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ABSTRACT
In this paper, we introduce a new crossover operator for the
permutation representation of a GA. This new operator—
Non-Wrapping Order Crossover (NWOX)—is a variation of
the well-known Order Crossover (OX) operator. It strongly
preserves relative order, as does the original OX, but also
respects the absolute positions within the parent permuta-
tions. This crossover operator is experimentally compared
to several other permutation crossover operators on an NP-
Hard problem known as weighted tardiness scheduling with
sequence-dependent setups. A GA using this NWOX oper-
ator finds new best known solutions for several benchmark
problem instances and proves to be superior to the previous
best performing metaheuristic for the problem.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, Search]: Heuristic Methods

General Terms: Algorithms

Keywords: permutation representation, order-based cross-
over, position-based crossover, weighted tardiness schedul-
ing, genetic algorithms

1. INTRODUCTION
There are many problems that are well-suited to the appli-

cation of a genetic algorithm (GA), but for which the stan-
dard bit-string representation poses challenges. Sequencing
problems are one class of such problems (e.g., the travel-
ing salesperson (TSP), and some scheduling problems). Al-
though a GA using the bit-string representation can be quite
successful for these problems, it is not the most natural prob-
lem encoding. One alternative that many have turned to
over the years is the permutation representation. Rather
than encoding the problem as a bit-string, one uses a per-
mutation of the N elements (e.g., the cities of a TSP or the
jobs of the scheduling problem) that must be sequenced.

Specialized recombination operators are necessary to han-
dle the intricacies of the permutation representation. Over
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the years, many crossover operators for the permutation rep-
resentation have been designed (e.g., [13, 7, 6, 4, 17, 11, 15,
8]). Some of these are largely problem dependent such as the
edge assembly crossover (EAX) operator for the TSP [17].
Others can be generally classified into a couple broad cate-
gories: (a) position-based crossover, (b) order-based cross-
over, and (c) hybrid crossover operators. Position-based
crossover operators (e.g., [13]) tend to respect the absolute
position of the genetic material of the parents during recom-
bination; while the order-based crossover operators (e.g., [6])
tend to respect the relative position of the genetic material of
the parents. For example, if you consider the traveling sales-
person problem for illustrative purposes, a position-based
crossover operator would tend to preserve the absolute po-
sition of the cities from the parent tours when constructing
the children; while an order-based crossover operator would
tend to preserve the relative position of the cities from the
parents when constructing the children. Other operators
tend to lie somewhere in the middle between position-based
and order-based (e.g., [7, 4]).

In this paper, we present a novel variation of the well-
known Order Crossover (OX) [6]. OX is strongly order-
based. Our new variation that we call Non-Wrapping Order
Crossover (NWOX) is designed to retain the strong order-
based characteristic of OX, but also to respect the abso-
lute positioning of the values within the parent permuta-
tions. Our motivation is the Weighted Tardiness Scheduling
Problem with Sequence-Dependent Setups. This NP-Hard
scheduling problem at the present time limits complete algo-
rithms that guarantee optimal solutions to solving instances
no larger than approximately 20-30 jobs [14]. Heuristic or
metaheuristic algorithms are thus a necessity for problem
instances significantly larger. This is a problem for which
the order of jobs in the sequence is highly important to the
fitness of the solutions, but for which absolute position is
also important to an extent. The GA that we design using
our NWOX operator is able to effectively solve instances of
this problem, including finding new best known solutions to
several difficult benchmark instances, and in general outper-
forms the previous best metaheuristic for the problem.

The paper will proceed as follows. We begin in Section 2
by overviewing several existing permutation crossover oper-
ators. Next, in Section 3 we formalize the weighted tardiness
scheduling problem. We then present the NWOX operator
in Section 4. This is followed by experimental results in
Section 5 and our paper concludes in Section 6.
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2. CROSSOVER OPERATORS FOR A PER-
MUTATION REPRESENTATION

In the study presented in this paper, five permutation
crossover operators are considered. One of these is posi-
tion-based (CX) and has existed in the literature for some
time. A second is order-based (OX) and is also well known.
Three more fall somewhere in the middle. Two, PMX and
UPMX, are fairly well-known. The last is a novel operator
that brings an element of position preservation to an existing
order-based operator and is introduced in Section 4.

