
A Hybrid of Genetic Algorithm and Bottleneck Shifting
for Flexible Job Shop Scheduling Problem

Jie Gao
School of Management,
Xi’an Jiaotong University

Xi’an, 710049, China
+86(29)8266-8748

calebgao@yahoo.com

 Mitsuo Gen
Graduate School of Information,

Production & Systems,
Waseda University

Kitakyushu, 808-0135, Japan
+81(93)692-5273

gen@waseda.jp

Linyan Sun
School of Management,
Xi’an Jiaotong University

Xi’an, 710049, China
+86(29)8266-8748

lysun@mail.xjtu.edu.cn

ABSTRACT
Flexible job shop scheduling problem (fJSP) is an extension of the
classical job shop scheduling problem, which provides a closer
approximation to real scheduling problems. We develop a new
genetic algorithm hybridized with an innovative local search
procedure (bottleneck shifting) for the fJSP problem. The genetic
algorithm uses two representation methods to represent solutions
of the fJSP problem. Advanced crossover and mutation operators
are proposed to adapt to the special chromosome structures and
the characteristics of the problem. The bottleneck shifting works
over two kinds of effective neighborhood, which use interchange
of operation sequences and assignment of new machines for
operations on the critical path. In order to strengthen the search
ability, the neighborhood structure can be adjusted dynamically in
the local search procedure. The performance of the proposed
method is validated by numerical experiments on several
representative problems.

Categories and Subject Descriptors
F.2.2 Sequencing and scheduling

General Terms
Algorithms, Performance

Keywords
Flexible job shop scheduling problem; genetic algorithms;
bottleneck shifting; neighborhood structure

1. INTRODUCTION
Flexible job shop is a generalization of the job shop and the
parallel machine environment, which provides a closer
approximation to a wide range of real manufacturing systems.
Bruker and Schlie [1]were among the first to address the fJSP
problem. They developed a polynomial algorithm for solving the
flexible job shop scheduling problem with two jobs. Chambers [2]
developed a tabu search algorithm to solve the problem.
Mastrolilli and Gambardella [3] proposed two neighborhood

functions for the fJSP problem. Yang [4] presented a new genetic
algorithm (GA)-based discrete dynamic programming approach.
Kacem and Borne [5] proposed the approach by localization to
solve the resource assignment problem, and an evolutionary
approach controlled by the assignment model for the fJSP
problem. Wu and Weng [6] considered the problem with job
earliness and tardiness objectives, and proposed a multiagent
scheduling method. Xia and Wu [7] treated this problem with a
hybrid of particle swarm optimization and simulated annealing as
a local search algorithm. Zhang and Gen [8] proposed a
multistage operation-based genetic algorithm to deal with the fJSP
problem from a point view of dynamic programming.

In this paper, a hybrid genetic algorithm (hGA) is employed to
solve the fJSP problem. The hGA uses two representations to
adapt to the nature of this problem. One representation is used in
initialization and mutation, and the other is used for crossover
operation. In order to strengthen the search ability, bottleneck
shifting serves as a kind of local search method under the
framework of GA, which only investigates the neighbor solutions
that have possibilities to improve the initial solution.

We formulate the fJSP problem in Section 2. Section 3 presents
the representation method, decoding procedure and the overall
procedure of the proposed hGA. The details of the genetic
algorithm and the bottleneck shifting are presented in Section 4
and 5, respectively. In Section 6, we present computational study
on several well-known fJSP benchmark problems and compare
our results with the results obtained by previous approaches.
Some final concluding remarks are given in Section 7.

2. FLEXIBLE JOB SHOP SCHEDULING
PROBLEM
The flexible job shop scheduling problem is as follows: n jobs are
to be scheduled on m machines. Each job i represents ni ordered
operations. The execution of each operation k of job i (noted as
oik) requires one machine j selected from a set of available
machines for oik called Aik, and will occupy that machine tikj time
units until the operation is completed. The fJSP problem is to
assign operations on machines and to schedule operations
assigned on each machine, subject to the constraints that:

1. The operation sequence for each job is prescribed;

2. Each machine can process only one operation at a time.

In this study, we manage to minimize the following three criteria:

1. Makespan (cM) of the jobs;

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO'06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.

