimization problems
including other types of constrained MST problems such
as the capacitated MST [17], generalized MST [19], and k-
cardinality tree [4] problems.

There are several different types of ant algorithms. The
most common is Ant Colony Optimization (ACO), while
our approach is an Ant-Based (AB) algorithm. In both
cases, artificial ants maneuver based on local information
and deposit pheromones as they travel. Our algorithm then
uses cumulative pheromone levels to determine candidate
sets of edges from which degree-constrained spanning trees
are built. Extensive experimental results show that our Ant-
Based algorithm finds results that are generally better than
results produced by existing GAs. The addition of a local
optimization step, which is not implemented in our current
algorithm, could further enhance performance, particularly
for graphs designed to mislead greedy algorithms.

The rest of the paper is organized as follows. In Section 2
we give a formal definition of the problem and describe pre-
vious works. Our Ant-Based algorithm is described in Sec-
tion 3. Section 4 compares the performance of our algorithm
against existing algorithm on a set of benchmark problems.
The conclusion is given in Section 5.

2. PRELIMINARIES

A spanning tree of a graph G is a subgraph of G that
is a tree and has the same number of vertices as G. An
undirected graph G is said to be complete if there is an
edge between any pair of distinct vertices, i.e., no self-loop
is allowed. The degree constrained minimum spanning tree
(DCMST) problem can be formally defined as follows.

Input: An undirected complete graph G = (V, E) with non-
negative weights on the edges and an integer degree
constraint d > 2.

Output: A spanning tree of G with minimum total weight
such that the degree of each vertex in the tree is < d.

As mentioned above, DCMST is NP-hard. In fact, for
any fixed constant d > 2, the problem of finding a minimum
cost degree-constrained spanning tree of degree at most d is
still NP-hard [9]. It is also known that for any fixed rational
a > 1 and any fixed d, finding a spanning tree with degree
constraint d and cost within a factor « of the optimal is NP-
hard. However, there exists a polynomial time algorithm for
the case where d = O(blog(n/b)), o = O(log(n/b)), and b is
the maximum degree of any vertex in the input graph [16].

Early heuristics for the DCMST problem used a branch
and bound approach [12][18]. Other heuristics developed
since then have included hill-climbing, simulated annealing,
neural networks, and additional branch and bound algo-
rithms [1][11]. Genetic algorithms (GA) were first applied
to the DCMST problem in the mid-1990’s [24], and that has
been the focus of work on the DCMST problem to date.

Zhou and Gen [24] used Priifer codes to encode spanning
trees for their GA. In 2000, Knowles and Corne [10] used
a different representation — storing a spanning tree in an
n x (d — 1) array, where n is the number of vertices and d is
the degree constraint. They used this representation in a GA
as well as hill-climbing and simulated annealing algorithms.
Of their three algorithms, the GA found the best solutions
and compared favorably to earlier algorithms. Also in 2000,
GAs using weighted [14] and edge-set [13] encodings were
introduced. These representations stored the edges and edge
weights instead of a permutation of vertices. Testing showed
that the weighted encoding performed better than previous
algorithms, and the edge-set encoding in turn produced even
better results [13][14].

In 2001, Krishnamoorthy, Earnst, and Sharaiha [11] de-
veloped a new set of heuristic algorithms for the DCMST
problem. These algorithms included a GA using a Priifer
encoding, Problem Space Search (PSS — another GA using
a constructive heuristic to create the initial population and
a vertex-permutation encoding), and a simulated anneal-
ing algorithm. They also introduced an exact algorithm,
which worked well for small graphs and was used to gener-
ate heuristic solutions for larger graphs. These algorithms
were compared against each other and the optimal solutions,
if known. Of the four, the PSS algorithm performed best
overall [11].

A few years later, Raidl and Julstrom [15] introduced an
updated version of the edge-set encoding. A GA using this
representation was compared against several previous GAs,
including the one from Knowles and Corne [10] and the PSS
algorithm [11]. The GA using the edge-set encoding, which
utilized edge-weight knowledge when constructing potential
solutions, consistently performed the best and scaled up to
larger problems (up to 500 vertices were tested) [15].

In 2004, another GA based on a Priifer encoding was in-
troduced [6]. It showed great improvement over the original
DCMST GA, but it was not compared to any contemporary
GAs. That algorithm was tested on graphs up to 1000 ver-
tices. Also in 2004, Soak, Corne, and Ahn [20] introduced
a new encoding for trees and compared it to the edge-set
encoding from [15]. The two algorithms produced the same
results for graphs of 30 and 40 vertices, while the new en-
coding performed better on 50 vertex graphs [20].

Our Ant-Based algorithm was tested using the same data
sets as many of these algorithms. Our solutions were com-
pared to previously published results from each of the algo-
rithms listed above, except those from before the year 2000,

12

the first version of the edge-set encoded GA [13], and the
2004 encoding by Soak, Corne, and Ahn [20]. This final
algorithm was not used because the specific graphs tested
in that paper were not available for comparison. The other
algorithms were excluded because more recent algorithms
have produced better results. Those comparisons are de-
tailed in Section 4.

