
Robot Gaits Evolved by Combining Genetic Algorithms
and Binary Hill Climbing

Lena Mariann Garder
Department of Informatics

University of Oslo
N-0316 Oslo, Norway

lenaga@ifi.uio.no

Mats Erling Høvin
Department of Informatics

University of Oslo
N-0316 Oslo, Norway

matsh@ifi.uio.no

ABSTRACT
In this paper an evolutionary algorithm is used for evolv-
ing gaits in a walking biped robot controller. The focus
is fast learning in a real-time environment. An incremen-
tal approach combining a genetic algorithm (GA) with hill
climbing is proposed. This combination interacts in an effi-
cient way to generate precise walking patterns in less than
15 generations. Our proposal is compared to various ver-
sions of GA and stochastic search, and finally tested on a
pneumatic biped walking robot.

Categories and Subject Descriptors
I.2.9 [Artificial Intelligence]: Robotics—Propelling mech-
anisms; I.2.8 [Artificial Intelligence]: Problem Solving,
Control Methods, and Search—Heuristic methods

General Terms
Algorithms

Keywords
Evolutionary robotics, Genetic algorithms, Machine learn-
ing

1. INTRODUCTION
Evolutionary algorithms has often been proposed as a

method for designing systems for real-world applications [6].
Developing effective gaits for bipedal robots is a difficult task
that requires optimization of many parameters in a highly
irregular, multidimensional seach space. In recent years bi-
ologically inspired computation methods, and particularly
genetic algorithms (GA), have been employed by several au-
thors. For instance, Hornby et al. used GA to generate
robust gaits on the Aibo quadruped robot [7]. GA applied
to bipedal locomotion was also proposed by Arakawa and
Fukuda [1] who made a GA based on energy optimization in

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

order to generate a natural, human-like bipedal gait. One of
the main objections to applying GA’s in the seach for gaits
is the time-consuming characteristic of these techniques due
to the large fitness search space that is normally present.
For this reason most approaches have been based on offline
and simulator based searches. To reduce the time spent
searching large search spaces with GA, various techniques
for speeding up the algorithm have been presented.

With the increased complexity evolution schema intro-
duced by Torresen [11], Torresen has shown how to increase
the search speed by using a divide and conquer approach, by
dividing the problem into subtasks in a character recogni-
tion system. Haddow and Tufte have also done experiments
with reducing the genotype representation [5]. Kalganova [9]
has shown how to increase the search speed by evolving in-
crementally and bidirectional to achieve an overall complex
behaviour both for the complex system to the sub-system
and from sub-system to the complex system. For an ex-
haustive description of other approaches readers may refer
to Cantu-Paz [2].

The robot presented in this paper is a two-legged biped
with binary operated pneumatic cylinders. The search space
in our experiments was set up to describe the forward speed
of the robot given the different gaits, and the goal was to
find the most efficient gait with respect to speed. To enable
efficient gaits the search space needed to be quite large as
the accuracy of the pause lengths between the different leg
positions is outmost critical, especially for gaits dominated
by jumping movements. The focus has not been on evolv-
ing a balancing system as there have been no other sensory
feedback than the forward position of the robot.

The main goal for our work was to find a search algorithm
fast enough to enable real-time gait generation/adaptation
where the fitness is provided by the mechanical robot with-
out the need for an offline simulator model.

In this paper we present a different approach to increase
the search speed by combining GA and binary hill climbing
(BH) in an algorithm that we will refer to as the GABH
algorithm.

In chapter II we describe the robot hardware and in chap-
ter III we describe how the different gaits are represented
in the chromosome. In chapter IV we present the simulated
results of different search algorithms compared to the new
GABH algorithm, and in Chapter V we present measured re-
sults of the GABH algorithm applied to the hardware robot
in real-time with no simulator model.

1165

2. THE ROBOT HARDWARE
The robot skeleton is made of aluminium and is provided

with two identical legs. The height is 40 cm. Each leg
is composed of an upper part (i.e. the thigh) connected
through a cylindrical joint to the lower part (i.e. the calf).
Pneumatic cylinders are attached to the thigh and the calf
used for controlling the movements of the calf and the thigh
separately. As shown in Fig. 1 the rear cylinder in each
foot actuates the calf whereas the front cylinder actuates
the thigh. The cylinders can either be fully compressed or
fully extended (binary operation), and the pneumatic valves
are located on top of the robot. The valves are electrically
controlled by 4 power switches connected to a PC I/O card
(National Instruments DAQ-pad) and the different searching
algorithms are implemented in the programming language
C++ on the PC.