Cycle Crossover (CX). CX [13] begins by initializing the
value of the first position of child C1 with the value v1(1)
in the first location in parent P1. It then looks at the value
v2(1) of the first location of parent P2. It searches P1 for
v2(1). Consider that it is found in position i. Position i of
child C1 is then given the value v2(1). This procedure is
then repeated for the value v2(i) that is located in the i-th
position of parent P2 and so forth until a cycle is completed
(i.e., until the next v2(i) is already in child C1). At this
point, all positions j in C1 that have not yet been given a
value are assigned the value v2(j) that is in the j-th position
of parent P2. This procedure is then repeated to generate
child C2 in a similar manner.

Partially Matched Crossover (PMX). PMX [7] begins by
initializing two children permutations C1, C2 with copies of
the parents P1, P2. Two positions, a and b, are then se-
lected uniformly at random from the interval [1, L], where L
is the length of the permutations. Without loss of general-
ity, assume a ≤ b. Let v1(a), v2(a) be the values of the a-th
position of parents P1 and P2 respectively. The locations of
v1(a), v2(a) in child C1 are determined and then swapped;
likewise for child C2. This swapping procedure is then re-
peated using the values v1(a + 1), v2(a + 1) and so forth up
to and including the pair v1(b), v2(b).

Uniform Partially Matched Crossover (UPMX). Using
the same swapping procedure as PMX is UPMX [4]. Unlike
PMX, UPMX does not select a cross region to dictate which
swaps to make. Instead, UPMX separately considers each
position i ∈ {1 . . . L}. With probability U , the values v1(i),
v2(i) are used by the same swapping procedure as PMX. For
the experiments of this paper, U = 0.33 which results in the
same number of swaps per cross on average as PMX.

Order Crossover (OX). OX [6] begins by initializing two
children C1, C2 with copies of the parents P1, P2 (see Fig-
ure 1(a)). Two positions, a and b, are then selected uni-
formly at random from the interval [1, L] (see Figure 1).
Again assume a ≤ b. Child C1 is searched for the loca-
tions of values v2(a), v2(a + 1), . . . , v2(b). Those locations
are replaced by “holes” (see Figure 1(b)). This procedure
is repeated inserting “holes” in C2 in the place of values
v1(a), v1(a+1), . . . , v1(b). Next a “sliding” motion is used to
move the “holes” into the a . . . b region of each child (see Fig-
ure 1(c)). That is, all non-holes are slid leftward until they
are grouped together in one contiguous string (keeping their
original order). This group is then further slid leftward with
the values in the leftmost positions wrapping to the right end
of the child (if necessary) until there are no non-hole values
in positions a . . . b. Values v2(a), v2(a + 1), . . . , v2(b) of par-
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Figure 1: Example of the steps taken by OX

ent P2 are then placed in positions a . . . b of child C1; and
likewise for values v1(a), v1(a + 1), . . . , v1(b) of parent P1 in
child C2 (see Figure 1(d)).

3. MINIMIZING WEIGHTED TARDINESS
W/ SEQUENCE DEPENDENT SETUPS

The problem of Weighted Tardiness Scheduling with Se-
quence-Dependent Setups is encountered in a number of
real-world applications (e.g., turbine component manufac-
turing [3], the packaging industry [1], among others [12]). In
this problem we are given a set of jobs J = {j0, j1, . . . , jN}.
Each of the jobs j has a weight wj , duedate dj , and pro-
cess time pj . Furthermore, si,j is defined as the amount
of setup time required prior to the start of job j if it is to
follow job i on the machine. It is not necessarily the case
that si,j = sj,i. The 0-th “job” simply indicates the starting
point of the problem (p0 = 0, d0 = 0, si,0 = 0, w0 = 0). Its
purpose is for the specification of the setup time of each of
the jobs if sequenced in position 1. The sequence-dependent
nature of the setup times is a primary source of problem
difficulty. The particular version of the problem that we
concern ourselves with here is the case where the N jobs
must be sequenced on a single machine and where preemp-
tion of a job during setup or processing is not permitted.
Furthermore, if a machine is processing or setting up, then
it cannot do anything else until that operation is complete.

