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ABSTRACT 
Flexible job shop scheduling problem (fJSP) is an extension of the 
classical job shop scheduling problem, which provides a closer 
approximation to real scheduling problems. We develop a new 
genetic algorithm hybridized with an innovative local search 
procedure (bottleneck shifting) for the fJSP problem. The genetic 
algorithm uses two representation methods to represent solutions 
of the fJSP problem. Advanced crossover and mutation operators 
are proposed to adapt to the special chromosome structures and 
the characteristics of the problem. The bottleneck shifting works 
over two kinds of effective neighborhood, which use interchange 
of operation sequences and assignment of new machines for 
operations on the critical path. In order to strengthen the search 
ability, the neighborhood structure can be adjusted dynamically in 
the local search procedure. The performance of the proposed 
method is validated by numerical experiments on several 
representative problems. 

Categories and Subject Descriptors 
F.2.2  Sequencing and scheduling   

General Terms 
Algorithms, Performance 

Keywords 
Flexible job shop scheduling problem; genetic algorithms; 
bottleneck shifting; neighborhood structure 

1. INTRODUCTION 
Flexible job shop is a generalization of the job shop and the 
parallel machine environment, which provides a closer 
approximation to a wide range of real manufacturing systems. 
Bruker and Schlie [1]were among the first to address the fJSP 
problem. They developed a polynomial algorithm for solving the 
flexible job shop scheduling problem with two jobs. Chambers [2] 
developed a tabu search algorithm to solve the problem. 
Mastrolilli and Gambardella [3] proposed two neighborhood 

functions for the fJSP problem. Yang [4] presented a new genetic 
algorithm (GA)-based discrete dynamic programming approach. 
Kacem and Borne [5] proposed the approach by localization to 
solve the resource assignment problem, and an evolutionary 
approach controlled by the assignment model for the fJSP 
problem. Wu and Weng [6] considered the problem with job 
earliness and tardiness objectives, and proposed a multiagent 
scheduling method. Xia and Wu [7] treated this problem with a 
hybrid of particle swarm optimization and simulated annealing as 
a local search algorithm. Zhang and Gen [8] proposed a 
multistage operation-based genetic algorithm to deal with the fJSP 
problem from a point view of dynamic programming. 

In this paper, a hybrid genetic algorithm (hGA) is employed to 
solve the fJSP problem. The hGA uses two representations to 
adapt to the nature of this problem. One representation is used in 
initialization and mutation, and the other is used for crossover 
operation. In order to strengthen the search ability, bottleneck 
shifting serves as a kind of local search method under the 
framework of GA, which only investigates the neighbor solutions 
that have possibilities to improve the initial solution. 

We formulate the fJSP problem in Section 2. Section 3 presents 
the representation method, decoding procedure and the overall 
procedure of the proposed hGA. The details of the genetic 
algorithm and the bottleneck shifting are presented in Section 4 
and 5, respectively. In Section 6, we present computational study 
on several well-known fJSP benchmark problems and compare 
our results with the results obtained by previous approaches. 
Some final concluding remarks are given in Section 7. 

2. FLEXIBLE JOB SHOP SCHEDULING 
PROBLEM 
The flexible job shop scheduling problem is as follows: n jobs are 
to be scheduled on m machines. Each job i represents ni ordered 
operations. The execution of each operation k of job i (noted as 
oik) requires one machine j selected from a set of available 
machines for oik called Aik, and will occupy that machine tikj time 
units until the operation is completed. The fJSP problem is to 
assign operations on machines and to schedule operations 
assigned on each machine, subject to the constraints that: 

1. The operation sequence for each job is prescribed;  

2. Each machine can process only one operation at a time. 

In this study, we manage to minimize the following three criteria: 

1. Makespan (cM) of the jobs; 

 

Permission to make digital or hard copies of all or part of this work for 
personal or classroom use is granted without fee provided that copies are 
not made or distributed for profit or commercial advantage and that 
copies bear this notice and the full citation on the first page. To copy 
otherwise, or republish, to post on servers or to redistribute to lists, 
requires prior specific permission and/or a fee.  
GECCO'06, July 8–12, 2006, Seattle, Washington, USA.  
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00.  
 