3. ALGORITHM

Ant algorithms are usually based on the observed behav-
ior of a colony of ants to collectively solve problems such
as nest building or food foraging. In traditional ant sys-
tems such as Ant Colony Optimization, each ant solves the
entire problem and then leaves pheromone on the solution
configuration that it found as a guide for the next ant [8].
In contrast, each ant in our Ant-Based algorithm finds only
part of the solution. A complete solution to the problem is
then obtained from all the parts discovered by the ants. This
difference allows ants in AB algorithms to consider smaller,
more localized sections of the problem, making AB algo-
rithms well-suited to distributed or parallel programming.

Our Ant-Based algorithm for the DCMST problem, called
AB-DCST, consists of a number of cycles. Each cycle has
two stages: exploration and construction. In the explo-
ration stage of each cycle ants are used to discover a set of
candidate edges from which a degree-constrained spanning
tree is constructed. In the construction stage we build such
a tree. Thus, each cycle produces a degree constrained span-
ning tree. The smallest cost tree returned by all cycles is
returned by the algorithm.

In each cycle, each ant explores a local section of the
graph. The edges an ant travels across are chosen such that
edges with a higher level of pheromone have a higher chance
of being selected. The pheromone on an edge is increased
when an ant travels across that edge, leaving an increasingly
appealing trail for other ants to follow. It should be noted
that for an edge (1, 7), the initial amount of pheromone dis-
tributed at (i,7) is the same as the amount of pheromone
an ant leaves on (i,7) when the ant traverses it. Further-
more, the lower the edge cost is the higher this pheromone
amount is. Effectively, ants will have a tendency to travel
along lower cost edges as well as edges that have been trav-
eled more often by other ants.

After all ants have explored their local section of the
graph, meaning each ant has traveled across a set number
of edges, the entire graph is examined. The edges with the
highest pheromone levels, which are the edges ants traveled
across most often, are selected as a candidate set of edges.
A degree-constrained spanning tree is then built from these
candidate edges in a greedy manner. Figure 1 shows the full
algorithm. In the following subsections we will describe the
algorithm in more detail.

3.1 Initialization

Initially one ant is assigned to each vertex of the graph. As
the algorithm progresses, ants move about and each vertex
may have zero or more ants. The next step in the initial-
ization process is to calculate the initial pheromone level of
each edge. Let (4,7) be an edge in the graph. The initial
pheromone level assigned to (i,7), denoted by IP(i,j), is

AB-DCST (G = (V, E),w,d)
// w is the edge cost function
// d is the degree constraint
//Initialization State
assign one ant to each vertex of the graph
initialize pheromone level of each edge
B+«— 0 // best tree
cost(B) «— oo
while stopping criteria not met
// Exploration Stage
for step=1to s
if step = s/3 or step = 2s/3
update pheromone levels for all edges
end-if
for each ant a
move a along one edge
end-for
end-for
update pheromone levels for all edges
// Tree Construction Stage
while |T|#n -1
identify a set C' of candidate edges
using pheromone levels

construct degree-constrained spanning tree 7' from C

end-while
if cost(T) < cost(B)
B—T
end-if
enhance pheromone levels for edges in the best tree B
if no improvement in 100 cycles
evaporate pheromone from edges of the best tree B
end-if
end-while
return the best tree found B

Figure 1: The AB-DCST algorithm

defined as follows.

where ¢(i,j) is the cost of the edge (7,7), and M and m
are the maximum and minimum edge costs in the graph,
respectively. Note that edges that have smaller cost will have
a higher initial pheromone level. As defined, the highest
initial pheromone level is no larger than 4 times the lowest
initial pheromone level. This scaling method is similar to
that of [2]. Scaling methods such as this prevent extremely
large gaps in the initial pheromone levels even when such
large gaps exist in the edge costs. Generally, it is useful to
have a large enough difference between the pheromone levels
so that good and bad features identified by pheromone can
be differentiated. However, extremely large differences in
pheromone levels can cause unwanted bias easily.

We also use IP(i,7) as the amount of pheromone that an
ant adds to the edge (%, j) whenever it traverses (7, 7). Thus,
the lower the cost of an edge is, the more the pheromone
level is increased every time that edge is traversed.

3.2 Exploration

In this section we describe how ants move. The objective
of the ants is to help identify a set of edges from which we

13

can construct a good degree-constrained spanning tree. The
main ideas here are: (i) ants should move along edges that
have low cost and (ii) ants should utilize information from
other ants in deciding on where to go to next, i.e., which edge
to traverse. These ideas can be accomplished by letting each
ant lay a certain amount of pheromone whenever it moves
across an edge. The amount of pheromone laid on an edge
should depend on the cost of that edge so that the lower
the edge cost is the higher the amount pheromone will be.
An ant can then select an edge to traverse by examining the
edges that are incident to the vertex that it is currently on
and selecting one of those edges based on pheromone levels.
Specifically, the ant selects one of these edges at random
such that edges with higher level of pheromone have a higher
probability of being selected.

