
A Tree-Based Genetic Algorithm for Building Rectilinear
Steiner Arborescences

William A. Greene
Computer Science Department

University of New Orleans
New Orleans, LA 70118 USA

504-280-6755
bill@cs.uno.edu
ABSTRACT
A rectilinear Steiner arborescence (RSA) is a tree, whose nodes
include a prescribed set of points, termed the vertices, in the first
quadrant of the Cartesian plane, and whose tree edges from parent
to child nodes must head either straight to the right or straight
above. A minimal RSA (a MRSA) is one for which the total path
length of the edges in the tree is minimal. RSAs have application
in VLSI design. Curiously, although a RSA is a tree, to our
knowledge, previous genetic attacks on the MRSA problem have
not used tree-based approaches to representation, nor to the
operations of crossover and mutation. We show why some care is
needed in the choice of such genetic operators. Then we present
tree-based operators for crossover and mutation, which are
successful in creating true RSAs from source RSAs without the
need of repair steps. We compare our results to two earlier
researches, and find that our approach gives good results, but not
results that are consistently better than those earlier approaches.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search – heuristic methods.

General Terms
Algorithms

Keywords
Genetic algorithms, rectilinear Steiner arborescences, tree-
structured chromosomes, tree-based geneticism.

1. INTRODUCTION
Let a fixed set of points in the Cartesian plane be given, and be sit-
uated in the interior of the first quadrant. Call each such point a
vertex. Add the origin into the set as an additional vertex. By defi-
Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007...$5.00

117
nition, a rectilinear Steiner arborescence (RSA) is a rooted tree,
rooted at the origin, that contains all the vertices as nodes in the
tree, and subject to the constraint that each directed edge that goes
from a parent tree node to a child node must head either straight to
the right or straight above. In order to satisfy the constraint, typi-
cally the tree must contain many other nodes besides the vertices.
These additional non-vertex nodes are termed the auxiliary nodes.
Figure 1 shows a RSA on 12 vertices, with the vertex nodes shown
as black dots and the auxiliary nodes shown as white dots.

The total path length of an RSA is the sum of the lengths of all
the edges in it. In general there are many RSAs for a given set
of vertices, and two such can have different total path lengths.
Figure 2 shows an alternative RSA for the twelve vertices seen
in Figure 1. (In Figure 2, one vertex is labeled A, for future
reference.) The only change is the path which reaches the
vertex farthest to the northeast. Clearly the alternative RSA
has a lower total path length than the original.

A minimal rectilinear Steiner arborescence (MRSA) for a
given set of vertices is an RSA for them which has minimal
total path length. The problem of finding a MRSA for a given
set of vertices has applications in VLSI design; see Cong,
Khang, & Leung [3]. In VLSI design, signals from a source
must be delivered to terminals, as quickly as possible, by
following rectilinear pathways. It has been shown by Shi & Su

x-axis

Figure 1. Example RSA
9

[14] that finding a MRSA for a given set of vertices is NP-
complete. Additional research on the MSRA problem has been
contributed by Rao et al. [13], Córdova & Lee [4], Leung &
Cong [11], Ramnath [12], and Julstrom & Antoniades [8], [9].

Of particular interest to us is the work of Rao et al. [13] and
Julstrom & Antoniades [9]. Details of their work are given in
subsequent sections; here we provide a gloss. Rao et al. give an
elegant greedy algorithm for building a RSA for a given set of
vertices; results appear to give often near optimal total path
length. Julstrom & Antoniades have invented genetic
algorithms that perturb the locations of the vertices, followed
by an application of the heuristic of Rao et al. Their results
often improve upon the already excellent results from Rao et
al.

Our own interest in this area comes from the following
question. Since RSAs are trees, why not employ a genetic
algorithm that uses tree-based approaches to crossover and
mutation? To our knowledge this has not been practiced in any
past efforts on the MRSA problem.