1157



2. Maximal machine workload (wM), i.e., the maximum 
working time spent at any machine;  

3. Total workload (wT), which represents the total working 
time over all machines. 

The notation used in this paper is summarized in the following: 

 Indices 

i, h: index of jobs, i, h = 1, 2, …, n; 
j: index of machines, j = 1, 2, …, m; 
k, g: index of operation sequence, k, g = 1, 2, …, ni 

 Parameters 

n: total number of jobs; 
m: total number of machines; 
ni: total number of operations of job i; 
oik: the k-th operation of job i; 
Aik: the set of available machines for the operation oik; 
tikj: processing time of the operation oik on machine j 

 Decision variables 

1,  if machine  is selected for the operation  
0,  otherwise

:  completion time of the operation 

ik
ikj

ik ik
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The fJSP model is then given as follows: 
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Inequity (4) describes the operation precedence constraints. In 
inequity (5), since one or the other constraint must hold, it is 
called disjunctive constraint. It represents the operation un-
overlapping constraints. Equation (6) states that one machine 
must be selected from a set of available machines for each 
operation. 

3. HYBRID GENETIC ALGORITHM FOR 
fJSP 
Ever since the genetic algorithms were introduced by Holland in 
1975, they have been proven to be powerful techniques for 
constrained optimization and combinatorial optimization 
problems. One promising approach for improving the 
convergence speed to the global optimum is the use of local 
search in genetic algorithms. 

3.1 Two-Vector Gen et al.’s Representation 
The GA’s structure and parameter setting affect its performance. 
However, the primary determinants of a GA’s success or failure 
are the coding by which its genotypes represent candidate 
solutions and the interaction of the coding with the GA’s 
recombination and mutation operators. 

As mentioned above, the fJSP problem is a combination of 
machine assignment and operation scheduling decisions. A 
solution can be described by the assignment of operations on 
machines and the processing sequence of operations on the 
machines. In this paper, the chromosome is therefore composed of 
two parts:  

1) Machine assignment vector (hereafter called v1);  

2) Operation sequence vector (hereafter called v2). 

Consider a flexible job shop scheduling problem with four 
machines and four jobs, where each job requires four operations. 
It is rather easy to represent the machine assignment in a row. In 
each machine assignment vector v1, v1(r) represents the machine 
selected for the operation indicated at locus r (hereafter, we call it 
operation r for shortness). An example of the machine assignment 
vector is shown in figure 1. 

16151413121110987654321Locus: (r)

Machine Assignment: v1(r)
Operation Indicated

3442121341421334

o4,4o4,3o4,2o4,1o3,4o3,3o3,2o3,1o2,4o2,3o2,2o2,1o1,4o1,3o1,2o1,1

16151413121110987654321Locus: (r)

Machine Assignment: v1(r)
Operation Indicated

3442121341421334

o4,4o4,3o4,2o4,1o3,4o3,3o3,2o3,1o2,4o2,3o2,2o2,1o1,4o1,3o1,2o1,1

 

Figure 1. Illustration of the machine assignment vector 
Permutation representation is perhaps the most natural 
representation of operation sequences. Unfortunately because of 
the existence of precedence constraints, not all the permutations 
of the operations define feasible sequences. For job shop 
scheduling problem, Gen et al. proposed an alternative: they name 
all operations for a job with the same symbol and then interpret 
them according to the order of occurrence in the sequence of a 
given chromosome [9][10]. Gen et al.’s method can also be used 
to represent the operation sequences for the fJSP problem. Each 
job i appears in the operation sequence vector (v2) exactly ni times 
to represent its ni ordered operations. For example, the operation 
sequence represented in figure 2 can be translated into a list of 
ordered operations below: 

 2,1 4,1 3,1 1,1 4,2 1,2 4,3 3,2 2,2 1,3

3,3 1,4 2,3 4,4 3,4 2,4

o o o o o o o o o o
o o o o o o

f f f f f f f f f

f f f f f f                           
. 