This method of proportional selection ensures that ants
favor high-pheromone (i.e., low cost) edges while still allow-
ing low-pheromone edges to be selected occasionally. This
is important because a good solution for the overall graph
may need to include an edge that appears to be a bad choice
from a local perspective. If the selected edge leads to a ver-
tex the ant has already visited during the current cycle, the
ant selects a different edge. If the ant tries 5 times and all
5 vertices have been visited, the ant does not move for that
step and the algorithm continues. This limit is used as a
balance between allowing an ant to find a new vertex and
preventing the ant from spending too much time on that
search, and is less expensive than maintaining lists of feasi-
ble edges for each ant. This process of selecting one edge to
traverse is called a step, and is summarized in Figure 2

Move(a, i)
nAttemps «— 0
while nAttempts < 5
select an edge (i,7) at random and
proportional to its pheromone level
if vertex j is unvisited
mark edge (i, j) for pheromone update
move a to vertex j
mark j visited
break
else
nAttempts + +
end-if
end-while

// ant a is at vertex i

Figure 2: One step in the ant movement algorithm

After an ant traverses an edge, that edge is marked for
pheromone update. The actual update is done at certain
points in the algorithm as shown in Figure 1. This update
is done periodically, instead of after every move, in order
to provide ants with sufficiently accurate information with-
out sacrificing running time efficiency. The pheromone level
of an edge is modified by two factors. First, the current
pheromone level of the edge is decreased through evapora-
tion. This prevents ants from relying on old information for
too long a time, as the pheromone levels on edges that have
not been selected recently will evaporate to insignificant lev-
els. Second, the pheromone level of the edge is increased by
an amount equal to the initial level of pheromone assigned
to that edge multiplied by the number of ants that traversed

the edge since the last pheromone update. Some other types
of ant algorithms, such as Ant Colony System [8], also use
a local pheromone update.

Before specifying how pheromone levels are updated, we

define the maximum and minimum allowable levels of pheromone.

These are denoted by mazP and minP, respectively.
mazP = 1000((M — m) + (M —m)/3)
minP = (M —m)/3,

and

where M and m denote the maximum and minimum edge
costs in the graph. A similar strategy is used in the Max-
Min Ant System [21]. As shown below, we do not reset
pheromone levels exactly to these boundaries. Rather, we
offset the adjusted pheromone level of an edge by the initial
pheromone for that edge. This helps ants distinguish good
edges from bad, even if the pheromone levels for a number
of edges are approaching mazP or minP.

Let P(i,j) denote the pheromone level of the edge (4,)
and u(%, j) be the number of delayed pheromone updates to
be applied to edge (7,j). Then P(i,7) is updated as follows.

1. P("v]) = (1 _n)P(i7j) +u(i,j)[P(i,j)

2. If P(i,5) > maxP then P(i,j) = mazP — IP(i, j), else
if P(4,7) < minP then P(i,5) = minP + IP(3,7)

where 7 is the evaporation factor and IP(i,7) is given in
Section 3.1. The evaporation factor 7 is assigned an initial
value of 0.5. It is then gradually decreased as the algorithm
progresses. This is so that the algorithm has more chance to
explore in the beginning and will be able to converge later
on. It is clear from the definition of IP(i,) and P(7,j) that
they both depend on the cost of the edge (3, j).

3.3 TreeConstruction

After the ants have completed their movements and the
pheromone levels of all the edges have been updated, we are
ready to identify the edges from which to construct a degree-
constrained spanning tree. To identify a set of candidate
edges, we first sort the edges in the graph in the order of de-
creasing pheromone level. The top nCandidates edges from
this sorted list are selected to form a candidate set C. We
next sort the edges in C in increasing order of edge cost. A
degree-constrained spanning tree is then constructed using
a version of the Kruskal’s algorithm [5], modified to enforce
the degree constraint. The algorithm is given in Figure 3.

Occasionally, the spanning tree cannot be completed using
only the candidate edges. In that case, additional edges are
selected until the full tree has been built. This is done by
selecting the next nCandidates edges from the pheromone-
sorted list and repeating the process. This continues until
the spanning tree is complete.

3.4 Pheromone Enhancement

The total cost of the spanning tree returned by the Con-
structTree algorithm is compared to the best solution found
up to that point. If the new cost is lower, that tree is saved
as the new best solution. Then the pheromone levels for the
best edges, i.e., those in the lowest-cost tree found so far,
are enhanced to promote exploitation of those good edges.
This is related to the global pheromone update found in
other types of ant algorithms [7][8][21]. Specifically, the
pheromone levels of edges in the current best tree are up-
dated as follows. Let (i,7) be an edge in the best tree found
so far.

14

ConstructTree(G = (V, E), w, d)
sort all edges by pheromone level in descending order
C «—— top nCandidates edges (highest pheromone levels)
sort C' by cost into ascending order
T+—10
while |T| #n -1
if C#0
let (,7) be the next edge in order if increasing cost
remove (i,) from C
if ¢ and j are not connected in T'

and adding (¢, j) would not violate the degree constraint

add (i,7) to T
end-if
else // C is empty
add to C the next nCandidates edges
in the order of decreasing pheromone level
sort C into increasing order of edge cost
end-if
end-while
return T’

Figure 3: Tree Construction

1. P(":]) :FYP(ifj)

2. If P(i,5) > maxP then P(i,j) = mazP — IP(i, j), else
if P(4,7) < minP then P(i,j) = minP + IP(1, j)

where IP(i,j) is given in Section 3.1, and ~ is the enhance-
ment factor. Initially, v is assigned a value of 1.5 and it is
gradually increased as the algorithm progresses. The intu-
ition for this gradual growth of the enhancement factor is
that spanning trees found in the beginning are not expected
to be good ones, thus we should not enhance too much the
pheromone levels of edges in such trees. On the other hand,
as the algorithm progresses it is expected to find better trees,
and hence their edges should be enhanced more.