The objective of this problem is to sequence the set of jobs
J on a machine to minimize the total weighted tardiness:

T =
X

j∈J

wjTj =
X

j∈J

wj max (cj − dj , 0), (1)

where Tj is the tardiness of job j. The completion time cj

of job j is equal to the sum of the process and setup times
of all jobs that come before it in the sequence plus the setup
and process time of job j itself. Specifically, let π(j) be the
position in the sequence of job j. We can now define cj as:

cj =
X

i,k∈J,π(i)<=π(j),π(i)=π(k)+1

pi + sk,i. (2)

The weighted tardiness scheduling problem with sequence-
dependent setups is NP-hard in the strong sense.
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4. NON-WRAPPING ORDER CROSSOVER
For some problems represented as permutations, the key

building blocks of a solution derive from the absolute posi-
tion in the permutation. For others, the relative positions
are most important. However, for some problems such as
that of weighted tardiness scheduling with sequence-depend-
ent setups (described in Section 3), high quality solutions
derive from both the absolute position of the jobs within
the permutation as well as the relative ordering of those
jobs. For example, absolute position is important since jobs
with very high weights and early duedates probably need to
occur towards the beginning of the sequence; while jobs with
low weights and loose duedates might be able to go towards
the end of the sequence. At the same time, relative position
of the jobs is also important due to the sequence-dependent
nature of the setup times. With this in mind we set out
to design a GA for the problem. In considering the use of
a permutation representation, we of course had to consider
the available crossover operators.

Position-based operators such as CX are good at deriving
child schedules that respect the absolute positions of the
jobs in the parent schedules. However, in many cases the
child schedules can lose sub-sequences of the parents that are
vital to their fitness. Consider an example where we have
two parents: P1 = {a, e, b, c, . . .} and P2 = {f, d, a, n, . . .}
(only the beginning of these permutations are shown). Now
consider that jobs e and b in parent P1 have tight duedates
and need to be scheduled relatively early in the sequence as
they are in P1. However, also consider that the setup time
for b if it follows e is very low, but that if it followed any
other job would be much higher. In other words, it is not
only important for b to be early in the sequence, but it is
also important for it to follow e. A crossover operator that is
focused solely on preserving position information will miss
this key ordering information. For example, one possible
pair of children may look like: C1 = {a, d, b, c, . . .} and C2 =
{f, e, a, n, . . .}. If the setup cost for job b following job d is
very high compared to following job e, then although job b
is still relatively early in the sequence it may be processed
much later in time. This can have a chain reaction effect
pushing many other jobs later in time.

Contrast this with crossover operators that focus on pre-
serving relative order such as OX. OX handles this situation
nicely in that jobs e and b will likely carry over into one of
the children permutations retaining their relative positions.
However, as specified, the “sliding” motion of the OX oper-
ator has a tendency of wrapping values from the beginning
of the parent permutations to the end of the child permu-
tations. So although jobs e and b may retain their relative
positions, there is a chance they may do so at the end of the
children. If the scheduling problem is even of a small size,
this can have drastic effects on the fitness of the children.

Noting these features of the existing crossover operators
for permutations, we now present a variation of OX that
we call Non-Wrapping Order Crossover (NWOX). It uses
a modified version of the sliding action of the original OX.
NWOX begins by initializing two children C1, C2 with copies
of the parents P1, P2. Two positions, a and b, are then
selected uniformly at random from the interval [1, L] (see
Figure 2(a)). Assume a ≤ b. Child C1 is searched for the
locations of values v2(a), v2(a + 1), . . . , v2(b). Those loca-
tions are replaced by “holes” (see Figure 2(b)). This pro-
cedure is repeated inserting “holes” in C2 in the place of
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Figure 2: Example of the steps taken by NWOX

values v1(a), v1(a+1), . . . , v1(b). Next a “sliding” motion is
used to move the “holes” into the a . . . b region of each child.
That is, all non-holes are slid leftward until they are grouped
together in one contiguous string (keeping their original or-
der). Here is where NWOX differs from OX. Rather than
continuing to slide the non-holes leftward wrapping to the
right end as OX does, NWOX instead slides any non-holes
that appear in positions a . . . b to the right while leaving
“holes” in that region (see Figure 2(c)). NWOX then con-
cludes as in OX by placing values v2(a), v2(a + 1), . . . , v2(b)
of parent P2 in positions a . . . b of child C1; and likewise for
values v1(a), v1(a+1), . . . , v1(b) of parent P1 in child C2 (see
Figure 2(d)). If you compare the children in the example of
Figure 2(d) to their parents in Figure 2(a), you can note that
although the sliding motion moves almost every allele value
to a new location, none of the jobs move very far from their
original positions in the parents. Particularly note that no
jobs on the left end of the parents wrap to the right end of
the children. Relative order of the jobs is transmitted from
parents to children to the same degree as in the original OX.