Genetic algorithms that use tree structures as population
members, and use tree-based forms of crossover and mutation,
have certainly appeared in the field of evolutionary computing.
Mostly this has come from practitioners of genetic
programming, promulgated first by Koza; see [10]. In genetic
programming, population members are functions, represented
as expression trees. Interior tree nodes are functions, such as
logarithm or addition. The degree of an interior node is the
arity of the associated function. Leaves are variables and
constants. Crossover, by way of example, can consist of
snipping a subtree out of a parent and replacing it by a likewise
snipped subtree from the other parent. There are many
possibilities for mutation. One form is to replace a function
labeling an interior node by another one having the same
signature of parameters.

In the case of RSAs, it is not hard to discover what could
discourage one from practicing tree-based approaches to the
usual genetic operators. Consider Figure 3. Imagine a form of
crossover between the RSAs shown in Figure 2 and Figure 3,
performed as follows. In both parents, snip away the subtree
rooted at the vertex labeled A and implant the subtree in the

other parent. The two resulting children are unsuitable for our
purposes. For instance, one child will lack a copy of the vertex
located furthest to the northeast, and the other child will have
two copies of this vertex and, moreover, two paths that lead to
it. Both children are disasters, and repair operations seem
formidable. Section 4 below describes a suitable crossover for
such trees.

2. THE HEURISTIC OF RAO ET AL.
Given a point p = (px, py) in the Cartesian plane, define its
rectilinear norm ||p|| (also called the city-block norm, or the L1

norm) to be | px | + | py |. Given a second point q = (qx, qy),
define the rectilinear distance between p and q to be | px – qx |
+ | py – qy |. The rectilinear norm ||p|| is the rectilinear distance
from p to the origin.

Assuming p and q are in the first quadrant of the Cartesian
plane, define min(p, q) to be the point (min(px, qx), min(py,
qy)). If p and q do not lie on the same vertical or horizontal
line, then the two possibilities are illustrated in Figure 4.

The heuristic of Rao et al. [13] maintains a set of trees (i.e., a
forest). Initially each element of the forest is a vertex point (in
the set of vertices for which we seek a RSA), treated as a tree
with just one node. On one iteration of the heuristic, three steps
occur. Firstly, one identifies those forest elements t1 and t2
whose roots r1 and r2 satisfy: ||min(r1, r2)|| is maximal (i.e.,
farthest from the origin). Secondly, a new tree t´ is constructed
by joining the roots of t1 and t2 by directed horizontal and

x-axis

A

Figure 2. Alternative RSA to Figure 1

x-axis

A

Figure 3. Second alternative RSA to Figure 1

p = min(p, q)

q

q

p

min(p, q)

Figure 4. Illustrations of min(p, q)
1180

vertical edges from the point min(r1, r2). Finally, t´ replaces t1
and t2 in the forest. Iteration continues until the forest is
reduced to just one RSA, rooted at the origin.

3. THE PERTURBATION-BASED
GENETIC ALGORITHMS OF
JULSTROM & ANTONIADES

Perturbation techniques have proven beneficial in certain
geometric minimization problems. In this vein, Julstrom &
Antoniades [9] tell us they were inspired by the results for the
traveling salesman problem which were obtained by
Valenzuela & Williams [15] and Cohoon et al. [2].

In [9], Julstrom & Antoniades describe two perturbation-based
genetic algorithms for the MRSA problem. Here is our
description of their first approach, which they name Long
Perturbations. Let n be the number of vertices for which we
seek a RSA of low total path length. For their genetic
algorithm, a population member (a chromosome) is a list of 2n
small real numbers, which are thought of as n pairs, one for
each vertex.

Each vertex has its location perturbed slightly, by altering its x
and y coordinates, respectively, by the first and second small
real numbers in its associated pair from the population member
of 2n small real numbers. Next, the heuristic of Rao et al. is
applied, in the following interesting way: for choosing which
pair of forest elements next to unite, it is the perturbed vertices
which are used, but it is the unperturbed vertices which are
actually used in assembling a RSA à la Rao et al. The total
path length of the so constructed RSA is then taken as the
fitness of the population member of 2n small real numbers.