Operation Sequence: v2(s)
Locus: Priority (s)

2342131234141342
16151413121110987654321

Operation Sequence: v2(s)
Locus: Priority (s)

2342131234141342
16151413121110987654321

 
Figure 2. Illustration of the operation sequence vector 

The main advantages of the two-vector Gen et al.’s representation 
are that each possible chromosome always represent a feasible 
solution candidate, and that the coding space is smaller than that 
of permutation representation. 

3.2 Priority-Based Decoding and Operation 
Sequence Reordering 
In this paper we use priority-based decoding, where each 
operation searches the earliest available time interval for 
implementing on its assigned machine in the order represented by 
operation sequence vector. The l-th time interval on machine j  
[tjl

E, tjl
L] is available for oik, if 
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then, we take max{tjl
E, ci(k-1)} (if k≥2) or tjl

E (if k=1) as the starting 
time of oik. Let N be the total number of operations, R(i, k) be the 
locus of oik in machine assignment vector. The decoding 
procedure is shown in figure 3. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3. Priority-based decoding procedure 

The priority-based decoding method allows an operation to search 
the earliest available time interval between the operations already 
scheduled on the machine. Hence, the operation sequence 
represented by the operation sequence vector may be different 
from the sequence in terms of the operation starting time of the 
decoded schedule. 

Chromosomes are evaluated in phenotype space, while traits of 
the parental solutions are passed down to their children by means 
of manipulating chromosomes. Hence in order to facilitate 
offsprings to inherit the operation sequence information of their 
parents, it is necessary to unify the operation sequence in the 
chromosome with the sequence in the corresponding decoded 
schedule. The operation sequence in a chromosome is reordered 
according to the operation starting time of the decoded schedule 
before the chromosome involves crossover and mutation 
operations. 

3.3 Framework of the Hybrid Genetic 
Algorithm 
Two individuals with high fitness values are likely to have 
dissimilar machine assignment and operation sequences, and the 
recombination may result in offsprings of poor performance. This 
means that the genetic operations by themselves have limited 
ability in finding the global optimal solution. In this study, 
bottleneck shifting serves as one kind of local search method and 
is hybridized with the genetic algorithm. The framework of the 
proposed hybrid genetic algorithm is illustrated in figure 4. The 
details of the proposed genetic algorithm and the bottleneck 
shifting are discussed in the next two sections. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4. Framework of the proposed hybrid genetic algorithm 

4. GENETIC OPERATORS 
In this study, the initial population is generated randomly without 
using any information about the fJSP domain, in order to maintain 
the diversity of individuals. Starting from the initial population, 
genetic operations then evolve the population to converge to the 
optimal solution. 

4.1 Crossover Operators 
In genetic algorithms, crossover recombines two chromosomes to 
generate a number of children. Offspring of crossover should 
represent solutions that combine substructures of their parental 
solutions. Compared to other metaheuristics, such as: tabu search 
(TS), simulated annealing (SA), ant colony optimization (ACO), 
crossover may be the most distinct operation of GAs, making 
heritability especially critical. 

In the two-vector Gen et al’s representation, each gene of the 
operation sequence vector does not indicate a concrete operation 
of a job but refers to an operation that is context-dependent. 
Hence, it is hard for crossover to generate offsprings that combine 
the characteristics of their parental solutions. In order to 
strengthen the heritability, a chromosome of the original two-
vector Gen et al’s representation is transformed into the style of 
the so called two-vector permutation representation. 