The pneumatic air pressure was set to 8 bar and provided
by a stationary compressor. The robot was attached to a
balancing rod at the top (Fig. 1 right and Fig. 2) making the
robot able to move in two dimensions. The other end of the
rod was attached to a rotating clamp on a hub. The robot
walks around the hub with a radius of 2 meter. In addition
to being a balancing aid, the rod supplies the robot with air
pressure and control signals from the DAQ-pad. The hub
has a built in optical sensor representing the rod angle in 13
bit Gray code.

Figure 1: Illustration (left) and photo (right) of the
robot. Proper walking direction is left to right (bird
construction).

3. GENETIC ALGORITHM

3.1 Simple GA
A genetic algorithm is based on representing a solution

to the problem as a genome (or chromosome). The genetic
algorithm then creates a population of solutions and applies
genetic operators to evolve the solutions in order to find
the best one(s). In the simple GA approach [4], [12] the

Figure 2: The fitness measurement and balancing
rod system (top view).

chromosomes are randomly initiated and the only genetic
operators used are mutation and crossover. The selection
process is done by roulette wheel selection.

3.2 The chromosome coding
In our experiments each gait is coded by a 30 bit chro-

mosome. The chromosome represents three body positions
each followed by a variable pause. A body position is com-
posed of the positions of the 2 legs (4 cylinders) and rep-
resented by four bits (Fig. 3) each describing the status of
the corresponding cylinder (compressed or extracted). A
complete gait is then created by executing 3 body positions
with 3 appropriate pauses in between. Each pause length
is represented by 6 bits. The pause length is represented
as a binary number corresponding to pauses from 50ms to
300ms. Various simulations have shown no GA search speed
improvement by representing the pauses in Gray code.

Two cylinders can move a single leg to 4 different posi-
tions. Two legs with four cylinders can hold 16 different
positions, and three following positions with 6 bits pauses
in between make a search space of

230 = 1073741824 (1)

different gaits.
Although the search space can be made slightly smaller

by representing each gait by a cyclic coding [10] our exper-
iments have shown no noticeable difference in search speed
for cyclic/non cyclic coding for this robot. The size of this
search space clearly requires a more efficient search algo-
rithm than simple GA in order to enable real-time gait de-
velopment in hardware.

Leg position
bits

Leg position
bits

Leg position
bitsPause length bits Pause length bits Pause length bits

Pneumatic
cylinder

Figure 3: The chromosome internal coding.

1166

3.3 Pauses
A gait is composed of leg positions and pauses. In our

robot evolution we have found that the most efficient gaits
with respect to forward speeds are gaits dominated by jump-
ing movements. In a jumping movement the pause length
between each leg kick is outmost critical as the robot may
stumble if the timing of the leg kick is just slightly wrong.
Measurements show that a pause length deviation in the
magnitude of 10ms can make the difference between a rel-
atively useless and a highly effective gait. It is however a
trade-of between the desire to represent the pause lengths
with a high number of bits and the exponential decrease in
search speed for each extra bit used due to the increased size
of the search space.

4. SIMULATED RESULTS
To compare the efficiency of the different search algo-

rithms against each other the robot was first simulated in
software.

4.1 The simulator
A simple mechanical chicken-robot simulator has been im-

plemented in C++. This simulator models the robot with
exact physical dimensions and a weight of 3kg. The centre of
gravity is located at the hip joint. It was found very difficult
to model the feet-to-floor friction force exactly as this force
is heavily modulated by large vibrations in the robot body
and supporting rod during walking/jumping. The feet-to-
floor friction force is a very important factor for developing
efficient jumping patterns and the lack of an exact model for
this effect is assumed to be the main weakness of the sim-
ulator. The fitness of each chromosome (gait) is a function
of the forward speed of the robot caused by the correspond-
ing chromosome. Each gait is repeated 3 times in sequence
to reduce the impact caused by the initial leg positions. A
movement in the backward direction causes the fitness to be
zero.

4.2 Search space topology
The optimal search algorithm for a given problem depends

heavily on the topology of the search space. For the chro-
mosome coding described in chapter 3.2 and the chosen soft-
ware robot model we have tried to get an overview of this
topology by separating the search space in two parts, one
part generated by the pause bits and one part generated by
the leg position bits.