To prevent convergence on a local optimum, this enhance-
ment is reversed if there is no improvement after a set num-
ber of iterations. This escape is done by evaporating the
pheromone from the best edges to bring them back into bal-
ance so other edges have a better chance of being selected.
The pheromone level of edges in the current best tree is up-
dated as above, with 7 replaced by an evaporation factor ¢,
which is chosen at random from the interval [0.1,0.3].

3.5 Stopping Criteria

The algorithm stops if one of the following two conditions
is satisfied: (i) there is no improvement found in 2,500 con-
secutive cycles, or (ii) it has run for 10,000 cycles. When
the algorithm stops, the current best tree is returned.

3.6 Parameters

Table 1 shows the parameters used when running this
algorithm. Two of the values, the factors for evaporation
and enhancement of pheromone levels, change over time.
Initially, evaporation is high and enhancement is low. As
explained above, this allows for exploration of the graph
in early cycles. As the algorithm progresses, the evapo-
ration factor is decreased while the enhancement factor is
increased. This encourages exploitation as the solutions be-
gin to converge on good trees. The remaining parameters
remain fixed for the duration of the algorithm.

These parameters were not tuned to any specific graph or
class of graphs. They were determined based on comparative
testing using a set of three graphs that were chosen randomly
to cover a range of graph types and sizes. This test set of
graphs was not included in the reported results.

Table 1: AB-DCST Algorithm Parameters

Parameter | Value | Comments
maxCycles 10,000 | Maximum allowed cycles
s 75 Steps: number of edges an ant
traverses each cycle
nCandiates 5n Candidate set size
a n Number of ants
n 0.5 Initial pheromone
evaporation factor
¥ 1.5 Initial pheromone
enhancement factor
An 0.95 | Update constant
applied to n
A~y 1.05 | Update constant
applied to ~
updateCycles 500 Number of cycles between
updating n and vy
updateSteps s/3 Number of steps between
applying pheromone updates
escapeCycles 100 Number of cycles without
improvement before escaping
stopCycles 2,500 | Number of cycles without
improvement before stopping

4. EXPERIMENTAL RESULTS
4.1 Data Set

Our algorithm was run on a set of 143 complete graphs
ranging from 15 to 1000 vertices, with degree constraints of
2 through 5, giving a total of 572 problem instances. Seven
different types of graphs were used and are summarized in
Table 2. We compared our results with previously published
results for these graphs. For each problem instance in our
test set, we used the best result found by any previous algo-
rithm for our comparison. It should be noted that no single
paper had data for all of the graphs used here.

These graphs fall into two categories, Euclidean and non-
FEuclidean graphs. Euclidean graphs represent coordinate
points with edge costs being the Euclidean distances be-
tween two points. Three types of Euclidean graphs were
tested: CRD, SYM, and STR graphs. The CRD graphs
contain points in a basic 2-dimensional plane. The points
in the SYM graphs come from higher dimensional space, in-
creasing the chance that nodes in the unconstrained MST

15

will violate the degree constraint. The points in the struc-
tured (STR) graphs, which are also from higher dimensional
space, are grouped in clusters. The CRD and SYM graphs
were used in several papers including [23] and [11], where
the STR graphs were introduced.

The remaining graphs do not correspond to Euclidean
points and distances. The first type in this category is
the purely random graph. Vertices simply have ID numbers
(vertex 1, 2, etc.) and the edge weights are chosen randomly
from the interval [1,n] [6]. However, like Euclidean graphs,
these random graphs rarely have unconstrained MSTs with
high-degree vertices [1].

The last three sets of test graphs were structured to pose
a greater challenge to DCMST algorithms. The structured-
hard (SHRD) graphs were created by assigning non-Euclidean
costs in such a way that the number of optimal solutions is
limited [11]. The random-hard (R) and misleading-hard (M)
graphs were created by building the unconstrained MST to
contain star patterns with high degrees. Additionally, the M
graphs contain edges specifically intended to mislead greedy
algorithms. The procedure for creating R graphs was intro-
duced in [1] and used by Knowles and Corne in [10], who
developed the method for creating the M graphs.

Table 2: Data Set
| Type [# Used [Vertex Range ‘

CRD 40 30 to 100
SYM 29 30 to 70
STR 35 30 to 100
SHRD 7 15 to 30
Random 11 15 to 1000
R 9 50 to 200
M 12 50 to 500
TOTAL 143 15 to 1000
4.2 Resaults

Our Ant-Based algorithm shows a definite improvement
over previous algorithms. Over the entire data set, the av-
erage gain in solution quality is 16%. Only small gains are
possible for the smallest graphs, for which earlier algorithms
already find very good solutions. For the middle range where
the data set contains the most graphs of each size (n = 30
to n = 100), the average gain is 5%.

Our algorithm was implemented in C++ and run on a
3GHz Pentium 4 PC with 2GB of RAM running the Linux
operating system. To obtain our results, the algorithm was
run 50 times on each instance, with the best (lowest) cost
for each instance being recorded.

Tables 3 through 9 show our results for each type of graph.
Results are not given for each individual graph due to space
constraints. Instead, the average results for each graph size
are given for each type of graph. For all of the tables below,
n is the number of vertices and d is the degree constraint.
(Prev. Best) is the average of the best costs available from
previous heuristic algorithms for each graph type and size.
AB-DCST shows the average of our best costs for each cat-
egory (type/size/constraint). Gain(%) shows the difference
between the previous results and our results as a percentage
of (Prev. Best). Auvg. Cost is the average result obtained
from all runs of our AB-DCST algorithm and Std. Dev. is
the standard deviation. Finally, T%me is the average running

time in seconds. For times that are more than 10 seconds,
the values are rounded to the nearest integer.