In a chromosome of the two-vector permutation representation as 
shown in figure 5, v3(s) denotes the operation with the s-th 
priority in the operation sequence vector, and v4(s) represents the 
machine assigned for operation v3(s). The machine assignment 
shown in figure 1 and the operation sequence shown in figure 2 
can be transformed into the format of the permutation 
representation shown in figure 5. For example, operation 5 holds 

procedure: Priority-Based Decoding Procedure 
input: fJSP data set, chromosome v1 (r), v2(s) 
output: an active schedule 
begin 

for i=1 to n 
ki ← 0;  // ki represents the no. of operations already

 assigned for job i 
for s=1 to N 

i←v2(s), ki←ki+1, j←v1(R(i, ki)); 
search the an available idle time interval from left to right 

on machine j for operation ki of job i; 
if such an available time interval is found, then assign the 

operation there; else schedule the operation at the end of 
machine j;  

end 
output the active schedule; 

end 

procedure: Hybrid Genetic Algorithm 
input: fJSP data set, GA parameters 
output: a best schedule 
begin 
    t← 0; 

initialize P(t) with two-vector Gen et al.’s representation; 
fitness eval(P) by priority-based decoding; 
reorder operation sequence according to operation starting    

time; 
while (not termination condition) do 

crossover P(t) to yield C(t) by exchange crossover and 
enhanced order crossover; 

mutation P(t) to yield C(t) by allele-based mutation and 
immigration mutation; 

improve P(t) and C(t) to yield P’(t) and C’(t) by bottleneck 
shifting; 

fitness eval(P’, C’ ) by priority-based decoding; 
select P(t+1) from P’(t) and C’(t) by mixed sampling; 
reorder operation sequence according to operation starting 

time; 
 t← t+1; 

end 
output a best schedule; 

end
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the first priority and machine 2 is selected for it in figure 5. Based 
on the new representation scheme, we propose two kinds of 
crossover operators. 

 

 

Figure 5. Illustration of the operation sequence vector 
1) Exchange crossover. A good schedule could be expected by 
exchanging machine assignment and operation sequence schemes 
between a pair of parents. This kind of crossover is accomplished 
by selecting two parents and exchanging the machine assignment 
vectors of the two parents to generate offsprings. 

2) Enhanced order crossover. During the past decades, several 
crossover operators have been proposed for permutation 
representation, such as partial-mapped crossover, order crossover, 
cycle crossover, and so on. Yet, these methods are proposed for 
permutation chromosomes with only one vector. An enhanced 
order crossover expanded from the original order crossover 
[11][12] is devised for the two-vector permutation representation. 
The enhanced order crossover works as follows: 

Step 1. Select a subsection of operation sequence from one parent 
at random. 

Step 2. Produce a proto-child by copying the substring of 
operation sequence into the corresponding positions, and 
then copy the machines assigned for these operations from 
the same parent. 

Step 3. Delete the operations that are already in the substring from 
the second parent. The resulted sequence of operations 
contains operations that the proto-child needs. 

Step 4. Place the operations into the unfixed positions of the 
proto-child from left to right according to the order of the 
sequence in the second parent. Then, copy the machines 
selected for these operations from the second parent to 
produce an offspring. 

 

 
Figure 6. Illustration of the order crossover 

 
The procedure is illustrated in figure 6. The offsprings generated 
by the enhanced order crossover are transformed back into the 
format of the two-vector Gen et al’s representation before they 
are released into the population. Machine assignment vector can 
be rearranged into the format of v1 easily. Permutation operation 
sequence (v3) is translated to Gen et al.’s format (v2) by replacing 
each operation with its job no.. 

4.2 Mutation Operators 
Mutation operators create new solutions that are slightly different 
from their parents. In this study, two kinds of mutation operations 

are implemented: allele-based mutation and immigration 
mutation. For machine assignment vectors, allele-based mutation 
randomly decides whether an allele r (1≤r≤N) should be selected 
for mutation in a certain probability. Then, a new available 
machine will be assigned for the operation indicated by the 
selected allele. For operation sequence vectors, allele-based 
mutation randomly decides whether to mutate an allele s (2≤s≤N) 
in a certain probability. If an allele s is to be mutated, then swap 
v2(s-1) and v2(s). 