Fig. 4 shows a plot of the fitness landscape for all possible
leg positions in a single chromosome (gait) were all 3 pause
lengths are fixed at 100ms. The size of this search space is
24·3 = 4096 leg positions. This plot indicates that the part of
the overall search space generated by the leg positions is very
chaotic although there may be some repetitive phenomena.
A similar topology has been found for other choices of con-
stant pause lengths. The different leg positions are sorted
by the Gray value of their corresponding bits to keep the bit
difference between neighbouring chromosomes in the plot as
low as possible, but even so the landscape is chaotic with
many narrow peaks.

In Fig. 5 the fitness landscape is plotted for different pause
lengths where the leg positions are kept constant. To make
the fitness landscape visually informative one of the 3 pause
lengths are also kept constant at 70ms resulting in a three di-
mensional plot. As this plot indicates the part of the overall

fitness landscape generated by the pause lengths is smooth
and will typically contain a few numbers of maxima. In this
type of landscape a hill climbing search will normally be
more efficient than a genetic algorithm.

Figure 4: Fitness search space for different leg posi-
tions (fixed pauses at 100ms).

Figure 5: Fitness search space for pause no. 1 and
no. 2. All leg positions and pause no. 3 are fixed.

4.3 Simple GA simulations
The focus for this real-time application has been to find

a search algorithm capable of finding an optimal gait in
less than 20 generations. The first search approach was to
perform a search for an optimal chromosome (gait) in the
global search space consisting of 230 different chromosome
values. Simple and more advanced genetic algorithms were
tested against different evolutionary strategies (ES) [4]. ES’s
showed to be less effective for this particular application and
a genetic algorithm was therefore chosen.

In all our simulations 5% noise is added to the fitness func-
tion to model practical effect such as variable foot friction,

1167

vibrations, variable air pressure and pause length deviations
caused by non-ideal real-time behaviour of the XP operating
system.

A simple genetic algorithm with roulette wheel selection,
elitism, a population size of 10 chromosomes, no crossover
but with as high as 0.2% mutation probability for each bit
was found to be the most effective. The high mutation prob-
ability indicates that GA is struggling with the topology
in this global search space. This result is not surprising
as the global search space is assumed to be dominated by
the chaotic and complex phenomena shown in the partial
search space shown in Fig. 4. In Fig. 7 we see that GA
produces slightly less than twice as effective gaits compared
to a stochastic search after 15 generations. In all plots each
graph shows the mean result from 1000 simulations with ran-
domly initiated populations. 5 different graphs are shown
to illustrate the consistency of the simulations.

4.3.1 An incremental GA approach
The next approach was to evolve the partial search spaces

shown in Fig. 4 and Fig. 5 separately by an incremental ge-
netic algorithm. Incremental GA differs from simple GA
because the search space is divided into smaller parts and
evolved separately [11] [8]. By gradually evolving each task
in series increased complexity can be achieved [3] [1]. The
first incremental approach was to first evaluate the leg po-
sition bits, with fixed pause lengths. After obtaining gaits
with sufficient fitness the leg position bits are fixed and the
pause bits are evolved separately. From Fig. 6 we se that
this approach is not successful as the fitness is never found
to be higher than the fitness provided by simple GA. Leg
position bits are evolved up to generation 11 and pause bits
are evolved from generation 12.

The next incremental approach was to divide the search
in to 7 increments. First the leg position bits were evolved,
then the most significant pause bits were evolved, then the
next most significant pause bits were evolved until the least
significant pause bits were evolved in the last increment.
Even this approach was not found to provide better results
than simple GA.

Mean fitnes - simple GA

Figure 6: Incremental GA versus simple GA. Leg
position bits are evolved up to generation 11 and
pause bits are evolved from generation 12.

4.4 The GABH algorithm
The third and more successful incremental approach was

to combine GA and binary hill climbing in the GABH algo-
rithm. From Fig. 5 we notice that the typical pause length
fitness landscape is smooth with few maxima. In a practi-
cal application disturbances will be added to this landscape
due to variable foot friction, vibrations, variable air pres-
sure and pause length deviations caused by non-ideal real-
time behaviour of the operating system. However, the main
characteristic of this landscape indicates that a hill climbing
algorithm may be more efficient than a GA based search.