Our results for the CRD, SYM, and STR graphs were
compared against those found by the heuristic algorithms in
[11]. For some categories, heuristic results were not given.
In those cases our results were compared against the best
known costs provided by the authors of [11]. Some of those
costs have been proven to be optimal and may have been
obtained using exact algorithms. Those categories are indi-
cated with an * after the best known cost.

One issue with the CRD graphs was rounding. The graphs
provided contained coordinate points and the distances had
to be calculated. These distances were rounded to integer
values to meet the standard indicated in [11], but small dif-
ferences could have been introduced. For the SYM and STR
graphs, the integer costs were provided.

The average gains for the CRD, SYM, and STR graphs
were 0.07%, 1.48%, and 0.32%, respectively. These averages
include categories that had to be compared against exact
optimal solutions (with a potentially lower gain than would
be seen when compared to heuristic results), and also in-
clude many cases where no gain was possible because both
our algorithm and previous heuristics obtained the optimal
solutions. The overall average gain for these three graph
types was 0.55%. See Tables 3, 4, and 5.

Table 3: Data for Coordinate (CRD) Graphs

n | d| (Prev. Best) | Gain | Avg. Std. | Time

AB-DCST (%) | Cost Dev. (sec)
30 | 2| (4107*) 4172 | —1.58 | 4222 | 40.52 4.65
30 | 3 (3761) 3759 0.00 | 3769 0.00 2.85
30 | 4 | (3765%) 3765 0.00 | 3765 0.00 3.92
30 | 5 (3765) 3765 0.00 | 3765 0.00 3.87
50 | 2 | (5380%) 5431 | —0.95 | 5581 | 89.46 16
50 | 3 (4834) 4834 0.00 | 4838 | 15.81 15
50 | 4 | (4819") 4819 0.00 | 4830 | 30.18 15
50 | 5| (4819") 4819 0.00 | 4825 | 24.07 15
70 | 2| (6622") 6593 0.44 | 6853 | 206.87 34
70 | 3 (5851) 5851 0.00 | 5878 | 62.19 31
70 | 4| (5849") 5849 0.00 | 5875 | 71.33 32
70 | 5| (5849™) 5849 0.00 | 5872 | 60.48 28
100 | 2 | (7860™) 7607 3.22 | 7940 | 171.42 77
100 | 3 (6686) 6686 0.00 | 6702 0.66 67
100 | 4 | (6698™) 6698 0.00 | 6698 0.00 67
100 | 5 (6698) 6698 0.00 | 6698 0.00 67

Our results for the random graphs were compared against
those found by the GA in [6], whose authors supplied this
data set. Only small gains were possible for the smaller
graphs in this set (up to 30 vertices) because the DCMSTs
are very close in cost to the unconstrained MSTs, and so
the previous algorithm performed well. Our average gain
for random graphs with 50 to 1000 vertices was 80% (51%
for all graphs in this set). See Table 6.

Previous results for the SHRD graphs were available from
two recent genetic algorithms for d = 3 through d = 5 [11]
[15]. Only the best results from either source were used
to find the Best Known average. Our results for d = 2
were compared against the best known results provided by
the authors of [11]. Our algorithm found lower-cost trees
in all categories for which heuristic results were available,

16

Table 4: Data for Symmetric (SYM) Graphs

n | d | (Prev. Best) | Gain | Avg. Std. | Time

AB-DCST (%) | Cost Dev. (sec)
30 | 2| (1793*) 1890 | —5.41 | 2037 | 63.16 2.63
30 | 3 (1291) 1290 0.08 | 1295 4.53 2.24
30 | 4 (1218) 1218 0.00 | 1218 1.05 1.93
30 | 5| (1216™) 1216 0.00 | 1216 0.00 1.91
50 | 2| (2342%) 2075 | 11.40 | 2287 | 112.98 11
50 | 3 (1303) 1274 2.23 | 1300 | 21.78 7.24
50 | 4 (1242) 1242 0.00 | 1251 7.22 7.17
50 | 5 (1215) 1215 0.00 | 1221 7.28 6.91
70 | 2| (2546™) 2304 9.51 | 2593 | 176.25 25
70 | 3 (1292) 1296 | —0.31 | 1348 | 47.73 20
70 | 4 (1228) 1227 0.08 | 1244 | 37.91 18
70 | 5 (1210) 1208 0.17 | 1218 | 22.54 18

Table 5: Data for Structured (STR) Graphs

n d | (Prev. Best) | Gain | Avg. | Std. | Time

AB-DCST (%) | Cost | Dev. (sec)
30 | 2| (7090*) 7102 | —0.17 | 7109 | 4.29 3.40
30 | 3| (6775) 6775 0.00 | 6778 | 2.04 3.22
30 | 4 (6577) 6575 0.03 | 6576 1.03 3.11
30 |5 (6544) 6541 0.05 | 6542 | 0.82 3.02
50 | 2 | (7683") 7664 0.25 | 7693 | 14.64 16
50 | 3| (7636™) 7485 1.98 | 7489 1.97 13
50 | 4 (7445) 7436 0.12 | 7667 | 3.11 15
50 | 5 (6916) 6912 0.06 | 7093 1.98 15
70 | 2 | (8135") 8116 0.23 | 8159 | 24.00 37
70 | 3 | (7699%) 7701 | —0.02 | 7706 | 2.66 32
70 | 4 (7537) 7507 0.40 | 7508 1.24 32
70 | 5 (7350) 7331 0.26 | 7331 | 0.04 31
100 | 2 | (8946™) 8845 1.13 | 8906 | 41.28 71
100 | 3 (8404) 8371 0.26 | 8375 | 2.70 68
100 | 4 (8193) 8172 0.26 | 8173 | 0.19 68
100 | 5 (8012) 7998 0.17 | 7998 | 0.45 68

and in all but one of the categories that were compared
against overall best-known results. For all SHRD graphs,
our average gain was 2%. See Table 7.