In contrary to the canonical gene-by-gene mutation with very 
small probability at each generation, immigration mutation 
randomly generates one or more new members of the population 
from the same distribution as the initial population. This process 
prevents premature convergence of the population, and leads to a 
simple statement of convergence. 

4.3 Fitness Function 
Different from most other multiobjective optimization problems, 
the three considered objectives do not conflict with one another in 
that a small makespan (cM) requires a small maximal workload 
(wM) and a small maximal workload implies a small total 
workload (wT). During evaluation, the fitness of a solution is 
calculated by synthesizing the three objectives into a weighted 
sum. We have to normalize the objective values on the three 
criteria before they are summed since they are of different scales. 
Let cM(l) be the makespan of the l-th chromosome. The scaled 
makespan (cM’(l)) of a solution l is as follows: 

min
max minM M
M Mmax min

M M M

( ) , if , 
( )   for all 

0.5,               otherwise,

c l c c c
c ' l lc c

ìï -ï ¹ïï= -íïïïïî

                    (10) 
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where P is the total number of solution candidates to be evaluated 
in a generation. With the same method, we can scale maximal 
workload wM(l) and total workload wT(l) for each solution l. After 
scaling, the three objectives all take values from the range of [0, 
1]. 
In order to guide the genetic and local search to the most 
promising area, makespan is given a very large weight since the 
other two objectives heavily depend on it. Additionally, it is 
typically the most important criterion in practical production 
environments. For the fJSP problem, a number of solutions with 
different maximal workloads or total workloads may have the 
same makespan. From this point of view, we firstly find the 
solutions with the minimum makespan, then minimize the 
maximal workload and the total workload in the presence of the 
minimum makespan. The fitness of a solution l then is: 

1 M 2 M 3 T( ) ( ) ( ) ( )f l c ' l w ' l w ' lα α α= + +                              (11) 

where α1>α2>α3>0 and α1+α2+α3=1. 

Parent 2 

Parent 1 

Offspring 

81216741136101521419135
4431123414344322
81216741136101521419135
4431123414344322

4113610152141
123414344
4113610152141
123414344

16483712611152145101319
1233424214312314

16483712611152145101319
1233424214312314

81216741136101521419135Operation Sequence: v3(s)
Machine Assignment: v4(s)

Locus: Priority (s)

4431123414344322

16151413121110987654321

81216741136101521419135Operation Sequence: v3(s)
Machine Assignment: v4(s)

Locus: Priority (s)

4431123414344322

16151413121110987654321
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5. BOTTLENECK SHIFTING 
5.1 Defining Neighborhood 
A central problem of any local search procedure for combinatorial 
optimization problems is how to define the effective 
neighborhood around an initial solution. In this study, the 
effective neighborhood is based on the concept of critical path. To 
define neighborhood using critical path is not new for job shop 
scheduling problem and has been employed by many researchers 
[13] [14] [15]. 

The feasible schedules of an fJSP problem can be represented 
with disjunctive graph G = (N, A, E), with node set N, ordinary 
(conjunctive) arc set A, and disjunctive arc set E. The nodes of G 
correspond to operations, the real arcs (A) to precedence relations, 
and the dashed arc (E) to pairs of operations to be performed on 
the same machine. For example, the following schedule of the 
4×4 problem can be illustrated in the disjunctive graph shown in 
figure 7: 

The Schedule={(o1,1, M4: 0-16), (o1,2, M3: 21-33),  (o1,3, M3:33-51 
), (o1,4, M1: 51-69), (o2,1, M2:0-16), (o2,2, M4:94-112), (o2,3, M1: 
112-136), (o2,4, M4: 136-148), (o3,1, M3: 0-21), (o3,2, M1: 21-45), 
(o3,3, M2: 45-68), (o3,4, M1: 69-105), (o4,1, M2: 16-32), (o4,2, M4: 32-
62), (o4,3, M4: 62-94), (o4,4, M3: 94-118)}. 