In the GABH algorithm the leg position bits are first
evolved by simple GA up to generation 8. All pause length
bits are fixed corresponding to pause lengths of 150ms. In
generation 8 GA has normally found a decent leg position
pattern. From generation 9 all leg position bits are fixed. In
generation 9 all possible combinations of the most significant
pause length bits are tested (coarse seach) where all other
bits are kept fixed. With 3 pauses in a chromosome there
are 8 possible combinations of the most significant pause
bits to be tested. The chromosome with the highest fitness
containing the most successful most significant pause bits
is kept. 8 copies of this chromosome are then made form-
ing generation 10. In generation 10 all combinations of the
next most significant pause bits are tested keeping the other
bits fixed. The chromosome with the highest fitness con-
taining the most successful next most significant pause bits
are then kept. 8 copies of this chromosome are then made
forming generation 11 and so on until the least significant
pause bits are found in generation 14. The search is then
terminated. In this way the search space given by pause
lengths is searched in a coarse to fine sequence.

GABH

GABH

Figure 7: Comparison between simple GA, GABH
and stocastic seach.

In Fig. 7 the GABH algorithm is compared to simple GA
and stochastic search. As each graph represents the average
fitness development over 1000 simulations, we see that the
GABH algorithm is in average superior to the others in this
application where the focus is fast learning in less than 20
generations. A possible objection to the proposed GABH
algorithm is that heavy noise in the fitness calculations may
cause the algorithm to derail and search in a non optimal
region of the search space. To make the algorithm more ro-

1168

bust an improvement could therefore be to let the algorithm
run each increment over more than 1 generation and select
the optimal chromosome based on fitness averaging.

4.5 Gaits obtained
The gaits obtained can be divided into three categories.

Two suboptimal gaits and one optimal gait. In Fig.8-10
these gaits are illustrated. The optimal gaits were based
on synchronous jumping where both legs are kicking at the
same time. By kicking both feet at the same time the most
power was available causing the longest jumps. Other sub-
optimal gaits were based on one-leg jumping or asymmetric
jumping where one foot was slightly delayed with respect to
the other.

Figure 8: Suboptimal gait based on asymmetric
jumping.

Figure 9: Suboptimal gait based on every other one-
leg jumping.

Figure 10: Optimal gaits based on synchronous
jumping.

5. MEASURED RESULTS
The GABH algorithm has been tested on the pneumatic

robot in an attempt to verify the theory. It was found very
difficult to verify the theory accurately due to various prac-
tical side effects. One major problem was time consump-
tion and mechanical wear out, particularly of the sandpaper
shoe sole which affected the system significantly. When the
robot moved, the whole system was vibrating heavily due
to the quick contraction/expansion movement of the pneu-
matic pistons. This vibration made the robot shoe soles oc-
casionally slip during kick-off, and this made the system very
unpredictable as the robot occasionally stumbled instead of
jumped even for seemingly optimal jumping patterns.

In Fig. 11 two typical fitness developments are shown for
the GABH algorithm. In these examples the binary hill
climbing starting point was set to the 7th generation. From
the measurements we notice an improvement in fitness after
this point. After the 13th generation the population was
kept static, but even for repeated executions of the same
chromosomes the fitness was found to vary significantly due

to practical effects such as variable sole friction. However,
the algorithm was found to produce proper gaits in less than
10 generations in almost all our experiments. From these few
measurements it is difficult to conclude that the algorithm
is working significantly better than simple GA. The only
conclusion one can make so far from these measurements is
that the algorithm itself is working quite well in this very
noisy environment.

Figure 11: Measured results.

6. CONCLUSION
This paper has presented an incremental search algorithm

combining GA and binary hill climbing. In various sim-
ulations this algorithm has shown to develop proper gaits
significantly faster than standard GA/ES based algorithms.
However, in a physical environment with practical side ef-
fects such as highly unpredictable shoe sole friction due to
vibrations, varying pneumatic air pressure and wear out it
has been difficult to prove in hardware that this algorithm is
better than standard GA based algorithms. The algorithm
itself, on the other hand was found to perform quite well in
a very noisy environment.

7. REFERENCES
[1] T. Arakawa and T. Fukuda. Natural motion trajectory

generation of biped locomotion robot using genetic
algorithm through energy optimization. In Proceedings
of the 1996 IEEE International Conference on
Systems, Man and Cybernetics, volume 2, pages
1495–1500, 1996.