The members of the initial population are manufactured by
taking random real numbers from a normal distribution N(0,
σ1). The authors provide these other details: Appropriate
crossover operators are positional ones such as k-point
crossover. Mutation modifies each value in a population
member with values from another normal distribution N(0, σ2).
Standard deviations σ1 and σ2 depend on the magnitudes and
ranges of the set of vertices. Their genetic algorithm is a
generational one. Population size is n, the same as the number
of vertices. Evolution is allowed to run for 3n generations, and
the best individual found therein is returned as the result. To
form the next generation, 1-elitism is practiced: the best
individual is automatically carried into the next generation. To
fill the rest of the next generation, crossover is used 70% of the
time, with parents chosen by tournament selection, and
mutation of a previous population member is used 30% of the
time.

The results from this perturbation-based genetic algorithm are
very good, and will appear later in this paper. The authors have
a second genetic algorithm, which is similar to the first one.
For the second algorithm, it is the distance of a vertex to the
origin which is perturbed, and a population member is thereby
a list of (not 2n but rather) n small real numbers. To this
approach the authors give the name Short Perturbations. The
performance of this second algorithm is very similar to that of
their first one, and so we will ignore the second algorithm.
Actually, the authors introduce a third genetic algorithm that
encodes an RSA as a permutation of the vertices, but that

algorithm did not perform as well as the others, and it will not
concern us here.

We took the research of Julstrom & Antoniades as our starting
point. In particular, in our experiments we use the data sets
used by them. The data sets originated with Beasley, and are
online [1]. Each data set consists of points in the unit square
[0, 1]2 in the Cartesian plane. Sets are grouped; there are some
data sets of 50 points, others of 70, 100, and 250 points (and
yet others, not used by Julstrom & Antoniades nor us).

4. A TREE-BASED GENETIC
ALGORITHM FOR THE MRSA
PROBLEM

Introductory to discussing geneticism for the MRSA problem,
we step back for a moment to view a bigger picture. Imagine
there is some interesting problem at hand, for which there are
numerous solutions, some of which are better than others.
Assuming solutions differ one from another by exhibiting
different property values, for some set of properties that can be
used to describe solutions, then in classical genetic algorithms,
a solution gets represented as its set of property values, lined
up in a sequence, just like the genes strong linearly along a
chromosome. Then genetic operators of crossover and
mutation can be applied. All this is well illustrated by the
traveling salesman problem. A salesman must visit k cities, and
we seek the shortest itinerary. A solution can be represented as
a permutation of the k cities, and the fitness of a solution is the
total mileage driven in visiting the cities in the order dictated
by the permutation.

But to structure a chromosome as a linear sequence of entities
is not necessarily most natural to the problem at hand. For
instance, tree structures are more natural in genetic
programming. For traffic flow problems in a city, to structure a
solution as a grid or graph may be most natural. Theoretical
issues with these ideas have appeared in the literature; to cite
but one author, there is Greene [5], [6].

For tree-structured chromosomes, appropriate forms of the
genetic operators easily come to mind. Crossover can mean
exchange of subtrees between parents. Mutation can mean
change of a property value at a random node, or perhaps
interchange of two randomly chosen nodes. Earlier, using the
parents shown in Figure 2 and Figure 3, we showed there are
pitfalls for RSAs, because two RSAs built for the same vertex
set can have different tree structures, perhaps even radically
different structures. Now we will describe a general approach
to crossover that is both natural for trees and natural for RSAs.