1157

2. Maximal machine workload (wM), i.e., the maximum
working time spent at any machine;

3. Total workload (wT), which represents the total working
time over all machines.

The notation used in this paper is summarized in the following:

 Indices

i, h: index of jobs, i, h = 1, 2, …, n;
j: index of machines, j = 1, 2, …, m;
k, g: index of operation sequence, k, g = 1, 2, …, ni

 Parameters

n: total number of jobs;
m: total number of machines;
ni: total number of operations of job i;
oik: the k-th operation of job i;
Aik: the set of available machines for the operation oik;
tikj: processing time of the operation oik on machine j

 Decision variables

1, if machine is selected for the operation
0, otherwise

: completion time of the operation

ik
ikj

ik ik

j o
x

c o

ìïï= íïïî

The fJSP model is then given as follows:

{ }M 1

M 1 1 1

T
1 1 1

(1)

min (,) max (1)

min (,) max (2)

min (,) (3)

s. t. , 2, , ; , (4)
[() 0]

 [(

i

i

i

ini n

nn

ikj ikjj m i k

nn m

ikj ikj
i k j

ik i k ikj ikj i

hg ik hgj hgj ikj

ik hg

c c

w t x

w t x

c c t x k n i j
c c t x x

c c

≤ ≤

≤ ≤ = =

= = =

−

=

⎧ ⎫
= ⎨ ⎬

⎩ ⎭

=

− ≥ = ∀
− − ≥

∨ − −

∑∑

∑∑∑
L

x c

x c

x c

{ }

(5)
) 0], (,), (,),

1, , (6)

0,1 , , , (7)
0, , (8)

ik

ikj hgj ikj

ikjj A

ikj

ik

t x x i k h g j

x k i

x j k i
c k i

∈

≥ ∀

= ∀

∈ ∀
≥ ∀

∑

Inequity (4) describes the operation precedence constraints. In
inequity (5), since one or the other constraint must hold, it is
called disjunctive constraint. It represents the operation un-
overlapping constraints. Equation (6) states that one machine
must be selected from a set of available machines for each
operation.

3. HYBRID GENETIC ALGORITHM FOR
fJSP
Ever since the genetic algorithms were introduced by Holland in
1975, they have been proven to be powerful techniques for
constrained optimization and combinatorial optimization
problems. One promising approach for improving the
convergence speed to the global optimum is the use of local
search in genetic algorithms.

3.1 Two-Vector Gen et al.’s Representation
The GA’s structure and parameter setting affect its performance.
However, the primary determinants of a GA’s success or failure
are the coding by which its genotypes represent candidate
solutions and the interaction of the coding with the GA’s
recombination and mutation operators.

As mentioned above, the fJSP problem is a combination of
machine assignment and operation scheduling decisions. A
solution can be described by the assignment of operations on
machines and the processing sequence of operations on the
machines. In this paper, the chromosome is therefore composed of
two parts:

1) Machine assignment vector (hereafter called v1);

2) Operation sequence vector (hereafter called v2).

Consider a flexible job shop scheduling problem with four
machines and four jobs, where each job requires four operations.
It is rather easy to represent the machine assignment in a row. In
each machine assignment vector v1, v1(r) represents the machine
selected for the operation indicated at locus r (hereafter, we call it
operation r for shortness). An example of the machine assignment
vector is shown in figure 1.

16151413121110987654321Locus: (r)

Machine Assignment: v1(r)
Operation Indicated

3442121341421334

o4,4o4,3o4,2o4,1o3,4o3,3o3,2o3,1o2,4o2,3o2,2o2,1o1,4o1,3o1,2o1,1

16151413121110987654321Locus: (r)

Machine Assignment: v1(r)
Operation Indicated

3442121341421334

o4,4o4,3o4,2o4,1o3,4o3,3o3,2o3,1o2,4o2,3o2,2o2,1o1,4o1,3o1,2o1,1

Figure 1. Illustration of the machine assignment vector
Permutation representation is perhaps the most natural
representation of operation sequences. Unfortunately because of
the existence of precedence constraints, not all the permutations
of the operations define feasible sequences. For job shop
scheduling problem, Gen et al. proposed an alternative: they name
all operations for a job with the same symbol and then interpret
them according to the order of occurrence in the sequence of a
given chromosome [9][10]. Gen et al.’s method can also be used
to represent the operation sequences for the fJSP problem. Each
job i appears in the operation sequence vector (v2) exactly ni times
to represent its ni ordered operations. For example, the operation
sequence represented in figure 2 can be translated into a list of
ordered operations below:

 2,1 4,1 3,1 1,1 4,2 1,2 4,3 3,2 2,2 1,3

3,3 1,4 2,3 4,4 3,4 2,4

o o o o o o o o o o
o o o o o o

f f f f f f f f f

f f f f f f
.