[2] E. Cantú-Paz. A survey of parallel genetic algorithms.
In Calculateurs Paralleles, Reseaux et Systems
Repartis, pages 141–171, Paris, 1998.

[3] D. Floreano and F. Mondada. Hardware solutions for
evolutionary robotics. In Proceedings of the First
European Workshop on Evolutionary Robotics, pages
137–151, London, UK, 1998. Springer-Verlag.

[4] D. E. Goldberg. Genetic Algorithms in Search,
Optimization and Machine Learning. Addison-Wesley
Longman Publishing Co., Inc., Boston, MA, USA,
1989.

1169

[5] P. C. Haddow and G. Tufte. An evolvable hardware
FPGA for adaptive hardware. In Proceedings of the
2000 Congress on Evolutionary Computation CEC00,
pages 553–560, California, USA, 2000. IEEE Press.

[6] T. Higuchi, M. Iwata, D. Keymeulen, H. Sakanashi,
M. Murakawa, I. Kajitani, E. Takahashi, K. Toda,
N. Salami, N. Kajihara, and N. Otsu. Real-world
applications of analog and digital evolvable hardware.
IEEE Transactions on Evolutionary Computation,
3(3):220–235, 1999.

[7] G. Hornby, S. Takamura, J. Yokono, O. Hanagata,
T. Yamamoto, and M. Fujita. Evolving robust gaits
with aibo. In ICRA, pages 3040–3045, 2000.

[8] K. De Jong and M. A. Potter. Evolving complex
structures via cooperative coevolution. In Proceedings
on the Fourth Annual Conference on Evolutionary
Programming, pages 307–317, Cambridge, MA, 1995.
MIT Press.

[9] T. Kalganova. Bidirectional incremental evolution in
extrinsic evolvable hardware. In EH ’00: Proceedings
of the 2nd NASA/DoD workshop on Evolvable
Hardware, pages 65–74, Washington, DC, USA, 2000.
IEEE Computer Society.

[10] G.B. Parker. Evolving cyclic control for a hexapod
robot performing area coverage. In Proceedings of the
2001 IEEE Computational Intelligence in Robotics
and Automation, pages 555–560, Canada, 2001.

[11] J. Torresen. A divide-and-conquer approach to
evolvable hardware. In ICES ’98: Proceedings of the
Second International Conference on Evolvable
Systems, pages 57–65, London, UK, 1998.
Springer-Verlag.

[12] J. Torresen. An evolvable hardware tutorial. In
Proceedings of the 14th International Conference on
Field Programmable Logic and Applications
(FPL’2004), pages 821–830, Belgium, 2004.

1170

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /All
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveEPSInfo true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputCondition ()
 /PDFXRegistryName (http://www.color.org)
 /PDFXTrapped /Unknown