Let a set of vertices be given. A RSA for this set includes the
vertices as tree nodes, and also there are the auxiliary nodes
that appear in the RSA. If we grant equal citizenship to the
auxiliary nodes, then we see that a RSA is in fact a binary tree.
Each node has at most two out-edges, one heading straight
right and one heading straight up. Now we want to think of
snipping off some subtrees in the RSA. We have in mind
snipping off the subtrees contained in some well-chosen
region, which for the moment we will take to be one side of a
certain line. If the tree edge leading to a node is crossed by the
line, then we wish to snip out the subtree rooted at that node.
But ambiguities can arise. Consider the RSA and dotted line
shown in Figure 5. (The RSA is the same one seen in
1181

Figure 2.) Imagine we snip away subtrees that are rooted above
the line. Closest to the origin, the line can snip away the
subtree rooted at the auxiliary node labeled B. But the line also
crosses other edges within that subtree. It is not obvious which
subtrees are the ones that we should say are snipped away by
virtue of being above the line shown.

So one must exert some care in choosing the regions and lines
that snip away subtrees. Let us say a region H in the Cartesian
plane is northeast-inclusive provided: if a point p is in H, then
any point q that lies to the northeast of p is also in H. (We
include the cases that q lies on a horizontal or vertical line with
p.) Here are some examples of regions that are northeast-
inclusive.

• the half-plane to the northeast of a straight line with
negative slope;

• the half-plane to the right of a vertical line (this is a
special case of the first case, with slope = – ∞);

• the half-plane above a horizontal line (this is a special
case of the first case, with slope = 0);

• the set of all points that lie to the northeast of any point p;

• the set of points northeast of the graph of the hyperbolic
function y = 1/ x;

• the sets of points northeast of translations of the graph of
the function y = 1/ x;

• the set of points northeast of the graph of a differentiable
(therefore continuous) function f: [0,1] → R with negative
derivative (this generalizes most of the above cases);

• the set of points northeast of the graph of a function that is
monotone decreasing (this generalizes most of the above
cases).

Here are the key insights. Since tree edges in a RSA can only
head straight right or straight up, it follows that if a tree node
lies in a northeast-inclusive region H, then the entire subtree
rooted at that node also lies in H. Also, if T1 and T2 are two
RSAs for the same vertex set, and H is a northeast-inclusive
region, then the set of vertices of T1 that lie in H is the same as

the set of vertices of T2 that lie in H. This is because whether a
vertex lies in H is independent of the tree structures of T1 and
T2. Next, consider the set S1 (resp., S2) of subtrees of T1 (resp.,
T2) whose roots are highest in the tree T1 (which means the
roots are closest to the origin in the Cartesian plane), among
those subtrees which are rooted at points in H. Again, S1 and
S2 contain the same set of vertices. Subtree sets S1 and S2 can
be exchanged between T1 and T2. That is, for instance, if the
subtrees in S2 are attached to T1, after the latter has been shorn
of the subtrees in S1, the result will be a RSA for the vertex set
and will in particular contain exactly one copy of each vertex.

To attach a subtree in S2 to the shorn T1 of course means to
attach its root r into the tree structure of the shorn T1. There
are three possibilities: attach the root r to a tree node z in T1
that lies southwest of r, or attach r to a horizontal tree edge
that lies below it, or to a vertical edge that lies to the left of r.
See Figure 6. We attach r to the closest entity that is one of

these three possibilities, with distance being rectilinear
distance. Recall that our data sets lie in the unit square [0, 1]2

in the Cartesian plane. As in Julstrom & Antoniades [9], in the
case we attach r to a tree node z in the shorn T1, then of the two
possible auxiliary corner nodes (northwest or southeast)
between r and z, we choose the one closer to the diagonal line
y = x.

It is important to note that the order in which the elements of
S2 are attached to the shorn T1 makes a difference. If subtree a1
is attached before a2, then possibly when a2 is attached, it gets
attached to an entity in a1. Our experience was that the
elements of S2 should be sorted with some care. Our best result
was, with 50-50 probability, to use one of two sorts, next
described.