 
Figure 7. Illustration of disjunctive graph 

In figure 7, S and T are dummy starting and terminating nodes 
respectively. The number above each node represents the 
processing time of that operation. The critical path is the longest 
path in a graph. For an fJSP schedule, its makespan is equal to the 
length of the critical path in the corresponding disjunctive graph. 
The critical path is highlighted with broad-brush arcs in figure 7. 
Any operation on the critical path is called a critical operation. A 
critical operation cannot be delayed without increasing the 
makespan of the schedule. 

The job predecessor PJ(r) of an operation r is the operation 
preceding r in the operation sequence of the job that r belongs to. 
The machine predecessor PM(r) of an operation r is the operation 
preceding r in the operation sequence on the machine that r is 
processed on. If an operation r is critical, then at least one of PJ(r) 
and PM(r) must be critical, if they exist. In this study, if a job 
predecessor and a machine predecessor of a critical operation are 
both critical, then choose the predecessor (from these two 
alternatives) that appears first in the operation sequence. 

A new schedule that is slightly different from the initial solution 
can be generated by changing the processing sequence of two 
adjacent operations performed on the same machine, i.e., 
reversing the direction of the disjunctive arc that links the two 
operations. The neighborhood created in this way is named as 

type I here. Neighbor solutions can also be generated by assigning 
a different machine for one operation. This kind of neighborhood 
is named as type II. 

The makespan of a schedule is defined by the length of its critical 
path, in other words, the makespan is no shorter than any possible 
path in the disjunctive graph. Hence, for a neighbor solution of 
type I, only when these two adjacent operations are on the critical 
path, the new solution is possible to be superior to the old one. 
Likewise, for a neighbor solution of type II, it cannot outperform 
the initial solution if the operation is not a critical one. 

For the fJSP problem, we can only swap the operation sequence 
between a pair of operations that belong to different jobs. It is 
possible to decompose the critical path into a number of blocks, 
each of which is a maximal sequence of adjacent critical 
operations that require the same machine. As a result, the possible 
swaps are further confined as follows: 

 In each block, we only swap the last two and first two 
operations; 

 For the first (last) block, we only swap the last (first) two 
operations in the block. In case where the first (last) block 
contains only two operations, these operations are swapped. 

 If a block contains only one operation, then no swap is made. 

Due to the strict restrictions above, possible swaps occur only on 
a few pairs of adjacent operations that belong to different jobs on 
the critical path. Neighbor solutions of type I are actually 
generated by implementing these possible swaps. Figure 8 shows 
the critical path, critical blocks and the possible swaps in a 
schedule. The total number of the neighbors of type I (NI) is less 
than the total number of critical operations (NC) since some 
critical operations can not involve the possible swaps. 

 
Figure 8. Neighborhood of type I 

A neighbor solution of type II can be created by assigning a 
different machine j∈ Aik for a critical operation oik. Let nl

II be the 
number of machines on which the l-th critical operation can be 
assigned. nl

II −1 neighbors can be generated by assigning the 
operation on any of the other nl

II −1 available machines. Hence, 
the total number of neighbors of type II (NII): 

             
C

II II
1

1N
ll

N n
=

= −∑                                       (12) 

Since NI is less than NC, NII generally represents a much larger 
number than NI. 

5.2 Local Search Transition Mechanism 
During the local search, the original schedule will transit to a 
better neighbor solution, if it exists. This gives rise to a new 
problem: what is an improved solution. For the fJSP problem, 
there may be more than one critical path in a schedule, in which 
the makespan is determined by the length of the critical path. A 
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solution with a smaller number of critical paths may provide more 
potential to find solutions with less makespan nearby because the 
makespan cannot be decreased without breaking all the current 
critical paths. An important problem of any local search method is 
how to guide to the most promising areas from an initial solution. 
In this study, a solution is taken to be an improved solution if it 
satisfies either of the two alternative requirements: 

1) An improved solution has a larger fitness value than the 
initial solution; or 

2) The improved solution has the same fitness value as the 
initial solution, yet it has less critical paths. 

