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ABSTRACT

The paper examines various applicability issues of the neg-
ative selection algorithms (NSA). Recently, concerns were
raised on the use of NSAs, especially those using real-valued
representation. In this paper, we argued that many reported
issues are either due to improper usage of the method or gen-
eral difficulties which are not specific to negative selection
algorithms. On the contrary, the experiments with synthetic
data and well-known real-world data show that NSAs have
great flexibility to balance between efficiency and robust-
ness, and to accommodate domain-oriented elements in the
method, e.g. various distance measures. It is to be noted
that all methods are not suitable for all datasets and data
representation plays a major role.

Categoriesand Subject Descriptors
I [Computing Methodologies]: Miscellaneous

General Terms
Algorithms
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1. INTRODUCTION

The paradigm of negative selection algorithms (NSA) is
one of the earliest models developed in the area of Artifi-
cial Immune Systems (AIS) [3]. It has been used in various
applications [13, 19] and different variations of this type of
algorithms are also being proposed [1, 15]. However, along
with similar thinking about AIS in general, researchers kept
raising questions about whether this method provides any-
thing unique and anything more powerful than alternatives,
and when and whether it is appropriate to use it. It is be-
lieved that negative selection algorithms have distinct pro-
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cess compared with other algorithms and may be most suit-
able for certain applications [5]. It was pointed out that
negative selection algorithms are not appropriate to be used
as a general classification method because they use samples
from one class in training [4].

Among the latest works reviewing negative selection al-
gorithms, Stibor et al [16, 17] raised serious concern about
negative selection algorithms’ usability, taking V-detector
[11, 12] as a specific case to compare. As one of the new
variations, V-detector has some unique features to be more
reliable and efficient than previous negative selection algo-
rithms. It was originally discussed in real-valued represen-
tation, though its unique detector generation process is not
limited to specific data representation.

This paper tries to tackle the issues discussed in those
works [16, 17]. We will see that some issues are not re-
ally attributed to the main issue in question, namely neg-
ative selection algorithms as a distinct type of method. In
many cases, they are not intrinsic to V-detector either. The
concerns about negative selection algorithms’ applicability
and significance are not all answered, especially the question
whether we can strongly conclude that negative selection al-
gorithms are irreplaceable to solve certain problems. Such
killer applications still have not been found. Nevertheless,
this paper clarifies some confusions that may mislead readers
about the applicability and weakness of negative selection
algorithms, especially those in real-valued representation.

In the next section, we will go through several issues that
have drawn attention. Then, in section 3, we illustrate the
problems and properties of V-detector with several groups of
experiments, sometimes with comparison with SVM (Sup-
port Vector Machine). Also, some new developments of
V-detector are introduced. Features such as different dis-
tance measures serve as a good example showing that nega-
tive selection algorithms are not necessarily limited to some
specifics of the elements of the algorithm. Instead, NSA are
more a family of algorithms based on some minimal com-
mon framework but with diverse details. Lastly, section 4
summarizes the current status and potential research need
of negative selection algorithms.

2. APPLICABILITY ISSUES

2.1 Curseof dimensionality

High-dimensional data is a general difficulty for classifica-
tion and other machine learning problems. Many algorithms
cannot scale very well with the number of dimensions. The



search space grows exponentially larger as the number of
dimensions increases. The similar issue appears in differ-
ent ways in different paradigms and the actual severity also
depends on the specific application and the property of the
data involved. Nevertheless, it is a problem more fundamen-
tal than choosing a specific technique.

On one hand, the problem is how to represent any region
in high-dimensional space. In negative selection algorithms,
the question is in the number of detectors that is considered
enough to cover the abnormal space. Variable-sized detector
proposed in V-detector is an easy but powerful solution. In
V-detector, variable-sized detectors are in fact maximized,
meaning that instead of concerning with overlap as in earlier
models [7, 8], each detector takes the maximum size that is
allowed by the self samples. This way, the large continuous
nonself region has a good chance to be covered by fewer
number of detectors.