Operation Sequence: v2(s)
Locus: Priority (s)

2342131234141342
16151413121110987654321

Operation Sequence: v2(s)
Locus: Priority (s)

2342131234141342
16151413121110987654321

Figure 2. Illustration of the operation sequence vector

The main advantages of the two-vector Gen et al.’s representation
are that each possible chromosome always represent a feasible
solution candidate, and that the coding space is smaller than that
of permutation representation.

3.2 Priority-Based Decoding and Operation
Sequence Reordering
In this paper we use priority-based decoding, where each
operation searches the earliest available time interval for
implementing on its assigned machine in the order represented by
operation sequence vector. The l-th time interval on machine j
[tjl

E, tjl
L] is available for oik, if

1158

 { }E L
(1)

E L

max , , if 2;

, if 1.
jl i k ikj jl

jl ikj jl

t c t t k

t t t k
-

ìï + £ ³ïïíï + £ =ïïî

 (9)

then, we take max{tjl
E, ci(k-1)} (if k≥2) or tjl

E (if k=1) as the starting
time of oik. Let N be the total number of operations, R(i, k) be the
locus of oik in machine assignment vector. The decoding
procedure is shown in figure 3.

Figure 3. Priority-based decoding procedure

The priority-based decoding method allows an operation to search
the earliest available time interval between the operations already
scheduled on the machine. Hence, the operation sequence
represented by the operation sequence vector may be different
from the sequence in terms of the operation starting time of the
decoded schedule.

Chromosomes are evaluated in phenotype space, while traits of
the parental solutions are passed down to their children by means
of manipulating chromosomes. Hence in order to facilitate
offsprings to inherit the operation sequence information of their
parents, it is necessary to unify the operation sequence in the
chromosome with the sequence in the corresponding decoded
schedule. The operation sequence in a chromosome is reordered
according to the operation starting time of the decoded schedule
before the chromosome involves crossover and mutation
operations.

3.3 Framework of the Hybrid Genetic
Algorithm
Two individuals with high fitness values are likely to have
dissimilar machine assignment and operation sequences, and the
recombination may result in offsprings of poor performance. This
means that the genetic operations by themselves have limited
ability in finding the global optimal solution. In this study,
bottleneck shifting serves as one kind of local search method and
is hybridized with the genetic algorithm. The framework of the
proposed hybrid genetic algorithm is illustrated in figure 4. The
details of the proposed genetic algorithm and the bottleneck
shifting are discussed in the next two sections.

Figure 4. Framework of the proposed hybrid genetic algorithm

4. GENETIC OPERATORS
In this study, the initial population is generated randomly without
using any information about the fJSP domain, in order to maintain
the diversity of individuals. Starting from the initial population,
genetic operations then evolve the population to converge to the
optimal solution.

4.1 Crossover Operators
In genetic algorithms, crossover recombines two chromosomes to
generate a number of children. Offspring of crossover should
represent solutions that combine substructures of their parental
solutions. Compared to other metaheuristics, such as: tabu search
(TS), simulated annealing (SA), ant colony optimization (ACO),
crossover may be the most distinct operation of GAs, making
heritability especially critical.

In the two-vector Gen et al’s representation, each gene of the
operation sequence vector does not indicate a concrete operation
of a job but refers to an operation that is context-dependent.
Hence, it is hard for crossover to generate offsprings that combine
the characteristics of their parental solutions. In order to
strengthen the heritability, a chromosome of the original two-
vector Gen et al’s representation is transformed into the style of
the so called two-vector permutation representation.