Our results for the random-hard graphs (the R graphs)
were better in all cases when compared to the best solutions
from [10] and [14]. The average gain for this type of graph
was 7%. The greatest improvement was made for d = 5,
with an average of 10% compared to an average gain of 4%
for d = 4. No previous results were available for d = 2 or
d = 3. See Table 8.

Our algorithm did not perform as well on the M graphs,
which were designed specifically to mislead greedy algorithms.
On average, the trees returned by our algorithm had 22%
higher costs than those previously reported in [10] and [15].
This is not completely surprising considering that the tree
construction algorithm in AB-DCST is essentially greedy,
with some randomization. We expect that the addition of
a local optimization step to our algorithm will improve the
results in this area. No previous results were available for
d=2,3, or 4. See Table 9.

The time needed for our algorithm to complete was highly

Table 6: Data for Random Graphs

n d | (Prev. Best) Gain | Avg. Std. | Time
AB-DCST (%) | Cost Dev. (sec)

15 | 2 =) 24 - 24 0.00 0.34
15| 3 (23) 23 0.0 23 0.00 0.34
15 | 4 (23) 23 0.0 23 0.00 0.34
15 |5 (23) 23 0.0 23 0.00 0.34
20| 2 (-) 49 - 50 0.75 0.88
20 | 3 (36) 37 | —2.78 37 0.00 0.82
20 | 4 (36) 35 2.78 35 0.00 0.66
20 |5 (35) 35 0.0 35 0.00 0.65
25 | 2 (-) 57 - 57 0.20 1.89
2513 (42) 43 | —3.61 43 0.00 1.61
25 | 4 (42) 41 1.44 41 0.00 1.48
2515 (41) 41 0.73 41 0.00 1.61
30 | 2 (=) 63 - 67 1.75 5.03
30 | 3 (52) 52 | —0.58 52 0.14 2.96
30 | 4 (53) 50 5.66 50 0.00 2.63
305 (54) 50 6.89 50 0.00 2.91
50 | 2 (- 126 - 139 9.44 19
50 | 3 (108) 87 | 19.14 88 1.74 14
50 | 4 (112) 85 | 24.24 85 0.66 15
50 | 5 (112) 85 | 24.31 86 1.26 15
100 | 2 (- 271 - 308 31.20 70
100 | 3 (477) 174 | 63.53 179 8.46 73
100 | 4 (496) 168 | 66.09 169 4.79 69
100 | 5 (509) 168 | 66.99 169 4.38 67
200 | 2 (-) 681 - 798 | 137.62 357
200 | 3 (3006) 379 | 87.39 382 2.24 259
200 | 4 (2838) 364 | 87.17 365 0.48 251
200 | 5 (2776) 360 | 87.03 361 0.23 244
300 | 2 (-) 1095 —| 1272 | 104.03 810
300 | 3 (9216) 530 | 94.25 783 | 719.65 566
300 | 4 (9394) 500 | 94.68 669 | 556.71 490
300 | 5 (9407) 497 | 94.72 638 | 504.26 487
400 | 2 (-) 1489 —| 1832 | 154.53 | 1770
400 | 3 | (21074) 732 | 96.53 | 4260 | 1816.56 963
400 | 4 | (20802) 701 | 96.63 | 4190 | 913.08 870
400 | 5 | (20820) 697 | 96.65 | 4010 | 792.07 848
500 | 2 (-) 2356 - | 2932 | 357.52 | 3022
500 | 3| (37445) 901 | 97.59 | 6887 | 2161.49 | 1553
500 | 4 | (37519) 848 | 97.74 | 6139 | 1217.62 | 1410
500 | 5| (37445) 841 | 97.75 | 5739 | 1260.08 | 1420
1000 | 2 (=) 11310 — | 15014 | 7111.91 | 7899
1000 | 3 | (247474) 16293 | 93.42 | 23462 | 3401.43 | 2078
1000 | 4 | (245404) 13529 | 94.49 | 19405 | 2994.59 | 2130
1000 | 5 | (247605) 12424 | 94.98 | 18318 | 2890.26 | 2070

dependent on graph size. The smallest graphs (15 vertices)
ran in about half a second, 100-vertex graphs took about 70
seconds, and approximately one hour was needed for 1000-
vertex graphs. While graph type did not have a noticeable
effect on running time, the degree constraint did. For each
graph, our algorithm took about the same amount of time
for d = 4 and d = 5, with less than 1% difference in running
times. Compared to d = 5, our algorithm ran 5% longer
for d = 3 and almost 20% longer for d = 2. If d = 2 is
not considered, the average running times are not changed
for n < 100. For larger graphs, eliminating the results for
d = 2 reduces average running times considerably, bringing
the average for n = 1000 down to 35 minutes. Comparisons
of running times with other algorithms were not feasible due
to hardware differences and the lack of running time data
from some previous papers.