The first is a modified shell sort, that sorts subtrees so they
satisfy the following property. If a subtree’s root r1 lies to the
southwest of another subtree’s root r2, then r1’s subtree gets
positioned so that it precedes that of r2. The relation “point p
lies to the southwest of q” does not give a total order on points
in the Cartesian plane, so more mundane sorts such as bubble
sort or insertion sort do not typically arrange subtrees so as to
satisfy the above property. This motivates our use of a shell
sort approach.

The second sort arranges points so those nearer the x- and y-
axes come before points nearer the diagonal line y = x. Points p
= (px, py) are sorted by focusing on the slope mp = py / px of the
line between p and the origin. Specifically, we sort points as
mp ranges +∞ → 1+ (nearer the y-axis, then approaching the
diagonal line y = x, from above), but interleave them with the
points for which mp ranges 0 → 1– (nearer the x-axis, and
approaching the diagonal line, from below). The motivation is
that, for instance, the point with greatest slope mp must be
connected to the origin by employing a vertical edge that many
other nodes may later connect to.

x-axis

B

Figure 5. Ambiguous severance of subtrees
r r

r

z

Figure 6. Possible attachments of node r
1182

Details of the Geneticism
4.1 Crossover
The fundamental ideas of how we perform crossover have now
been presented. Some additional details now follow.

For our northeast-inclusive regions, we use three. First a
random point p in the unit square is concocted. Then we use
the region above the horizontal line through p, the region to the
right of the vertical line through p, or the region of points to
the northeast of p, with respective probabilities 15%, 15%,
70%.

Experience proved it was better to do more than snip subtrees
at the tree edges which cross the boundary into the northeast-
inclusive region H. The parent node of such an edge, and the
child node, could both be auxiliary nodes. With the thought
that auxiliary nodes exist merely at the service of the verticial
nodes, in fact our snipping does more. In the RSA, “above” the
snip in the tree (which means towards the southwest part of the
unit square in the Cartesian plane) and iterating by levels,
leaves that are not vertices are discarded. Similarly, the child
subtree (at the end of the tree edge that crosses the boundary
into region H) is further pruned down to its set of descendant
subtrees which are rooted at vertices. Thus the snip eliminates
tree apparati in between one or more vertices inside H and the
nearest verticial ancestor that is outside region H.

4.2 Generational Turnover
Our genetic algorithm is generational (versus steady-state). All
of the population at generation t+1 is accumulated by applying
the evolutionary operators of survival of the fittest, mating
with crossover, and mutation, to the members of generation t.
Elitism is practiced: the best 2 members of a generation are
carried over into the next generation. Each generation is sorted
into ascending order of total path length. For mating with
crossover, parents are chosen by rank order selection: an
individual is selected with a probability that is a linear
function, of negative slope, of its position within the
ascendingly sorted population (thus, better individuals are
more likely to be selected). Two parents produce two children.
A child enters the next generation only if it does not already
appear there. Once the entire population is assembled, all non-
elite individuals are subjected to mutation. Finally, the
resulting new population is sorted.

On any given trial for a fixed vertex set, we let population size
be 3n, where n is the number of vertices, and we ran the
evolution to 6n generations. The best individual that surfaced
over those generations was then taken as the result of the trial.

4.3 Fitness
As the reader can now predict, for us the “fitness” of a RSA is
its total path length, which we are trying to minimize. Once the
two child RSAs have been constructed from our crossover
operation, their total path lengths must be calculated. An
economy is available for this, although it is not implemented in
our present work. Namely, the total path length of a snipped
subtree does not need to be recalculated. Instead, its total path
length just needs to be incorporated into that of its ancestors in
the tree it joins.

4.4 Mutation
One step in the mutation of a RSA is the following sequence of
actions. Pick a random vertex z. Find its nearest verticial

ancestor w. Remove the tree structure below w and meanwhile
collect the vertices below w. In our present implementation, we
apply two of these “steps” when we mutate. Then, using the
same regimen as described when crossover appends subtrees
into a shorn RSA (the beginning half of Section 4), append the
liberated vertices back into the RSA. In particular, first the
liberated vertices are sorted, employing, with equal
probability, one of the two methods for sorting tree nodes (or
points in the unit square) that were described earlier.