In a chromosome of the two-vector permutation representation as
shown in figure 5, v3(s) denotes the operation with the s-th
priority in the operation sequence vector, and v4(s) represents the
machine assigned for operation v3(s). The machine assignment
shown in figure 1 and the operation sequence shown in figure 2
can be transformed into the format of the permutation
representation shown in figure 5. For example, operation 5 holds

procedure: Priority-Based Decoding Procedure
input: fJSP data set, chromosome v1 (r), v2(s)
output: an active schedule
begin

for i=1 to n
ki ← 0; // ki represents the no. of operations already

 assigned for job i
for s=1 to N

i←v2(s), ki←ki+1, j←v1(R(i, ki));
search the an available idle time interval from left to right

on machine j for operation ki of job i;
if such an available time interval is found, then assign the

operation there; else schedule the operation at the end of
machine j;

end
output the active schedule;

end

procedure: Hybrid Genetic Algorithm
input: fJSP data set, GA parameters
output: a best schedule
begin
 t← 0;

initialize P(t) with two-vector Gen et al.’s representation;
fitness eval(P) by priority-based decoding;
reorder operation sequence according to operation starting

time;
while (not termination condition) do

crossover P(t) to yield C(t) by exchange crossover and
enhanced order crossover;

mutation P(t) to yield C(t) by allele-based mutation and
immigration mutation;

improve P(t) and C(t) to yield P’(t) and C’(t) by bottleneck
shifting;

fitness eval(P’, C’) by priority-based decoding;
select P(t+1) from P’(t) and C’(t) by mixed sampling;
reorder operation sequence according to operation starting

time;
 t← t+1;

end
output a best schedule;

end

1159

the first priority and machine 2 is selected for it in figure 5. Based
on the new representation scheme, we propose two kinds of
crossover operators.

Figure 5. Illustration of the operation sequence vector
1) Exchange crossover. A good schedule could be expected by
exchanging machine assignment and operation sequence schemes
between a pair of parents. This kind of crossover is accomplished
by selecting two parents and exchanging the machine assignment
vectors of the two parents to generate offsprings.

2) Enhanced order crossover. During the past decades, several
crossover operators have been proposed for permutation
representation, such as partial-mapped crossover, order crossover,
cycle crossover, and so on. Yet, these methods are proposed for
permutation chromosomes with only one vector. An enhanced
order crossover expanded from the original order crossover
[11][12] is devised for the two-vector permutation representation.
The enhanced order crossover works as follows:

Step 1. Select a subsection of operation sequence from one parent
at random.

Step 2. Produce a proto-child by copying the substring of
operation sequence into the corresponding positions, and
then copy the machines assigned for these operations from
the same parent.

Step 3. Delete the operations that are already in the substring from
the second parent. The resulted sequence of operations
contains operations that the proto-child needs.

Step 4. Place the operations into the unfixed positions of the
proto-child from left to right according to the order of the
sequence in the second parent. Then, copy the machines
selected for these operations from the second parent to
produce an offspring.

Figure 6. Illustration of the order crossover

The procedure is illustrated in figure 6. The offsprings generated
by the enhanced order crossover are transformed back into the
format of the two-vector Gen et al’s representation before they
are released into the population. Machine assignment vector can
be rearranged into the format of v1 easily. Permutation operation
sequence (v3) is translated to Gen et al.’s format (v2) by replacing
each operation with its job no..

4.2 Mutation Operators
Mutation operators create new solutions that are slightly different
from their parents. In this study, two kinds of mutation operations

are implemented: allele-based mutation and immigration
mutation. For machine assignment vectors, allele-based mutation
randomly decides whether an allele r (1≤r≤N) should be selected
for mutation in a certain probability. Then, a new available
machine will be assigned for the operation indicated by the
selected allele. For operation sequence vectors, allele-based
mutation randomly decides whether to mutate an allele s (2≤s≤N)
in a certain probability. If an allele s is to be mutated, then swap
v2(s-1) and v2(s).

In contrary to the canonical gene-by-gene mutation with very
small probability at each generation, immigration mutation
randomly generates one or more new members of the population
from the same distribution as the initial population. This process
prevents premature convergence of the population, and leads to a
simple statement of convergence.