17

Table 7: Data for Structured Hard (SHRD) Graphs

n | d| (Prev. Best) | Gain | Avg. | Std. | Time

AB-DCST (%) | Cost | Dev. | (sec)
15| 2 (901*) 903 | —0.22 909 3.56 0.43
15 | 3 (592) 591 0.17 592 | 0.57 | 0.46
15 | 4 (432) 430 0.46 432 | 1.53 | 0.58
15 | 5 (337) 336 0.30 339 | 1.28 | 0.38
20 | 2 | (1841™) 1690 8.20 | 1701 | 10.91 0.97
20 | 3 (1097) 1093 0.36 | 1101 3.20 1.18
20 | 4 (805) 802 0.37 | 802 | 0.71 1.13
20| 5| (631) 630 | 0.16| 632| 1.45| 117
25 | 2| (2969") 2715 8.36 | 2732 | 14.82 1.77
25 | 3| (1808) 1757 282 | 1777 | 9.33 | 3.31
25 | 4 (1294) 1284 0.77 | 1287 1.88 2.62
25 | 5| (1015) 1008 0.69 | 1011 | 1.79 | 2.70
30 | 2 | (4560*) 4009 | 12.08 | 4051 | 51.86 2.66
30 | 3| (2592) 2594 | —0.04 | 2619 | 21.37 | 5.72
30 | 4| (1905) 1905 0.00 | 1914 | 13.48 | 4.17
30 |5 (1504) 1506 | —0.13 | 1518 | 13.97 4.43
Table 8: Data for Random Hard (R) Graphs
n d | (Prev. Best) | Gain | Avg. | Std. | Time

AB-DCST (%) | Cost | Dev. (sec)
50 | 2 (- 5.61 - 5.82 | 0.11 17
50 | 3 (-) 4.66 - | 4.70 | 0.05 15
50 | 4 (4.46) 4.29 3.88 4.32 | 0.05 15
50 | 5 (4.48) 3.99 | 11.12 4.04 | 0.08 15
100 | 2 (-) 10.23 -1 1045 | 0.20 81
100 | 3 (-) 8.69 - | 872 0.01 67
100 | 4 | (8.41) 8.05| 4.29 | 8.07 | 0.01 67
100 | 5 (8.43) 7.54 | 10.51 7.55 | 0.00 67
200 | 2 (=) 19.84 - 12039 | 097 328
200 | 3 (=) 17.17 -1 20.20 | 4.51 302
200 | 4 | (16.23) 15.97 1.58 | 16.91 | 2.01 175
200 | 5 | (16.29) 15.09 | 7.38 | 16.14 | 1.86 260

Table 9: Data for Misleading Hard (M) Graphs, d =5

n (Prev. Best) Gain Avg. | Std. | Time
AB-DCST (%) Cost | Dev. | (sec)

50 | (5.96) 6.07 | —1.81 6.88 | 0.41 18
100 | (10.87) 12.50 | —15.00 | 14.92 | 1.16 74
200 | (17.88) 20.83 | —16.54 | 25.52 | 4.43 263
300 | (40.71) 52.71 | —29.47 | 54.34 | 0.91 293
400 | (55.24) 75.40 | —36.50 | 84.28 | 12.07 | 1144
500 | (80.21) 104.51 | —30.30 | 118.77 | 17.67 | 1886

5. CONCLUSION

Our experiments show that an ant algorithm can be suc-
cessfully applied to the DCMST problem. These encourag-
ing results lead to other questions that can be investigated
in the future. For instance, the DCMST problem with a
degree constraint of 2 is equivalent to the weighted Hamil-
tonian Path problem [1] and similar to the Traveling Sales-
man Problem (TSP) [18]. Therefore, results for d = 2 have
not generally been published for previous algorithms. Our

algorithm performed well compared to the best-known solu-
tions available for d = 2, so it would be interesting to see if
there was indeed an improvement over previous algorithms
and also how it compares to algorithms specifically designed
to solve Hamiltonian Path.

Further investigation into the difficulty of finding good so-
lutions for different degree constraints could also be useful.
Research on the DCMST problem has generally stopped at
d = 5. This boundary is apparently based on the fact that
the unconstrained MST for a single-dimension Euclidean
graph has d < 5, but that does not apply to random or
higher-dimensional Euclidean graphs. While the problem is
known to be NP-Hard for any fixed constraint [9], there is at
least one crossover point where the problem becomes easy,
namely d = n — 1, which produces the unconstrained MST.
It would be interesting to see if there is a lower crossover.

An important follow-up would be to add local optimiza-
tion to our algorithm in an attempt to obtain better perfor-
mance on graphs where the underlying MST is significantly
different from the DCMST. In particular, we believe this
will help improve the performance of our algorithm on the
M graphs. Finally, the structure of our Ant-Based algorithm
appears to be conducive to a parallel implementation. Using
a parallel algorithm should reduce the running time, making
it possible to find solutions for larger and larger graphs.

6. ACKNOWLEDGEMENTS

We would like to thank Joshua Knowles, Gunther Raidl,
Andreas Ernst, and Karen Honda for providing their test
graphs. We also would like to thank the anonymous review-
ers for their helpful comments.