4.5 The Initial Population
Recall that the order in which tree nodes are appended into a
growing RSA makes a difference. Each element of the initial
population is formed as follows. First, randomize the order of a
list of the vertices. Then, in that order, add the vertices to an
initial RSA which consists of just the origin.

(Lastly, regarding the general topic of how we construct RSAs,
there is another embellishment. An auxiliary node which is a
right-child and which has a right-child but no above-child
exemplifies an unnecessary auxiliary node. Similarly an
above-child can be an unnecessary auxiliary node. We
eliminate unnecessary auxiliary nodes. An unnecessary
auxiliary node does not affect the total path length of an RSA,
but does complicate how one defines equality.)

5. RESULTS
In [9], Julstrom & Antoniades compare algorithms which are
run on 20 data sets. There are 4 groups, each containing 5 data
sets. The data sets are grouped according to how many vertices
there are to be incorporated in a RSA. There are 5 data sets
consisting of, respectively, 50, 70, 100, and 250 vertices. The
data sets are the first 5 instances found in Beasley’s on-line OR
library [1], under the heading “Euclidean Steiner problem”.

As an illustration, we begin our results with an actual RSA.
Figure 7 depicts our best RSA found for the second data set
consisting of 50 vertices. In the figure, only the vertex nodes

Figure 7. Best RSA for 50 vertices, Data Set # 2
1183

are depicted, as black dots. The auxiliary nodes would appear
at the other branch points in the tree.

In Table 1 we show the performance of our tree-based genetic
algorithm, in comparison to the heuristic of Rao et al.
(Section 2) and in comparison to the Long Perturbations
genetic algorithm of Julstrom & Antoniades (Section 3).The
values for total path length that are given in the columns for
Rao et al. and for Long Perturbations are taken from the paper
[9] by Julstrom & Antoniades. The column headed as Tree-
Structured gives the values for total path length from our own
approach, and each value listed is the best one found over 20
trials, for the given data set. The columns headed as Percent
Improvement mean the improvement of the associated genetic
algorithm, over the result of Rao et al., when run on the same
data set. A positive improvement means real improvement; a
negative improvement means worse performance than Rao et
al. We show performance for only one data set of 250 vertices,
since our own algorithm ran impractically long on it and we
abandoned the remaining 4 instances.

Table 1 shows that our algorithm usually improves upon the
RSAs created by Rao et al., for the cases of 50 and 70 vertices,
but then is beginning to lose its advantage for larger vertex
sets. Our algorithm roughly parallels that of Julstrom &
Antoniades, in that when their improvement is positive and on
the larger side, then our performance is positive, and when
their improvement is slight then ours is negative. Certainly,
our algorithm is outperformed by the perturbation-based
genetic algorithm of Julstrom & Antoniades. This comes as a
surprise to us, since we are of the general sentiment that the
most natural approach to a problem should give the best
results. RSAs are trees, and so we entered our research effort

with the faith that a tree-based approach to representation of
individuals and to the genetic operators of crossover and
mutation would produce better RSAs, usually, than our two
competitors. We must tip our hat to the excellent results of
Julstrom & Antoniades. Of course, the heuristic of Rao et al. is
itself already an admirable performer, which builds its RSAs in
one pass, without the greater cost of evolving over many
generations.

Our faith that our tree-based approach would win out over
earlier approaches was not rewarded in fact, and of course we
must wonder why. Many trials suggested that our cuts by
northeast-inclusive regions resulted in many subtrees that had
to be appended to another shorn parent. That is, population
members underwent some degree of churning. But if one is to
avoid the problems indicated in the last paragraph of Section 1,
it is necessary to migrate all the subtrees found in a northeast-
inclusive region. Trouble-free alternative ways of cutting, so
as to produce fewer migrating subtrees, did not occur to us in
the midst of the research trials. An approach that is worth
trying but has not yet been implemented is to let a majority of
the regions be ones northeast of points which are close to the
“north” and “east” sides of the unit square. Such regions are
clipping off fewer subtrees, and those subtrees are on levels
near the leaves.