5.3 Adjusting Neighborhood Structure 
Let N(i) denote the set of neighborhood of solution i. The 
enlarged two-pace neighborhood can be defined as the union of 
the neighborhood of each neighbor of the initial solution. Let 
N2(i) be the two-pace neighborhood of solution i, then, 

2
( )( ) ( )j iN i N j∈= ∪ N                                            (13) 

A larger neighborhood space size generally indicates a higher 
quality of the local optima because in each step of the local 
search, the best solution among a larger number of neighbor 
solutions is selected as the initial solution for the next local search 
iteration. On the other hand, a larger neighborhood space size 
would bring a greater computational load because more neighbor 
solutions have to be evaluated and compared. That is, each step of 
the local search will take longer time. Hence, the number of the 
local search iterations is decreased when the time spent on local 
search is limited. As a result, the deep search ability is not fully 
utilized. 

 
Figure 9. Broad search over the enlarged two-pace neighborhood 

In order to enhance the search ability of the local search without 
incurring too much computational load, during the search process 
over type II neighborhood, the local search procedure will 
implement over the enlarged two-pace neighborhood only when it 
reaches the local optimum of the one-pace neighborhood. The 
broad search process is illustrated in figure 9. 

6. COMPUTATIONAL RESULTS 
In order to test the effectiveness and performance of the proposed 
hybrid genetic algorithm, three representative instances 
(represented by problem n×m) were selected for simulation. The 
works by Kacem et al.[5][16], Xia and Wu [7], and Zhang and 
Gen [8] are among the most recent progresses made in the area of 
fJSP. Unfortunately, the simulation results of [8] are not included 
in their work. Hence, the results obtained by our method are 
compared with the results from [5][16] and [7]. All the simulation 
experiments were performed with Delphi on Pentium 4 processor 
(2.6-GHz clock). The adopted parameters of the hGA are listed in 
table 1. 

Table 1. Parameters of the hGA 

Parameters Value Parameters Value 
population size 1500 immigration  

mutation prob. 
0.15 

maximal generation 300 α1 0.85 

exchange crossover prob. 0.2 α2 0.10 

order crossover prob. 0.3 α3 0.05 
allele-based mutation prob. 0.10 L 5 

6.1 Problem 8×8 
This is an instance of partial flexibility. In the flexible job shop, 
there are 8 jobs with 27 operations to be performed on 8 
machines. For more details about this problem, refer to [7]. 
Experimental simulations were run for 20 times. The 20 runs all 
converge to optimal solutions with the same objective values on 
the three considered criteria. One of the optimal solutions is 
shown in figure 10. This test instance seems to be oversimplified. 
It takes averagely 16.4 generations for the hGA to converge to the 
optimal solutions. The computation time averages at 5 minutes. 
By adopting different weights of the three considered objectives, 
we got another optimal solution shown in figure 11. 

 
Figure 10. Optimal solution 1 of problem 8×8 (cM=14, wM=12, 

wT=77) 

 
Figure 11. Optimal solution 2 of problem 8×8 (cM=15, wM=12, 

wT=75) 
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6.2 Problem 10×10 
For this test instance, there are 10 jobs with 30 operations to be 
performed on 10 machines. For more details about this problem, 
refer to [7]. Experimental simulations were run for 20 times for 
this problem. The 20 runs all converge to optimal solutions with 
the same objective values. One of the optimal solutions is shown 
in figure 12. Averagely, the hGA takes 26.50 evolution 
generations and about 17 minutes to find the optimal solutions. 