On the other hand, a more fundamental difficulty is that
when the dimensionality is high, the relatively smaller num-
ber of samples could not really catch the characteristics
of the target concept. Consider a self region that is a n-
dimensional hypersphere. If we have 1000 sample points,
we are readily convinced that the points can represent the
shape of the actual region in case of 1-dimension (circle) or
2-dimension (sphere). To the minimum, though, it is evi-
dent that we need at least 2 points to represent the extent
in 1-dimensional case. Similarly, we need at least 4 points
to have the roughest representation in 2-dimensional case.
In 10-dimensional case, 1000 points are barely enough to
have one single point for each dimension. That is similar to
trying to use 3 points to represent a 3-dimensional shape.
V-detector or other negative selection algorithms have not
provided a direct remedy to this problem.

In section 3, we will present some empirical results of
V-detector’s behavior when the number of dimensions in-
creases. The difficulty in theoretical analysis partly lies in
the fact that actual configuration of self and nonself regions
is the deciding factor of a practical problem. For example,
if the entire search space, for example, a unit hypercube, is
nonself space, it is trivial to cover with one detector; if the
self region is a single point at the origin, we can cover the
nonself region with finite number of detectors and may be
able to find the minimum possible number mathematically;
if the nonself region is one connected region that has the
same shape as the detectors, it is possible to be covered by
one single detector.

2.2 Real-valued representation

Negative selection algorithms can be modeled in any data
space. The most widely used data representation is binary
or string representation. The real-valued representation is
another common one. Gonzalez et al [6] showed that blindly
using binary representation will break the data proximity
in the problem space and cannot provide meaningful gen-
eralization. The same argument holds true for real-valued
representation.

Real-valued representation only makes sense if the under-
lying problem is continuous and we have proper real num-
bers to represent some continuous properties in the prob-
lem. Let us consider the KDD Cup 1999 data [17]. Each
record has 41 features, 9 of which are in fact discrete. In
the reported experiments [17], these discrete fields are con-
verted to a natural number arbitrarily and then normalized
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between minimum and maximum. Such conversion has two
essential flaws:

e Because of those discrete fields, the converted points
will be distributed on separated (parallel) planes in the
real space. The distance within one plane should not
be interpreted in the same way as the distance between
the planes. The connotation of being closer or farther
apart is not the same as in the original data space.

e The different values come from the assignment of nat-
ural numbers to the original discrete fields. In most
cases, the original discrete values don’t have an intrin-
sic order. It is only meaningful to talk about being
different or being the same. The artificial order and
the distance resulted in the converted values is thus
totally arbitrary. For example, the difference between
two items converted as 0 and 1 is not smaller in any
way than the difference between two items converted
as 0 and 2.

Because the entire process of a negative selection algorithm,
or as a matter of fact, of any learning algorithms, is built
on the concept of affinity or distance, the results based on
such converted data may be fallacious. When it works, it
is more likely to be merely good luck. For example, when
the matching threshold is small enough, actually two points
with different discrete values are never considered matching
each other. In such cases, the converted real-valued fields
not only fail to contribute to measure the distance or affinity
between the two points, they also limit the reasonable choice
of threshold for other real real-valued fields.

Freitas et al [4] strongly suggested different weights in
distance formula. That idea has the same motivation as de-
scribed above. In a more general way, we could construct
customized distance measure/matching rule for a given hy-
brid data representation. If the data item is in the form
of (x1,22, -+ ,xr1,y1,Y2, - ,YJs), where z;, ¢t = 1,--- | I are
real numbers and y;, j = 1,---,J are discrete values, we
can define a customized distance measure comprised of two
parts: one is Euclidean distance over (z1,x2,---,x7); the
other is Hamming distance over (y1,y2, - ,ys). The two
parts can be combined with proper weight or used in a
matching rule that also has two corresponding parts.