4.3 Fitness Function
Different from most other multiobjective optimization problems,
the three considered objectives do not conflict with one another in
that a small makespan (cM) requires a small maximal workload
(wM) and a small maximal workload implies a small total
workload (wT). During evaluation, the fitness of a solution is
calculated by synthesizing the three objectives into a weighted
sum. We have to normalize the objective values on the three
criteria before they are summed since they are of different scales.
Let cM(l) be the makespan of the l-th chromosome. The scaled
makespan (cM’(l)) of a solution l is as follows:

min
max minM M
M Mmax min

M M M

() , if ,
() for all

0.5, otherwise,

c l c c c
c ' l lc c

ìï -ï ¹ïï= -íïïïïî

 (10)

where:

{ }

{ }

min
M M1

max
M M1

min () ;

max ()
l P

l P

c c l

c c l
£ £

£ £

=

=

where P is the total number of solution candidates to be evaluated
in a generation. With the same method, we can scale maximal
workload wM(l) and total workload wT(l) for each solution l. After
scaling, the three objectives all take values from the range of [0,
1].
In order to guide the genetic and local search to the most
promising area, makespan is given a very large weight since the
other two objectives heavily depend on it. Additionally, it is
typically the most important criterion in practical production
environments. For the fJSP problem, a number of solutions with
different maximal workloads or total workloads may have the
same makespan. From this point of view, we firstly find the
solutions with the minimum makespan, then minimize the
maximal workload and the total workload in the presence of the
minimum makespan. The fitness of a solution l then is:

1 M 2 M 3 T() () () ()f l c ' l w ' l w ' lα α α= + + (11)

where α1>α2>α3>0 and α1+α2+α3=1.

Parent 2

Parent 1

Offspring

81216741136101521419135
4431123414344322
81216741136101521419135
4431123414344322

4113610152141
123414344
4113610152141
123414344

16483712611152145101319
1233424214312314

16483712611152145101319
1233424214312314

81216741136101521419135Operation Sequence: v3(s)
Machine Assignment: v4(s)

Locus: Priority (s)

4431123414344322

16151413121110987654321

81216741136101521419135Operation Sequence: v3(s)
Machine Assignment: v4(s)

Locus: Priority (s)

4431123414344322

16151413121110987654321

1160

5. BOTTLENECK SHIFTING
5.1 Defining Neighborhood
A central problem of any local search procedure for combinatorial
optimization problems is how to define the effective
neighborhood around an initial solution. In this study, the
effective neighborhood is based on the concept of critical path. To
define neighborhood using critical path is not new for job shop
scheduling problem and has been employed by many researchers
[13] [14] [15].

The feasible schedules of an fJSP problem can be represented
with disjunctive graph G = (N, A, E), with node set N, ordinary
(conjunctive) arc set A, and disjunctive arc set E. The nodes of G
correspond to operations, the real arcs (A) to precedence relations,
and the dashed arc (E) to pairs of operations to be performed on
the same machine. For example, the following schedule of the
4×4 problem can be illustrated in the disjunctive graph shown in
figure 7:

The Schedule={(o1,1, M4: 0-16), (o1,2, M3: 21-33), (o1,3, M3:33-51
), (o1,4, M1: 51-69), (o2,1, M2:0-16), (o2,2, M4:94-112), (o2,3, M1:
112-136), (o2,4, M4: 136-148), (o3,1, M3: 0-21), (o3,2, M1: 21-45),
(o3,3, M2: 45-68), (o3,4, M1: 69-105), (o4,1, M2: 16-32), (o4,2, M4: 32-
62), (o4,3, M4: 62-94), (o4,4, M3: 94-118)}.

Figure 7. Illustration of disjunctive graph

In figure 7, S and T are dummy starting and terminating nodes
respectively. The number above each node represents the
processing time of that operation. The critical path is the longest
path in a graph. For an fJSP schedule, its makespan is equal to the
length of the critical path in the corresponding disjunctive graph.
The critical path is highlighted with broad-brush arcs in figure 7.
Any operation on the critical path is called a critical operation. A
critical operation cannot be delayed without increasing the
makespan of the schedule.

The job predecessor PJ(r) of an operation r is the operation
preceding r in the operation sequence of the job that r belongs to.
The machine predecessor PM(r) of an operation r is the operation
preceding r in the operation sequence on the machine that r is
processed on. If an operation r is critical, then at least one of PJ(r)
and PM(r) must be critical, if they exist. In this study, if a job
predecessor and a machine predecessor of a critical operation are
both critical, then choose the predecessor (from these two
alternatives) that appears first in the operation sequence.

A new schedule that is slightly different from the initial solution
can be generated by changing the processing sequence of two
adjacent operations performed on the same machine, i.e.,
reversing the direction of the disjunctive arc that links the two
operations. The neighborhood created in this way is named as

type I here. Neighbor solutions can also be generated by assigning
a different machine for one operation. This kind of neighborhood
is named as type II.