5. RESULTS
In this section we detail experiments that we conducted

involving the weighted tardiness scheduling problem with
sequence-dependent setups that was formalized in Section 3.
Specifically, we employ the set of benchmark instances that
were generated using a procedure proposed by Lee et al [10]
and used by Cicirello and Smith [5] in a study of various
metaheuristic algorithms for the problem. There are 120
problem instances, each with 60 jobs. The performance of
many algorithms for this problem is discussed in [5], includ-
ing the current best metaheuristic algorithm.

Unless otherwise stated, in all of the following experi-
ments, we use a population size of 100 and an elitism model
that carries the best individual into the next generation un-
altered. Stochastic Universal Sampling [2] is then used to
select the rest of the next generation. Since our objective
function needs to be minimized, we cannot directly employ
the objective function for the fitness function. Instead, we
define fitness of an individual i as:

Fi = 1 +
100
max
j=1

{Tj} − Ti, (3)
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where Ti is the total weighted tardiness of the schedule given
by permutation i. All but the elitist individual is subject to
possible crossover and mutation according to the crossover
and mutation rates. The crossover and mutation rates for
each experiment will be discussed in the appropriate subsec-
tion below, as will the mutation operator.

5.1 Comparing the Crossover Operators
In the first set of experiments, we set out to compare the

NWOX operator to other crossover operators. Specifically,
we compare NWOX to OX, CX, PMX, and UPMX. In this
first set of experiments, no mutation operator is used to
ensure that we can independently examine the effects of the
various crossover operators. The crossover rate is set to 1.0.
Individuals are randomly paired for recombination.

The results are averages of 10 runs for each of the 120
problem instances from the benchmark set (a total of 1200
runs) and can be seen in Figure 3. In Figure 3(a) is shown
the percentage deviation of the average individual in the
population from the best known solutions as it varies with
time (for 100 generations of the algorithm). Figure 3(b) like-
wise shows the deviation from the best known solutions of
the best individual in the population with time. Both graphs
show averages of 1200 runs (10 per problem instance).

Lacking mutation to prevent search stagnation, the search
converges upon a population composed entirely of copies
of a single individual in no more than 40-50 generations
independent of which crossover operator is used. Note the
leveling off of all of the curves by around generation 40-50.
Interestingly, the strongly position-based operator CX and
the strongly order-based operator OX perform similarly. CX
does however dominate OX for short searches of 40 or less
generations. The next noteworthy result is that the position-
based/order-based hybrid operators of PMX and UPMX do
a much better job of recombining the genetic material of the
parent chromosomes than do either CX or OX. This should
be expected from the nature of the problem as discussed in
Sections 3 and 4 in that for high fitness individuals both
position and order information is important.

The most important point here, however, is that the new
NWOX operator clearly dominates the other four in this
study. For the first 10-15 generations, NWOX and CX
have equivalent performance. At that point, however, CX’s
performance completely levels off (the search stagnates).
NWOX’s performance continues to improve (deviation from
best known solutions decreases) dramatically through the
first 40 generations dominating the other four operators.
From these results, we hypothesize that during the early
phases of the search (first 10-15 generations), the absolute
positioning of the jobs is most important since NWOX’s per-
formance very closely tracks that of the strongly position-
based CX. After that initial phase, the order-preserving pow-
er of NWOX kicks in. Once the population converges upon
“good” general positioning (e.g., jobs that need to be pro-
cessed earlier towards the beginning of the sequence), the
importance of fine-tuning the relative order of the jobs is
highlighted by NWOX’s continued improvement and CX’s
complete stagnation.

5.2 Effects of Mutation
If we are to design a GA with a permutation represen-

tation and the NWOX operator, it becomes necessary to
introduce a mutation operator to prevent the search from
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Figure 3: Comparison of the crossover operators:
(a) percentage deviation of average in population
from best known solutions; (b) percentage deviation
of best in population from best known solutions.

stagnating. We consider here two alternatives that we call:
(a) Swap Mutation; and (b) Insert Mutation. The Swap
operator randomly selects two positions in the permutation
and swaps the jobs located in those positions. The Insert
operator removes a random job from the permutation and
re-inserts it into a randomly selected position. These were
the local hill-climbing operators used previously by Lee et
al [10] as part of their algorithm. Figure 4 shows the results
of comparing these two mutation operators. No crossover
operator was used in this set of experiments to ensure that
the effects we are comparing are truly due to the mutation
operators alone. An elitism model is again used retaining the
best individual of the population unaltered, as is Stochastic
Universal Sampling. The mutation rate is set to 1.0 meaning
that all individuals in the new population undergo mutation.
That is, if swap mutation is used then each individual has
exactly one swap, and similarly for the insert mutator.