 /Description <<
 /FRA <FEFF004f007000740069006f006e00730020007000650072006d0065007400740061006e007400200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000500044004600200064006f007400e900730020006400270075006e00650020007200e90073006f006c007500740069006f006e002000e9006c0065007600e9006500200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200061006d00e9006c0069006f007200e90065002e00200049006c002000650073007400200070006f0073007300690062006c0065002000640027006f00750076007200690072002000630065007300200064006f00630075006d0065006e007400730020005000440046002000640061006e00730020004100630072006f0062006100740020006500740020005200650061006400650072002c002000760065007200730069006f006e002000200035002e00300020006f007500200075006c007400e9007200690065007500720065002e>
 /ENU (Use these settings to create PDF documents with higher image resolution for improved printing quality. The PDF documents can be opened with Acrobat and Reader 5.0 and later.)
 /JPN <FEFF3053306e8a2d5b9a306f30019ad889e350cf5ea6753b50cf3092542b308000200050004400460020658766f830924f5c62103059308b3068304d306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e305930023053306e8a2d5b9a30674f5c62103057305f00200050004400460020658766f8306f0020004100630072006f0062006100740020304a30883073002000520065006100640065007200200035002e003000204ee5964d30678868793a3067304d307e30593002>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e0020005000440046002d0044006f006b0075006d0065006e00740065006e0020006d00690074002000650069006e006500720020006800f60068006500720065006e002000420069006c0064006100750066006c00f600730075006e0067002c00200075006d002000650069006e0065002000760065007200620065007300730065007200740065002000420069006c0064007100750061006c0069007400e400740020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f0062006100740020006f0064006500720020006d00690074002000640065006d002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300740061007300200063006f006e00660069006700750072006100e700f5006500730020007000610072006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006d00200075006d00610020007200650073006f006c007500e700e3006f00200064006500200069006d006100670065006d0020007300750070006500720069006f0072002000700061007200610020006f006200740065007200200075006d00610020007100750061006c0069006400610064006500200064006500200069006d0070007200650073007300e3006f0020006d0065006c0068006f0072002e0020004f007300200064006f00630075006d0065006e0074006f0073002000500044004600200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002c002000520065006100640065007200200035002e0030002000650020007300750070006500720069006f0072002e>
 /DAN <FEFF004200720075006700200064006900730073006500200069006e0064007300740069006c006c0069006e006700650072002000740069006c0020006100740020006f0070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f8006a006500720065002000620069006c006c00650064006f0070006c00f80073006e0069006e006700200066006f00720020006100740020006600e50020006200650064007200650020007500640073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /NLD <FEFF004700650062007200750069006b002000640065007a006500200069006e007300740065006c006c0069006e00670065006e0020006f006d0020005000440046002d0064006f00630075006d0065006e00740065006e0020007400650020006d0061006b0065006e0020006d00650074002000650065006e00200068006f0067006500720065002000610066006200650065006c00640069006e00670073007200650073006f006c007500740069006500200076006f006f0072002000650065006e0020006200650074006500720065002000610066006400720075006b006b00770061006c00690074006500690074002e0020004400650020005000440046002d0064006f00630075006d0065006e00740065006e0020006b0075006e006e0065006e00200077006f007200640065006e002000670065006f00700065006e00640020006d006500740020004100630072006f00620061007400200065006e002000520065006100640065007200200035002e003000200065006e00200068006f006700650072002e>
 /ESP <FEFF0055007300650020006500730074006100730020006f007000630069006f006e006500730020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000500044004600200063006f006e0020006d00610079006f00720020007200650073006f006c00750063006900f3006e00200064006500200069006d006100670065006e00200070006100720061002000610075006d0065006e0074006100720020006c0061002000630061006c006900640061006400200061006c00200069006d007000720069006d00690072002e0020004c006f007300200064006f00630075006d0065006e0074006f00730020005000440046002000730065002000700075006500640065006e00200061006200720069007200200063006f006e0020004100630072006f00620061007400200079002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004e00e4006900640065006e002000610073006500740075007300740065006e0020006100760075006c006c006100200076006f0069006400610061006e0020006c0075006f006400610020005000440046002d0061007300690061006b00690072006a006f006a0061002c0020006a006f006900640065006e002000740075006c006f0073007400750073006c00610061007400750020006f006e0020006b006f0072006b006500610020006a00610020006b007500760061006e0020007400610072006b006b007500750073002000730075007500720069002e0020005000440046002d0061007300690061006b00690072006a0061007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f006200610074002d0020006a00610020004100630072006f006200610074002000520065006100640065007200200035002e00300020002d006f0068006a0065006c006d0061006c006c0061002000740061006900200075007500640065006d006d0061006c006c0061002000760065007200730069006f006c006c0061002e>
 /ITA <FEFF00550073006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000500044004600200063006f006e00200075006e00610020007200690073006f006c0075007a0069006f006e00650020006d0061006700670069006f00720065002000700065007200200075006e00610020007100750061006c0069007400e00020006400690020007300740061006d007000610020006d00690067006c0069006f00720065002e0020004900200064006f00630075006d0065006e00740069002000500044004600200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f00700070007200650074007400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006d006500640020006800f80079006500720065002000620069006c00640065006f00700070006c00f80073006e0069006e006700200066006f00720020006200650064007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e006500730020006d006500640020004100630072006f0062006100740020006f0067002000520065006100640065007200200035002e00300020006f0067002000730065006e006500720065002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006e00e40072002000640075002000760069006c006c00200073006b0061007000610020005000440046002d0064006f006b0075006d0065006e00740020006d006500640020006800f6006700720065002000620069006c0064007500700070006c00f60073006e0069006e00670020006f006300680020006400e40072006d006500640020006600e50020006200e400740074007200650020007500740073006b00720069006600740073006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e0020006b0061006e002000f600700070006e006100730020006d006500640020004100630072006f0062006100740020006f00630068002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006100720065002e>
 >>
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