The makespan of a schedule is defined by the length of its critical
path, in other words, the makespan is no shorter than any possible
path in the disjunctive graph. Hence, for a neighbor solution of
type I, only when these two adjacent operations are on the critical
path, the new solution is possible to be superior to the old one.
Likewise, for a neighbor solution of type II, it cannot outperform
the initial solution if the operation is not a critical one.

For the fJSP problem, we can only swap the operation sequence
between a pair of operations that belong to different jobs. It is
possible to decompose the critical path into a number of blocks,
each of which is a maximal sequence of adjacent critical
operations that require the same machine. As a result, the possible
swaps are further confined as follows:

 In each block, we only swap the last two and first two
operations;

 For the first (last) block, we only swap the last (first) two
operations in the block. In case where the first (last) block
contains only two operations, these operations are swapped.

 If a block contains only one operation, then no swap is made.

Due to the strict restrictions above, possible swaps occur only on
a few pairs of adjacent operations that belong to different jobs on
the critical path. Neighbor solutions of type I are actually
generated by implementing these possible swaps. Figure 8 shows
the critical path, critical blocks and the possible swaps in a
schedule. The total number of the neighbors of type I (NI) is less
than the total number of critical operations (NC) since some
critical operations can not involve the possible swaps.

Figure 8. Neighborhood of type I

A neighbor solution of type II can be created by assigning a
different machine j∈ Aik for a critical operation oik. Let nl

II be the
number of machines on which the l-th critical operation can be
assigned. nl

II −1 neighbors can be generated by assigning the
operation on any of the other nl

II −1 available machines. Hence,
the total number of neighbors of type II (NII):

C

II II
1

1N
ll

N n
=

= −∑ (12)

Since NI is less than NC, NII generally represents a much larger
number than NI.

5.2 Local Search Transition Mechanism
During the local search, the original schedule will transit to a
better neighbor solution, if it exists. This gives rise to a new
problem: what is an improved solution. For the fJSP problem,
there may be more than one critical path in a schedule, in which
the makespan is determined by the length of the critical path. A

1161

solution with a smaller number of critical paths may provide more
potential to find solutions with less makespan nearby because the
makespan cannot be decreased without breaking all the current
critical paths. An important problem of any local search method is
how to guide to the most promising areas from an initial solution.
In this study, a solution is taken to be an improved solution if it
satisfies either of the two alternative requirements:

1) An improved solution has a larger fitness value than the
initial solution; or

2) The improved solution has the same fitness value as the
initial solution, yet it has less critical paths.

5.3 Adjusting Neighborhood Structure
Let N(i) denote the set of neighborhood of solution i. The
enlarged two-pace neighborhood can be defined as the union of
the neighborhood of each neighbor of the initial solution. Let
N2(i) be the two-pace neighborhood of solution i, then,

2
()() ()j iN i N j∈= ∪ N (13)

A larger neighborhood space size generally indicates a higher
quality of the local optima because in each step of the local
search, the best solution among a larger number of neighbor
solutions is selected as the initial solution for the next local search
iteration. On the other hand, a larger neighborhood space size
would bring a greater computational load because more neighbor
solutions have to be evaluated and compared. That is, each step of
the local search will take longer time. Hence, the number of the
local search iterations is decreased when the time spent on local
search is limited. As a result, the deep search ability is not fully
utilized.

Figure 9. Broad search over the enlarged two-pace neighborhood

In order to enhance the search ability of the local search without
incurring too much computational load, during the search process
over type II neighborhood, the local search procedure will
implement over the enlarged two-pace neighborhood only when it
reaches the local optimum of the one-pace neighborhood. The
broad search process is illustrated in figure 9.

6. COMPUTATIONAL RESULTS
In order to test the effectiveness and performance of the proposed
hybrid genetic algorithm, three representative instances
(represented by problem n×m) were selected for simulation. The
works by Kacem et al.[5][16], Xia and Wu [7], and Zhang and
Gen [8] are among the most recent progresses made in the area of
fJSP. Unfortunately, the simulation results of [8] are not included
in their work. Hence, the results obtained by our method are
compared with the results from [5][16] and [7]. All the simulation
experiments were performed with Delphi on Pentium 4 processor
(2.6-GHz clock). The adopted parameters of the hGA are listed in
table 1.