Figure 4 shows percentage deviation of the average pop-
ulation fitness from the best known solutions (Figure 4(a))
and the same for the best individual in the population (Fig-
ure 4(b)). These are averages of 10 runs across 120 problem
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Figure 4: Comparison of the mutation operators:
(a) percentage deviation of average in population
from best known solutions; (b) percentage deviation
of best in population from best known solutions.

instances (total of 1200 runs). The two mutation operators
perform similarly, with the insert operator having a slight
edge on the swap operator.

5.3 The Tuned Algorithm
In this third set of experiments, we set out to design a

GA that uses both the NWOX operator and mutation to
prevent the search from early convergence. We chose the
better of the two mutation operators—Insert mutation. We
then began by generating a small set of problem instances
separate from the benchmark set to use for algorithm tun-
ing. Using a small set of 30 problem instances (not contained
in the benchmark set), we applied a simple automated pa-
rameter tuning algorithm that systematically tweaked the
crossover, mutation, and elitism rates. We held the popula-
tion size constant at 100. The end result was a GA with an
elitism model that retains the best 3 individuals of the pop-
ulation into the next generation unaltered. The crossover
rate is 0.95 (random pairings) using NWOX and the mu-
tation rate is 0.65 using Insert mutation. A single Insert
mutation is applied to any individual chosen for mutation.
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Figure 5: Comparison of: (1) a GA using NWOX
and the Insert mutator; (2) a GA using NWOX
alone; and (3) a GA using Insertion mutation alone.
Plots show: (a) percentage deviation of average in
population from best known solutions; (b) percent-
age deviation of best in population from best known
solutions.

Figure 5 shows the results of comparing the tuned algorithm
(NWOX+Insert) to crossover alone and to mutation alone.

The comparison of Figure 5 again shows the percentage
deviation of the average individual (Figure 5(a)) and best in-
dividual (Figure 5(b)) of the population from the best known
solutions averaged over 10 runs across the 120 problem in-
stances of the benchmark set (a total of 1200 runs). The
first noteworthy point is that NWOX (without a mutator)
dominates mutation alone only until the point where the
population converges (around generation 40), where muta-
tion alone takes the lead over crossover alone. When you
add a mutation operator to the GA, we find that the com-
bination of NWOX and Insert mutation dominates the use
of either operator when used independently of each other.
The Insert mutation operator is effective at preventing the
search from stagnating, while the NWOX crossover opera-
tor effectively recombines the genetic material of the parent
population into new and improved schedules.
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Table 1: Comparison of NWOX-Insert with cur-
rent best metaheuristics for the weighted tardi-
ness scheduling problem with sequence-dependent
setups. %Δ is the average percent deviation from
the current best known solutions. Also shown is the
number of solutions evaluated by the algorithm as
well as the number of search nodes generated.

Algorithm %Δ Evaluated Generated
NWOX-Insert (10k gens) 9.9% 953,125 1,552,100
VBSS-HC (10k restarts) 12.2% 20,000 18,818,609
NWOX-Insert (5k gens) 12.3% 476,613 776,100
VBSS-HC (5k restarts) 13.4% 10,000 9,412,105
LDS 16.2% 1,533,116 912,864,816
NWOX-Insert (1k gens) 17.0% 95,403 155,300
VBSS-HC (1k restarts) 17.7% 2,000 1,883,579
DDS (depth 3) 22.6% 205,320 339,393,960
NWOX-Insert (500 gens) 27.6% 47,751 77,700
DDS (depth 2) 30.9% 3,540 6,056,940

5.4 Comparison with State-of-the-Art Solvers
We now compare the GA using NWOX crossover and

Insert mutation to the current best metaheuristic for the
weighted tardiness scheduling problem with sequence-de-
pendent setups—the VBSS-HC algorithm of Cicirello and
Smith [5]. VBSS-HC is a hybrid of Value Biased Stochas-
tic Sampling (VBSS) [5] using the Apparent Tardiness Cost
with Setups (ATCS) heuristic of Lee et al [10] and Lee et
al’s hill climber [10]. Many of the previous best known solu-
tions to the benchmark problem instances have been found
by VBSS-HC. We also include in the results presented here a
comparison with Limited Discrepancy Search (LDS) [9] and
Depth-Bounded Discrepancy Search (DDS) [16] that were
previously reported in [5]. Both the LDS and DDS imple-
mentations use ATCS for guidance.