2.3 Apparent limitations

2.3.1 Limitation of specific matching rules

Following the above discussion, we notice that matching
rule, which usually takes the form of a distance measure plus
a matching threshold, plays a very important role. Visually,
the same concept can be expressed as the geometric shape of
the detectors. Hart [9] noticed that importance of choosing
the proper recognition region, which refers to the similar
idea as the shape of detectors. It should be pointed out
that this is as important in any other AIS systems or any
learning paradigms as in negative selection algorithms.

Sometimes, the apparent limitation of a negative selec-
tion algorithm is in fact the limitation of a specific match-
ing rule or detector shape. For real-valued negative selection
algorithms, Euclidean distance and therefore hyperspherical
detectors are commonly used, but they are not the only pos-
sibility. Limitation of Euclidean distance or hyperspherical
detectors is not the special problem of real-valued negative



selection algorithms. In fact, other matching rules and de-
tector shapes were used in several works, for example, rect-
angular detectors [2], hyper-ellipsoid detectors [15], etc.

Negative selection algorithms are methods with great flex-
ibility. First, the concept of negative selection can be real-
ized in very different flavors of so-called negative selection
algorithms. Second, even for a specific negative selection
algorithm, e.g., V-detector, there are many elements in the
model that are not inherently limited as it appears. For
example, for real-valued representation, which is not neces-
sarily the only choice in the first place, we could use very
different distance measures or matching rules. In section 3,
we will see that Euclidean distance can be easily extended
to be L,, distance, which could result in different shapes of
detectors.

2.3.2 Limitation of one-class classification

Generally speaking, performance of a classification algo-
rithms or a learning method depends on the probability dis-
tribution of the data. Any serious analysis cannot be done
without taking into consideration that distribution. One-
class classification, however, is an effort to learn when no
information of the second class is available [18]. That means
that the probability distribution of the abnormal data (or
nonself data) is never known according to the basic assump-
tion. That is the main reason that Freitas et al [4] casted
the doubt on negative selection algorithms. On the other
hand, one-class learning is a valid need and has been stud-
ied from various aspects and used in many applications [14].
In summary, limitation does exists, but it is not specific to
negative selection algorithms or V-detector.

It is noteworthy that the probability distribution of only
self space could be taken into account in one-class classifi-
cation, including negative selection algorithms.

2.4 Negative or positive selection?

Both positive selection and negative selection can be a
reasonable choice according to the specifics of the problem.
One obvious scenario when negative selection is preferred is
when we have a large number of self samples and we can
potentially generate a relatively small set of detectors.

The straightforward positive selection proposed a couple
of times by Stibor et al [16, 17] is hardly a valid alternative
in most cases. When the number of self samples are larger
than the number of detectors by more than one order of mag-
nitude [17], such positive selection method like Self-Detector
is not a realistic solution. The choice between negative and
positive selection can be based on various reasons. There are
at least two factors that cannot be ignored. First, in many
applications, a large amount of normal data is typical, e.g.
in network intrusion detection problem. These data are not
only too large to be used directly to find anomaly, but con-
tains too much duplicated or similar information. Second,
if a method does not provide any inductive ability, for ex-
ample, clustering or rule extraction, from the raw data, it is
not really a learning method, strictly speaking.

2.5 Coverage versusdetection ratein NSA

Detector coverage and detection rate are two terms that
may lead to misunderstanding when we discuss how well
the detector set works. Failure to make clear distinction
may muddle otherwise clear analysis.

Coverage is the proportion of nonself space that is covered
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by detectors. For a given instance, we usually don’t know
the actual value because the nonself space is the unknown we
are seeking for. If we discuss coverage in terms of a number,
we are making assumption about how the nonself space (or
self space) can be induced from the self sample points we
have, at least conceptually. Detection rate, on the other
hand, refers to the percentage of nonself sample points that
are detected by the detector set in a particular experiment.
Thus, the difference is two-folded:

e Coverage depends on how we interpret the training
data set. Even for a defined set of detectors, the
value of coverage must be based on some assump-
tion that cannot be verified. For example, Stibor et
al [17] showed examples of coverage provided by V-
detector[11] at termination. Nine self points were used
to train the system. The discussion of coverage was
based on the assumption that real self region is all the
perfect circles around the training points. V-detector’s
termination is decided by estimated coverage. Detec-
tion rate is influenced by the coverage as well as the
validity of the assumption or interpretation we make
about the training data.