Table 1. Parameters of the hGA

Parameters Value Parameters Value
population size 1500 immigration

mutation prob.
0.15

maximal generation 300 α1 0.85

exchange crossover prob. 0.2 α2 0.10

order crossover prob. 0.3 α3 0.05
allele-based mutation prob. 0.10 L 5

6.1 Problem 8×8
This is an instance of partial flexibility. In the flexible job shop,
there are 8 jobs with 27 operations to be performed on 8
machines. For more details about this problem, refer to [7].
Experimental simulations were run for 20 times. The 20 runs all
converge to optimal solutions with the same objective values on
the three considered criteria. One of the optimal solutions is
shown in figure 10. This test instance seems to be oversimplified.
It takes averagely 16.4 generations for the hGA to converge to the
optimal solutions. The computation time averages at 5 minutes.
By adopting different weights of the three considered objectives,
we got another optimal solution shown in figure 11.

Figure 10. Optimal solution 1 of problem 8×8 (cM=14, wM=12,

wT=77)

Figure 11. Optimal solution 2 of problem 8×8 (cM=15, wM=12,

wT=75)

1162

6.2 Problem 10×10
For this test instance, there are 10 jobs with 30 operations to be
performed on 10 machines. For more details about this problem,
refer to [7]. Experimental simulations were run for 20 times for
this problem. The 20 runs all converge to optimal solutions with
the same objective values. One of the optimal solutions is shown
in figure 12. Averagely, the hGA takes 26.50 evolution
generations and about 17 minutes to find the optimal solutions.

Figure 12. Optimal solution of problem 10×10 (cM=7, wM=5,

wT=43)

6.3 Problem 15×10
A larger-sized problem is chosen to test the performance of our
hybrid genetic algorithm. This problem contains 15 jobs with 56
operations that have to be processed on 10 machines with total
flexibility (for more details about this problem, refer to [7]). This
problem has been viewed as a challenge for other algorithms.

Experimental simulations were run for 20 times for this problem.
The 20 runs all converge to optimal solutions with the same
fitness values. Not only different solutions with the same optimal
fitness value but also distinct solutions with the same optimal
objective values in the three considered criteria are found in one
run of the experiment. To provide more than one good solution
for decision-makers is a main advantage of genetic algorithms.
Figure 13 shows one of the optimal solutions.

Figure 13. Optimal solution of problem 15×10 (cM=11, wM=11,

wT=91)

It takes about 97.75 generations to converge to the optimal
solutions. Table 5 gives statistical information about convergence
generations. It seems quite easy for our algorithm to find the
optimal solutions even for such a large-sized fJSP problem. Yet,
the time spent on finding the optimal solutions is rather long and
averages at 135.47 minutes because the local search consumes
large amount of computation time during the evolutionary
process. In comparison with the scheduling horizon, the
computation time is acceptable in the real world.

Table 2. Convergence generations on problem 15×10

17.85106.1089.4097.75

Upper boundLower bound
Std.

deviation

95% confidence interval for mean

Mean

17.85106.1089.4097.75

Upper boundLower bound
Std.

deviation

95% confidence interval for mean

Mean

Table 3 gives the performance of the proposed method compared
with other algorithms. “Approach by Localization” and
“AL+CGA” are two algorithms by Kacem et al. [5] [16].
“PSO+SA” is the algorithm by Xia and Wu [7].

Table 3. Performance of the hGA for the three fJSP
problems

Problem Classical
GA AL+CGA PSO+SA Proposed

hGA

cM 16 15 16 15 16 15

wM 12 13 12

8×8

wT 77 79 75 75 73 75

cM 7 7 7 7

wM 7 5 6 5

10×10

wT 53 45 44 43

cM 23 24 12 11

wM 11 11 11 11

15×10

wT 95 91 91 91

7. CONCLUSIONS
We have developed a new approach hybridizing genetic algorithm
with bottleneck shifting to fully exploit the “global search ability”
of genetic algorithm and “the local search ability” of bottleneck
shifting for solving multiobjective flexible job shop scheduling
problem. An innovative two-vector Gen et al.’s presentation
scheme is proposed and an effective decoding method is used to
interpret each chromosome into an active schedule. The
initialization and mutation operations operate chromosomes of the
two-vector Gen et al.’s presentation. However, in order to
enhance the heritability of crossover operation, chromosomes of
the two-vector Gen et al.’s presentation are transformed into the
format of the two-vector permutation presentation, and then an
enhanced order crossover is proposed to implement
recombination operation on the chromosomes of the two-vector
permutation presentation.