An anonymous reviewer made an interesting observation: the
approach of Julstrom & Antoniades uses the heuristic of Rao et
al and so is always likely to do at least as well as that heuristic.
By comparison, our tree-based approach has a harder task,
since it must go the whole distance on its own. The suggestion
offered is to include the RSA obtained à la Rao et al as a seed
in the population.

Num Data Rao Long Percent Tree- Percent
Points Set # et al. Perturbations Improvement Structured Improvement

50 1 7.163 7.072 1.27% 7.073 1.25%
2 6.576 6.524 0.79% 6.529 0.71%
3 6.589 6.590 – 0.02% 6.703 – 1.74%
4 6.509 6.272 3.64% 6.310 3.04%
5 6.771 6.687 1.24% 6.755 0.23%

70 1 7.971 7.836 1.69% 7.921 0.63%
2 7.594 7.501 1.22% 7.568 0.33%
3 7.483 7.462 0.28% 7.533 – 0.67%
4 7.835 7.643 2.45% 7.676 2.02%
5 7.121 7.114 0.10% 7.279 – 2.23%

100 1 8.870 8.869 0.01% 9.030 – 1.81%
2 9.161 9.003 1.72% 9.186 – 0.28%
3 9.039 9.027 0.13% 9.350 – 3.45%
4 9.408 9.046 3.85% 9.157 2.67%
5 8.840 8.810 0.34% 9.027 – 2.12%

250 1 14.158 13.993 1.17% 14.889 – 5.17%

Table 1. Results and comparisons
1184

6. CONCLUSION
We have presented a tree-based approach for a genetic
algorithm for the minimal rectilinear Steiner arborescence
problem. To our knowledge, it is the first that is really tree-
based. The representation of a RSA as a tree is of course
completely natural. It is our operator for crossover that is our
most original contribution. The operator is natural for trees,
and creates offspring that are true RSAs without the need for
any repair work.

Our results are rather good, but are bettered by those of
Julstrom & Antoniades. And it appears our approach would be
bettered by the heuristic of Rao et al. as vertex sets get larger.

Ideas have occurred to us that conceivably could lead to
improved performance of our general approach. We give them
next.

Perhaps a local improvement operator is called for. Consider
Figure 1 again. Regarding the vertex that is located most to the
northeast, the path to it is plainly longer than necessary. An
obvious improvement is afforded by the RSA in Figure 2,
where the vertex is seen appended to another nearby vertex. To
our observation, vertices that would be better attached to some
nearby vertex were a not uncommon phenomenon. An idea for
a local improvement operator is to re-optimize the sub-RSAs
that are the lower-level subtrees of a population member.

We found that a surprisingly sensitive issue was how one sorts
the subtrees snipped from one parent before entering them into
the other shorn parent. Perhaps there are better sorting
methods.

Similarly, the tree cuts which we made for crossover were
rather simple ones. Perhaps better ones can be found by
following the suggestions for northeast-inclusive regions
which we listed in the text below Figure 5.

Again we will say our results are rather good (even if often
bettered by other approaches). As a positive closing note, we
would let our research stand as a good advertisement for tree-
based approaches to geneticism, when trees are the natural
structure for individuals in the population.

Finally, we express our thanks to an anonymous reviewer
whose commentary was lengthy and perceptive.

7. REFERENCES
[1] Beasley, J. E.: OR-Library: distributing test problems by

electronic mail. Journal of the Operational Research Society
41(11) (1990) 1069-1072. The on-line collection of the data
sets is at URL
http://people.brunel.ac.uk/~mastjjb/jeb/info.h

tml. The data sets for the rectilinear Steiner arborescence
problem are found through the link labeled Euclidean Steiner
problem.