 
Figure 12. Optimal solution of problem 10×10 (cM=7, wM=5, 

wT=43) 

6.3 Problem 15×10 
A larger-sized problem is chosen to test the performance of our 
hybrid genetic algorithm. This problem contains 15 jobs with 56 
operations that have to be processed on 10 machines with total 
flexibility (for more details about this problem, refer to [7]). This 
problem has been viewed as a challenge for other algorithms. 

Experimental simulations were run for 20 times for this problem. 
The 20 runs all converge to optimal solutions with the same 
fitness values. Not only different solutions with the same optimal 
fitness value but also distinct solutions with the same optimal 
objective values in the three considered criteria are found in one 
run of the experiment. To provide more than one good solution 
for decision-makers is a main advantage of genetic algorithms. 
Figure 13 shows one of the optimal solutions.  

 
Figure 13. Optimal solution of problem 15×10 (cM=11, wM=11, 

wT=91) 

It takes about 97.75 generations to converge to the optimal 
solutions. Table 5 gives statistical information about convergence 
generations. It seems quite easy for our algorithm to find the 
optimal solutions even for such a large-sized fJSP problem. Yet, 
the time spent on finding the optimal solutions is rather long and 
averages at 135.47 minutes because the local search consumes 
large amount of computation time during the evolutionary 
process. In comparison with the scheduling horizon, the 
computation time is acceptable in the real world. 

Table 2. Convergence generations on problem 15×10 

17.85106.1089.4097.75

Upper boundLower bound
Std. 

deviation

95% confidence interval for mean

Mean

17.85106.1089.4097.75

Upper boundLower bound
Std. 

deviation

95% confidence interval for mean

Mean

 
Table 3 gives the performance of the proposed method compared 
with other algorithms. “Approach by Localization” and 
“AL+CGA” are two algorithms by Kacem et al. [5] [16]. 
“PSO+SA” is the algorithm by Xia and Wu [7]. 

Table 3.  Performance of the hGA for the three fJSP 
problems  

Problem  Classical 
GA AL+CGA PSO+SA Proposed 

hGA 

cM 16 15 16 15 16 15 

wM    12 13 12 

8×8 

wT 77 79 75 75 73 75 

cM 7 7 7 7 

wM 7 5 6 5 

10×10 

wT 53 45 44 43 

cM 23 24 12 11 

wM 11 11 11 11 

15×10 

wT 95 91 91 91 

7. CONCLUSIONS 
We have developed a new approach hybridizing genetic algorithm 
with bottleneck shifting to fully exploit the “global search ability” 
of genetic algorithm and “the local search ability” of bottleneck 
shifting for solving multiobjective flexible job shop scheduling 
problem. An innovative two-vector Gen et al.’s presentation 
scheme is proposed and an effective decoding method is used to 
interpret each chromosome into an active schedule. The 
initialization and mutation operations operate chromosomes of the 
two-vector Gen et al.’s presentation. However, in order to 
enhance the heritability of crossover operation, chromosomes of 
the two-vector Gen et al.’s presentation are transformed into the 
format of the two-vector permutation presentation, and then an 
enhanced order crossover is proposed to implement 
recombination operation on the chromosomes of the two-vector 
permutation presentation. 

Two kinds of neighborhood are defined based on the concept of 
critical path for the fJSP problem. The two kinds of neighborhood 
are quite effective in that they only contain solutions that are 
likely to improve the initial solution. In the local search, the 
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number of critical paths serves as one kind of intermediate 
objective besides the three original criteria in order to guide the 
local search to the most promising areas. The neighborhood 
structure can be dynamically adjusted during the local search 
process so that the quality of the local optima can be improved 
without incurring too much computational load. 

Several well-known benchmark problems of different scales are 
solved by the proposed algorithm. The simulation results obtained 
in this study are compared with the results obtained by other 
authors’ algorithms. The results demonstrate the performance of 
the proposed algorithm. 
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