Two kinds of neighborhood are defined based on the concept of
critical path for the fJSP problem. The two kinds of neighborhood
are quite effective in that they only contain solutions that are
likely to improve the initial solution. In the local search, the

1163

number of critical paths serves as one kind of intermediate
objective besides the three original criteria in order to guide the
local search to the most promising areas. The neighborhood
structure can be dynamically adjusted during the local search
process so that the quality of the local optima can be improved
without incurring too much computational load.

Several well-known benchmark problems of different scales are
solved by the proposed algorithm. The simulation results obtained
in this study are compared with the results obtained by other
authors’ algorithms. The results demonstrate the performance of
the proposed algorithm.

ACKNOWLEDGMENTS
This work is partly supported by Waseda University Grant for
Special Research Projects 2004 and the Ministry of Education,
Science and Culture, the Japanese Government: Grant-in-Aid for
Scientific Research (No.17510138). This paper is also supported
in part by National Natural Science Foundation of China (NSFC)
under Grant 70433003.Our thanks to ACM SIGCHI for allowing
us to modify templates they had developed.

REFERENCES
[1] Bruker, P. and Schlie, R., Job-shop scheduling with multi-

purpose machines. Computing, 45, 369-375, 1990.
[2] Chambers, J. B., Classical and Flexible Job Shop Scheduling

by Tabu Search. PhD thesis, University of Texas at Austin,
Austin, U.S.A., 1996.

[3] Mastrolilli, M. and Gambardella, L. M., Effective
neighborhood functions for the flexible job shop problem. J.
Sched., 3, 3-20, 2000.

[4] Yang, J.-B., GA-based discrete dynamic programming
approach for scheduling in FMS environments. IEEE Trans.
Systems, Man, and Cybernetics—Part B, 31(5), 824-835,
2001.

[5] Kacem, I., hammadi, S. and Borne, P., Approach by
localization and multiobjective evolutionary optimization for
flexible job-shop scheduling problems. IEEE Trans. Systems,
Man, and Cybernetics—Part C, 32(1), 1-13, 2002.

[6] Wu, Z. and Weng, M. X., Multiagent scheduling method
with earliness and tardiness objectives in flexible job shops.

IEEE Trans. System, Man, and Cybernetics—Part B, 35(2),
293-301, 2005.

[7] Xia, W. and Wu, Z., An effective hybrid optimization
approach for muti-objective flexible job-shop scheduling
problem. Computers & Industrial Engineering, 48, 409-425,
2005.

[8] Zhang, H. and Gen, M., Multistage-based genetic algorithm
for flexible job-shop scheduling problem. Journal of
Complexity International, 11, 223-232, 2005.

[9] Cheng, R., Gen, M. and Tsujimura, Y., A tutorial survey of
job-shop scheduling problems using genetic algorithms-I.
Representation. Computers & Industrial Engineering, 30(4),
983-997, 1996.

[10] Cheng, R., Gen, M. and Tsujimura, Y., A tutorial survey of
job-shop scheduling problems using genetic algorithms, part
II: hybrid genetic search strategies. Computers & Industrial
Engineering, 36(2), 343-364, 1999.

[11] Gen, M. and Cheng, R., Genetic Algorithms & Engineering
Design, New York: Wiley, 1997.

[12] Gen, M. and Cheng, R., Genetic Algorithms & Engineering
Optimization , New York: Wiley, 2000.

[13] Adams, J., Balas, E. and Zawack, D., The shifting bottleneck
procedure for job shop scheduling. Management Science,
34(3), 391-401, 1988.

[14] Balas, E. and Vazacopoulos, A., Guided local search with
shifting bottleneck for job shop scheduling. Management
Science, 44(2), 262-275, 1998.

[15] Goncalves, J. F., Mendes, J. J. M., Resende, M. G.. C., A
hybrid genetic algorithm for the job shop scheduling
problem. European Journal of Operational Research, 167,
77-95, 2005

[16] Kacem, I., Hammadi, S. and Borne, P., Pareto-optimality
approach for flexible job-shop scheduling problems:
Hybridization of evolutionary algorithms and fuzzy logic.
Mathematics and Computers in Simulation, 60, 245-276,
2002.

1164