e Coverage is the ratio of covered nonself space to the
entire nonself space. The probability distribution is
usually not considered to evaluate the coverage. De-
tection rate, on the other hand, depends on the actual
frequency distribution of test data. The distribution
is usually reflected in the real data. This exposes a
weakness of V-detector’s termination criterion. The
statistical estimate of coverage using random sampling
does not take into consideration the probability distri-
bution of the data to be detected. Thus the conclusion
of enough coverage or not are always bias depending on
how different the actual distribution is from uniform
distribution. Logically, this cannot be totally solved
because the self training data at best can only provide
distribution of the self space.

2.6 Test with training data

Usually training data should not be used to test the sys-
tem trained by them. When the data are lacking, sometime
we could include training data as part of test data depend-
ing on the learning algorithm in question. For example, if
we extract rules from the training data, it is still valid veri-
fication if we use some seen data to test the rules. As in the
straightforward positive selection [16, 17], when the target
concept is represented by the training data themselves, it
does not reflect how the system works if we test with the
training data. The even worse practice is when all the self
data in test data are those already used to train the system.
That means if we let the system be overfitted to the extreme,
we're going to see the perfect results. For one-class classi-
fication like negative selection algorithms, training data are
all self data. Detection rate won’t be affected directly, but
false alarm can be misleadingly perfectly 0.

2.7 Real challengesto negative selection algo-
rithms

While the problems in certain algorithm variations or ex-
periments were sometimes mistaken as the problem of neg-
ative selection algorithms, the real difficulties are often ne-
glected. Other than the general difficulties in learning algo-



rithms, such as high dimensionality mentioned above, there
are some real challenges for negative selection algorithms:

e The key role of matching threshold (or self radius, self
threshold etc.) It is important to use it for striking a
balance between being aggressive and conservative to
raise alarm, but it is unknown generally. We could de-
velop some automatic mechanism to choose the value,
but it seems hardly possible to have a universally reli-
able way to decide.

e Mapping from problem space to data representation.
It is probably more important than the choice of learn-
ing algorithms from a practical point of view. We need
to represent the original problem space in proper fea-
ture space so we can differentiate between self and non-
self. Many high dimensional feature space can be re-
duced to lower dimensionality by using other method.

Again, it is arguable whether those issues are specific to
negative selection algorithms, but they are the difficulties
that are currently beyond the reach of negative selection
algorithms.

The source code and some documentation of the authors’

implementation of V-detector is available at http://umpeople.

memphis.edu/zhouji/vdetector.html. That will serve as a
convenient resource to encourage more examination of the
method and negative selection algorithms in general.

3. EXPERIMENTS

This section further presents some results either to sup-
port or to illustrate some of discussion in the previous sec-
tion.

3.1 How V-detector failed for KDD data

Stibor et al [16] showed that V-detector’s performance is
generally very close to the popular statistical learning algo-
rithm SVM (Support Vector Machine). A positive selection
algorithm named “Self-Detector” was proposed to compare
with V-detector. It worked well with the relatively smaller
number of self samples. As we discussed in the previous
section, such a straightforward positive selection could not
serve as a general replacement for negative selection algo-
rithms.