7. REFERENCES

[1] Boldon, B., N. Deo, and N. Kumar, “Minimum-Weight
Degree-Constrained Spanning Tree Problem:
Heuristics and Implementation on an SIMD Parallel
Machine,” Parallel Computing, 22, 1996, pp. 369-382.

[2] Bui, T. N. and B. R. Moon, “Genetic Algorithm and
Graph Partitioning,” IEEE Trans. on Computers,
45(7), July 1996, pp. 841-855.

[3] Bui, T. N. and J. R. Rizzo, Jr., “Finding Maximum
Cliques with Distributed Ants,” GECCO 2004,
Lecture Notes in Computer Science, 3102, 2004, pp.
24-35.

[4] Bui, T. N. and G. Sundarraj, “Ant System for the
k-Cardinality Tree Problem,” GECCO 2004, Lecture
Notes in Computer Science, 3102, 2004, pp. 36-47.

[5] Cormen, T. H., C. E. Leiserson, R. L. Rivest, and
C. Stein, Introduction to Algorithms, Second Edition,
MIT Press, 2001.

[6] Delbem, C. B., A. de Carvalho, C. A. Policastro,

A. K. O. Pinto, K. Honda, and A. C. Garcia,

“Node-Depth Encoding for Evolutionary Algorithms
Applied to Network Design,” GECCO 200/, Lecture
Notes in Computer Science, 3102, 2004, pp. 678—687.

[7] Dorigo, M., G. D. Caro, and L. M. Gambardella, “Ant
Algorithms for Discrete Optimization,” Artificial Life,
5, 1999, pp. 137-172.

[8] Dorigo, M., V. Maniezzo, and A. Colorni, “Ant
System: Optimization by a Colony of Cooperating
Agents,” IEEE Trans. on Systems, Man, and
Cybernetics - Part B, 26(1), Feb. 1996, pp. 29-41.

[9] Garey, M. R. and D. S. Johnson, Computers and
Intractability, a Guide to the Theory of
NP-Completeness, W. H. Freeman and Co., 1979.

[10] Knowles, J. and D. Corne, “A New Evolutionary
Approach to the Degree-Constrained Minimum
Spanning Tree Problem,” IEEE Trans. On
Evolutionary Computation, 4(2), 2000, pp. 125-134.

[11] Krishnamoorthy, M., A. T. Ernst, and
Y. M. Sharaiha, “Comparison of Algorithms for the
Degree Constrained Minimum Spanning Tree,”
Journal of Heuristics, 7, 2001, pp. 587-611.

[12] Narula, S. C. and C. A. Ho, “Degree Constrained
Minimum Spanning Tree,” Computers and Operations
Research, 7, 1980, pp. 239-249.

[13] Raidl, G. R., “An Efficient Evolutionary Algorithm
for the Degree-Constrained Minimum Spanning Tree
Problem,” Proc. IEEE CEC, 2000, pp. 104-111.

[14] Raidl, G. R. and B. A. Julstrom, “A Weighted Coding
in a Genetic Algorithm for the Degree-Constrained
Minimum Spanning Tree Problem,” Proc. 2000 ACM
Symposium on Applied Computing, 2000, pp. 440—445.

[15] Raidl, G. R. and B. A. Julstrom, “Edge-Sets: An
Effective Evolutionary Coding of Spanning Trees.,”
IEEE Trans. On Evolutionary Computation, 7(3),
2003, pp. 225-239.

[16] Ravi, R., M. V. Marathe, S. S. Ravi,

D. J. Rosenkrantz, and H. B. Hunt III, “Many Birds
with One Stone: Multi-Objective Approximation
Algorithms,” Proc. of the 25th ACM Symposium on
Computing (STOC), 1993, pp. 438-447.

[17] Reimann, M. and M. Laumanns, “A Hybrid ACO
Algorithm for the Capacitated Minimum Spanning
Tree Problem,” Hybrid Metaheurustucs, 2004, pp.
1-10.

[18] Savelsbergh, M. and T. Volgenant, “Edge Exchanges
in the Degree-Constrained Minimum Spanning Tree
Problem,” Computers and Operations Research, 12(4),
1985, pp. 341-348.

[19] Shyu, S. J., P. Y. Yin, B. M. T. Lin, and M. Haouari
“Ant-Tree: An Ant Colony Optimization Approach to
the Generalized Minimum Spanning Tree Problem,”
Journal of Experimental € Theoretical Artificial
Intelligence, 15(1), 2003, pp. 103-112.

[20] Soak, S., D. Corne, and B. Ahn, “A Powerful New
Encoding for Tree-Based Combinatorial Optimization
Problems,” Lecture Notes in Computer Science, 3242,
2004, pp. 430-439.

[21] Stiitzle, T. and H. H. Hoos, “MAX-MIN Ant System,”
Future Generation Computer Systms, 16, 2000, pp.
889-914.

[22] Tarasewich, P. and P. R. McMullen, “Swarm
Intelligence: Power in Numbers,” Communications of
the ACM, 45(8), August 2002, pp. 62-67.

[23] Volgenant, A., “A Lagrangean Approach to the
Degree-Constrained Minimum Spanning Tree
Problem,” European Journal of Operational Research,
39, 1989, pp. 325-331.

[24] Zhou, G. and M. Gen, “A Note on Genetic Algorithms
for Degree-Constrained Spanning Tree Problems,”
Networks, 30, 1997, 91-95.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