[2] Cohoon, J. P., Karro, J. E., Martin, W. N., Niebel, W. D.:
Perturbation method for probabilistic search for the traveling
salesperson problem. In Applications and Science of Neural
Networks, Fuzzy Systems, and Evolutionary Computation,
Vol 3455 of Proceedings of SPIE, SPIE Press (1998) 118-
127.

[3] Cong, J., Khang, A. B., Leung, K. S.: Efficient algorithms for
the minimum shortest path Steiner arborescence problem with
applications to VLSI physical design. IEEE Transactions on
Computer-Aided Design of Integrated Circuits and Systems
17 (1998) 24-39.

[4] Córdova, J., Lee, Y. H.: A heuristic algorithm for the
rectilinear Steiner arborescence problem. Technical Report
TR-94-025, Department of Computer Science, University of
Florida (1994).

[5] Greene, W. A.: A non-linear schema theorem for genetic
algorithms. In Whitley, D. et al. [Eds.] Proceedings of the
Genetic and Evolutionary Computation Congress (GECCO
2000), Morgan Kaufmann Publishers (2000) 189-194.

[6] Greene, W. A.: Schema disruption in tree-structured
chromosomes. In Beyer, H.-G. et al. [Eds.] Proceedings of
the 2005 Genetic and Evolutionary Computation Congress
(GECCO 2005), ACM Press (2005) 1401-1408.

[7] Julstrom, B. A.: Encoding rectilinear Steiner trees as lists of
edges. In Lamont, G. B., Yfantis, E. A., Haddad, H.,
Papadopoulos, G. A., Carroll, J. [Eds.], Proceedings of the
16th ACM Symposium on Applied Computing, New York,
ACM Press (2001) 356-360.

[8] Julstrom, B. A., Antoniades, A.: Two hybrid evolutionary
algorithms for the rectilinear Steiner arborescence problem.
In Proceedings of the 2004 ACM Symposium on Applied
Computing, Nicosia, Cyprus (2004).

[9] Julstrom, B. A., Antoniades, A.: Three evolutionary codings
of rectilinear Steiner arborescences. In Genetic and
Evolutionary Computation Conference (GECCO 2004),
Springer Verlag, LNCS 3102 (2004) 1282-1291.

[10] Koza, J.: Genetic Programming: On the Programming of
Computers by Means of Natural Selection. MIT Press, 1992.

[11] Leung, K. S., Cong, J.: Fast optimal algorithms for the
minimum rectilinear Steiner arborescence problem.
Proceedings of the International Symposium on Circuits and
Systems (1997) 1568-1571.

[12] Ramnath, S.: New approximations for the rectilinear Steiner
arborescence problem. IEEE Transactions on Computer-
Aided Design 22 (2003) 859-869.

[13] Rao, S. K., Sadayappan, P., Hwang, F. K., Shor, P.W.: The
rectilinear Steiner arborescence problem. Algorithmica 7
(1992) 277-288.

[14] Shi, W., Su, C.: The rectilinear Steiner arborescence problem
is NP-complete. In Proceedings of the ACM-SIAM
Symposium on Discrete Algorithms (2000) 780-786.

[15] Valenzuela, C. L., Williams, L. P.: Improving simple
heuristic algorithms for the traveling salesman problem using
a genetic algorithm. In Bäck, T. [Ed.] Proceedings of the
Seventh International Conference on Genetic Algorithms, San
Francisco, CA, Morgan Kaufmann Publishers (1997) 458-
464.
1185

	ABSTRACT
	Categories and Subject Descriptors
	General Terms
	Keywords
	1. INTRODUCTION
	2. THE HEURISTIC OF RAO ET AL.
	3. THE perturbation-based genetic algorithms OF JULSTROM & ANTONIADES
	4. a tree-based genetic algorithm for the MRSA problem
	4.1 Crossover
	4.2 Generational Turnover
	4.3 Fitness
	4.4 Mutation
	4.5 The Initial Population

	5. Results
	6. conclusion
	7. REFERENCES