As reported in Stibor et al’s later work [17], the perfor-
mance of V-detector on the KDD Cup 1999 data is unaccept-
ably poor. The detection rate is around 1% depending on
the control parameter. However, if we look more closely at
the results, we will notice the direct reason that V-detector
failed in these experiments: the number of detectors in the
generated detector set is around 1. To put it in another
way, termination condition failed and obscured all the other
possible problems and the chance to succeed. In fact, the
later development of V-detector [12, 10] that were published
before those experiments has solved the weakness of termi-
nation condition to a large extent. Statistically more so-
phisticated estimate were introduced to decide when to stop
adding more detectors [12]. A ‘boundary-aware’ version of
V-detector [10] abandoned the implicit assumption that the
self samples are all independent internal points, which were
used by the earlier version of V-detector and other similar
methods. It would detect anomaly more aggressively be-
cause the detectors can actually touch individual self sam-
ple point as long as there is no other self samples around to
eliminate them.
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Table 1 compares the difference between the algorithm
considered in [17] and new variations of V-detector. For the
purpose of comparison, 20 subsets were extracted from the
enormous KDD data using a process described in [17]. Each
of these subsets is independently drawn from the entire set
and all keep the same proportion of self (normal) data as in
the original set. The results of V-detector shown in table
1 are for one such subset, but the numbers are mean and
standard deviation of 100 repeated runs with same control
parameters. This is a little different from getting statistics
of 20 different datasets [17]. Although those 20 subsets are
drawn randomly from the entire set, it avoids unnecessary
complication to treat them as independent datasets.

Figs. 1 and 2 show the results of all the 20 subsets. Fig.
1 is the results using self threshold r; 0.05. Fig. 2
shows similar results when self threshold 7, is 0.1. These
results consistently show that the proper new variations of
V-detector can change the outcome dramatically and obtain
satisfactory detection.

3.2 Morereliable experiments

The setting in the above experiments is not ideal. It was
chosen that way for the purpose of comparison to highlight
the difference between the variations of the algorithm. One
of the factors is the process to convert from raw data to a
real-valued vector. The other is that testing only with seen
training data, which may generate misleading results, even
though the abnormal data are unseen in this case because it
is a one-class classification. To verify V-detector is indeed
able to detect well, we used different data to test the detector
set. We took one subset to train the system and tested with
all other subsets. The results using self threshold rs = 0.1
are summarized in Fig. 3. V-detector’s results are consistent
with different testing data sets. Similar tests using different
self thresholds (rs = 0.01 and rs = 0.05) were also carried
out. The results are very close to what is presented here.

3.3 SVM isnot alwaysthe preferred solution

SVM did very well in KDD data even when we redid the
test with different subsets. However, such good results do
not guarantee that it can replace alternative methods like
V-detector under any conditions. As a simple example, let
us consider a scenario when V-detector is much easier to
use than SVM. Two cases were designed so that the self
region is a disconnected region. (1) Fig. 4(a) is a self region
that is a circle partially cut by a cross, which we will call
“intersection”. This is one of the synthetic data sets tested
in earlier work [12]. (2) Fig. 4(b) is a self region made of five
small circles. Both are over the unit square 2-dimensional
search space.

Tables 2 and 3 show clearly that SVM does not work
as well as negative selection algorithm when default kernel
function is used as in previous experiments. That means at
least we need to choose proper kernel function to make SVM
work. The correct choice depends on extra knowledge of the
problem. V-detector got significantly better results without
the need to refine the control parameters.

3.4 Different distance measures

As mentioned in the previous section, distance measure
is an important element in negative selection algorithms.
In Euclidean space R", commonly used Euclidean distance,
or 2-norm distance, can be generalized to Minkowski dis-



Table 1: Comparison of results using different variations of V-detector

detection rate | SD | false alarm rate | SD
Reported result [17] rs = 0.05 1.21 4.59 0 0
Reported result [17] rs = 0.1 0.65 3.46 0 0
Using the same setting to compare 75 = 0.05 0.46 2.16 0 0
Using the same setting to compare 75 = 0.1 0.52 3.13 0 0
Statistically more reliable termination [12] rs = 0.05 27.93 0.35 0 0
Statistically more reliable termination [12] s = 0.1 26.79 2.15 0 0
Boundary-aware algorithm [10] r; = 0.05 81.19 30.49 1.46 0.07
Boundary-aware algorithm [10] rs = 0.1 83.92 28.96 1.45 0.07
V-detector’s performance on KDD data (rs = 0.05)
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V-detector’s performance on KDD data (rs = 0.1)
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Figure 3: Detection results that were tested with totally unseen data
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Figure 4: Two shapes of self region