Table 1 shows the average percent deviation from the
best known solutions (%Δ), the number of solutions eval-
uated by the search on average, and the average number
of search nodes generated by the search but not necessar-
ily evaluated. For VBSS-HC, DDS, and LDS many of these
generated search nodes are not solution nodes, but interme-
diate nodes along the search trajectory.1 For NWOX-Insert,
the average number of search nodes generated counts both
the intermediate solutions after a recombination as well as
the final solution after both crossover and mutation (if both
operators were applied to an individual). Children that are
copies of parents that did not undergo mutation or crossover
are not counted among the solutions evaluated since they are
not reevaluated by the algorithm. For NWOX-Insert, the
table shows results for different length searches (500, 1000,
5000, and 10000 generations). For VBSS-HC, results are
shown for different length searches (1000, 5000, and 10000
restarts). DDS is shown for two different depth searches.

The first observation we make from the results is that the
longest search using NWOX-Insert (10000 generations) de-
viates the least on average from the best known solutions.
While doing so, it evaluates more solutions than any other

1For VBSS-HC, LDS, and DDS, the average number of solu-
tions evaluated and average number of search nodes gener-
ated are as reported by Cicirello and Smith [5]. Additionally,
for VBSS-HC, LDS, and DDS, %Δ was recomputed from the
raw data for the experiments of [5] using the new set of best
known solutions.

Table 2: Summary of new best known solutions
found by NWOX-Insert. Both the new best and the
old best solutions are listed. Only problem instances
for which new best solutions have been found are
shown.

Instance New Old Instance New Old
1 866 978 58 53460 55522
2 5907 6489 61 78667 79884
3 1936 2348 62 45522 47860
4 7251 8311 64 94165 96378
5 5233 5606 65 132306 134881
6 8131 8244 66 62266 64054
7 4130 4347 67 29443 34899
8 299 327 68 23614 26404
9 7421 7598 69 72238 75414
17 461 462 70 78137 81200
24 1103 1791 72 51634 56934
27 74 229 73 34859 36465
28 0 72 75 24429 30980
30 333 575 76 66656 67553
37 1757 2407 78 24030 25105
42 61855 61859 80 25212 31844
44 37584 38726 81 386782 387148
45 61573 62760 82 412721 413488
46 37112 37992 87 401049 403016
47 76629 77189 89 415433 416916
48 67633 68920 101 354906 355822
49 81220 84143 104 361718 362008
50 33877 36235 107 355537 356645
55 74342 76368 108 467651 468111
56 84614 88420

algorithm considered except for LDS. However, it is actually
doing far less work. For example, if you look at the num-
ber of search nodes generated, it generates only a fraction
of the number of search nodes than does VBSS-HC—even
less than the 1000 restart VBSS-HC. This is even more sig-
nificant when you consider the amount of work that LDS
and DDS are doing (see generated nodes column). VBSS-
HC, LDS, and DDS all spend a great amount of time and
effort heuristically evaluating partial solutions. While our
NWOX-Insert uses problem independent genetic operators
to effectively recombine above average complete solutions.

It is also worth noting that during the course of this study,
NWOX-Insert was able to improve upon the best known so-
lutions for 49 of the 120 problem instances from the bench-
mark set. A summary listing the new best solutions along
with the previous best solutions for these 49 problem in-
stances can be found in Table 2.

6. CONCLUSION
In this paper, we have presented a new variation of the

OX operator that we call NWOX (Non-Wrapping Order
Crossover). This novel crossover operator for the permuta-
tion representation of a GA strongly preserves the relative
position of the alleles of the parents—to the same degree as
does the original OX. However, it is designed to acknowledge
that the absolute position of the alleles in the parents may
also be of importance. It respects those absolute positions
by not allowing wrapping of values in the left of the parents
to the right end of the child permutations.

This NWOX operator is proven ideal for a problem known
as weighted tardiness scheduling with sequence-dependent
setups. The sequence-dependent setups of this NP-Hard
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scheduling problem present a challenge that only heuristic or
metaheuristic approaches are currently able to handle since
it is not currently possible to guarantee optimal solutions
for problem instances greater than 20-30 jobs in size. The
strength of NWOX in retaining order information from the
parent schedules is well-suited to the sequence-dependent
setup constraints; while its respect of absolute position pre-
vents child schedules from making drastic moves of segments
of jobs from the beginning to end of the schedule or vice
versa. The end result is the new best metaheuristic for this
computationally challenging problem. Future work will ex-
plore other appropriate applications for NWOX.
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