Table 2: Results over Intersection self region

detection rate | false alarm rate
SVM v = 0.05 77.67 6.25
V-detector rs = 0.05 99.82 11.44
SVM v =0.1 81.84 54.69
V-detector r = 0.1 96.58 9.69

Table 3: Results over 5-circles self region

detection rate | false alarm rate
SVM v = 0.05 47.51 4.38
V-detector rs = 0.05 99.96 11.21
SVM v =0.1 65.58 49.64
V-detector r = 0.1 97.63 8.33
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tance of order m, or L,, distance, for any arbitrary m. For
a point (z1,z2, - ,z,) and a point (y1,y2, - ,yn) in n-
dimensional space the 1-norm distance is Manhattan dis-
tance

n
>l — il
=1

The m-norm distance is defined as

1
<Z |$Ez _ yi”L> )
1=1

The infinity norm distance is defined as

1

<Z |xi—yim> = max(|z; — yi|,i=1,2,--- ,n)
i—1

For different norm, the detector (or recognition region) will
take different geometric shapes and have different covering
area. Fig. 5 illustrates the different shapes in 2-dimensional
space. They are shown with the same radius. If we use
radius r to indicate the size, r can be interpreted as the
radius of the circle in the case of 2-norm distance. For Man-
hattan distance, the detector is a 45°-turned square whose
edge is /2r; for infinity norm, the detector has the shape of
a square whose edge is 2r; for any norm between 2 and oo,
the shape is evidently between the radius r circle and the
edge 2r square.

Tables 4 and 5 are the results obtained using different
distance measures, for the “intersection” self region and the
“5-circles” self region, respectively. There are two different
implementations of Euclidean distance. One is the default
setting of V-detector, in which the distance measure and
matching process are actually implemented using the square
of Euclidean distance for better performance in speed. The
other Euclidean distance is implemented as Lo distance in
the general way. In term of detection results, there seems to
be little difference between different distance measures for

lim

m— oo



Table 4: Effects of different distance measure: ‘Intersection’ shape

Distance measure detection rate | SD | false alarm rate | SD
Euclidean (default efficient implementation) 96.36 1.49 9.77 1.58
Manhattan 97.05 0.83 10.53 2.12
Fuclidean 96.23 1.57 9.59 1.38
3-norm 94.69 1.79 9.55 1.56
infinity norm 89.62 3.01 11 1.5
Table 5: Effects of different distance measure: ‘Five circles’ shape
Distance measure detection rate | SD | false alarm rate | SD
Euclidean (default efficient implementation) 97.64 0.58 8.2 0.85
Manhattan 99.38 0.62 9.84 1.55
Fuclidean 97.63 0.57 8.25 0.8
3-norm 98.16 0.23 8.25 0.6
infinity norm 98.68 0.1 9.28 0.79

these two examples, except that the Manhattan distance is
slightly more aggressive to raise alarm of anomaly. However,
the running time of the algorithm is noticeably different with
different distance measures. The co norm distance is the
fastest. For general L,, distance, the algorithm runs slower
for higher m.

OO

1 — norm distance
(Manhattan)

Sl

3 — norm distance

2 — norm distance
(Euclidean)

oo norm distance

Figure 5: Various geometric shapes of detector
(recognition region) corresponding to different m-
norm distance

3.5 V-detector’sbehavior at high dimensions

The analysis of the behavior at high dimensionality is lim-
ited by the actual configuration of self space. Here we con-
sider a simple experiment to get some empirical idea about
V-detector’s performance when the number of dimensions
increases. The searching space is a n-dimensional unit hy-
percube [0,1]". Assume we have 1000 training points ran-
domly distributed over the real self region, a hypersphere
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centered at the center of the hypercube. We generated the
detector set using those points as self samples and then tried
to classify 1000 test points that were randomly drawn from
the entire hypercube. Table 6 shows the results from n = 3
through n = 12. The self threshold is chosen as 0.1.

We need to keep in mind that 1000 training points are not
adequate to represent a high-dimensional space. It is defi-
nitely not enough when n > 5, as we discussed earlier. Be-
sides that, there are a few interesting facts that are notewor-
thy. First, the number of detectors didnt go up dramatically.
That indicates that V-detector may be able to deal with the
problem of representing a high-dimensional nonself space.
Second, detection rate stays well. That in some sense con-
firms the reliability of detector set generated. Whats wrong
with the false alarm? It is not too high, but starts to have
large standard deviation even for not too high dimensional-
ity (n = 5). The reason is that the uniformly distributed
test data have much fewer normal data in it when dimen-
sionality goes higher. When n > 7, all the testing data
turned out to be abnormal data.

Another fact needs to be pointed out. When we use V-
detector in a real application, we usually normalize the data
based on the range of the normal data available. Conse-
quently, it is less likely, though still possible, to have a sit-
uation that the normal data only occupies a small fraction
of the entire search space as in the above experiment.

4. CONCLUSIONS

There are only a few core elements in negative selection
algorithms, mainly representation in negative space and us-
age of detector sets. Consequently, this family of algorithms
is very flexible to accommodate different strategies in it. As
one of the latest variations, V-detector demonstrates such
flexibility very well.

Just like any other machine learning methods, negative
selection algorithms, e.g. V-detector cannot be used blindly
to a problem without proper data representation and rea-
sonable choice of control parameters or algorithm variations.
Negative selection algorithms are good for some applications
and may adapt to suit some others. Currently ongoing re-
searches on this topic support the potential of negative se-
lection algorithms. There are also some problems that neg-
ative selection algorithms are not meant for, for example,
the problem with a small number of self samples, or general



Table 6: Behavior of V-detector at high dimensionality

dimensionality | detection rate | SD | false alarm rate | SD | number of detectors | SD
3 100 0.01 7.7 1.47 500 0
4 99.94 0.07 13.11 6.92 500 0
5 99.96 0.05 25.67 14.03 500 0
6 99.98 0.04 36 48 500 0
7 99.95 0.08 N/A N/A 500.04 0.4
8 99.79 0.14 N/A N/A 500.25 1.22
9 99.6 0.22 N/A N/A 502.32 3.36
10 99.4 0.23 N/A N/A 511.11 8.06
11 99.26 0.35 N/A N/A 534.62 11.29
12 99.16 0.38 N/A N/A 567.88 15.65
classification problem where probability distribution plays a [8] F. A. Gonzalez and D. Dasgupta. Anomaly detection using
crucial role. real-valued negative selection. Genetic Programming and
Although the extent of negative selection algorithms’ ap- Buvolvable Machines, 4:383-403, 2003: o
plicability is still an open question, many difficulties re- [9] E. Hart. Not all balls are round: An investigation of
. . . alternative recognition-region shapes. In ICARIS, pages
ported in recent years are not attributed to the algorithm 29-42. 2005
1tself.. The real challenges for negative selectlop algorl.thms [10] Z. Ji. A boundary-aware negative selection algorithm. In
do exist but are often more general than a certain algorithm. Proceedings of IASTED International Conference of
For example, the the difficulty of high dimensionality, deci- Artificial Intelligence and Soft Coomputing (ASC 2005),
sion on optimal control parameters, and a good data model Spain, September 2005.
of the application domain are all important issues. [11] Z. Ji and D. Dasgupta. Real-valued negative selection
There are many aspects that are worth further exploration algorithm with variable-sized detectors. In LNCS 3102,
for negative selection algorithms. The effect of data distri- Pmc,eedmgs of GECCO, pages 2,877298’ 2004. .
bution is a factor that needs careful investigation considerin, [12] 2. Ji an.d D Das.gupta. Estimating the detector coverage in
g g
. . . , . a negative selection algorithm. In H.-G. B. et al, editor,
negative selection algorithms’ general assumption that the GECCO 2005: Proceedings of the 2005 conference on
abnormal samples are not available. Genetic and evolutionary computation, volume 1, pages
281-288, Washington DC, USA, 25-29 June 2005. ACM
Press.
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