
Immune Anomaly Detection Enhanced with Evolutionary
Paradigms

Marek Ostaszewski
Faculty of Sciences,

Technology and
Communication

University of Luxembourg
6 rue Coudenhove Kalergi

L-1359
Luxembourg-Kirchberg,

Luxembourg

marekostaszewski@o2.pl

Franciszek Seredynski
Polish-Japanese Institute of

Information Technology
Koszykowa 86

02-008 Warsaw, Poland
Institute of Computer Science,
Polish Academy of Sciences

Ordona 21
01-237 Warsaw, Poland

sered@ipipan.waw.pl

Pascal Bouvry
Faculty of Sciences,

Technology and
Communication

University of Luxembourg
6 rue Coudenhove Kalergi

L-1359
Luxembourg-Kirchberg,

Luxembourg

pascal.bouvry@uni.lu

ABSTRACT
The paper presents an approach based on principles of im-
mune systems to the anomaly detection problem. Flexibility
and efficiency of the anomaly detection system are achieved
by building a model of network behavior based on the self-
nonself space paradigm. Covering both self and nonself
spaces by hyperrectangular structures is proposed. Struc-
tures corresponding to self-space are built using a train-
ing set from this space. Hyperrectangular detectors cov-
ering nonself space are created using niching genetic algo-
rithm. A coevolutionary algorithm is proposed to enhance
this process. Results of experiments show a high quality of
intrusion detection, which outperform the quality of recently
proposed approach based on hypersphere representation of
self-space.

Categories and Subject Descriptors: I.2.8 [Problem
Solving, Control Methods, and Search]: Heuristic methods

General Terms: Algorithms, Experimentation.

Keywords: Artificial Immune Systems, Coevolution, Net-
work Anomaly Detection.

1. INTRODUCTION
An artificial immune system (AIS) is a computational par-

adigm based on abstracting natural immunological processes
[6], which can be applied to solve problems of computer secu-
rity, including detection of intrusions and anomalies [5,7,14].
Classical approach bases on the recognition of attack signa-
tures [11]. AIS offers alternative mechanisms to deal with
unwanted activities in computer networks, including gen-
eralization and recognition of previously unknown attacks.
A recent promising approach to network anomaly detection
has been presented in [3], and is based on a description of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

legitimate behavior using hypersphere structures. We pro-
pose to use hyperrectangle structures to provide a more pre-
cise definition of the normal traffic and coevolutionary-based
mechanisms to enhance the process of anomaly detection.

The paper is organized as follows: the coming section
contains a short definition of AIS and its associated mecha-
nisms. The principles of construction of an effective model of
network behavior, called self space, are presented in section
3. Genetic algorithm used to generate detectors of nonself
space, along with niching and coevolutionary techniques are
described in section 4. Section 5 contains results of exper-
iments, which were carried out using sets of network data
collected at MIT. Last section contains conclusions and a
discussion of further possibilities of development of the pre-
sented approach.

2. IMMUNE ANOMALY DETECTION
Proper classification system is required in order to assess

the network behavior, and the Self-Nonself paradigm offered
by AIS methodology seems to be an accurate choice. The
self space corresponds to the organism protected by its nat-
ural immune system, which consequently cannot attack or
define as enemy any defended cells. In network domain, the
self space is defined on basis of normal traffic and the nonself
space contains all possible threats and deviations. They are
complementary, the same way it is for an organism and its
environment in nature. Therefore, the definition of normal
traffic is based on an existing subset of regular data, and
incoming traffic that does not match these definitions will
be considered as abnormal. Self-Nonself space principles are
coupled with a negative selection algorithm [5], which is used
to construct detectors focused on nonself space. They are
used later during the monitoring process to capture abnor-
mal patterns in network traffic. An accurate model of space
is required to effectively deal with anomaly detection. Au-
thors in [13] indicate that the Hamming shape-space suffers
from several weaknesses. In effect the model of space pre-
sented in [3] has been taken under consideration. Although
authors in [12] indicate that real-valued negative selection
may cause severe problems for system scalability and de-
tector set generation, a similar approach presented in this
paper seems to be worth of taking under consideration.

119

3. PROPOSED SELF
SPACE CONSTRUCTION

Self space, henceforth called Self is constructed using
values of monitored parameters from legitimate traffic, and
some principles of defining it has been presented in [3]. Be-
cause of potentially having different ranges, every value is
normalized to the [0.0, 1.0] interval, and n parameters give
n-dimensional space. Every combination of them, defined
as a vector of values �x = (x1, . . . , xn) will be called a state
of a system, belonging to the space of all possible states
of the system, [0.0, 1.0]n, henceforth called S. The subspace
complementary to Self containing all possible threats and
anomalies will be defined as Nonself = S− Self.

The self space construction is based on recorded regular
traffic and every of its states becomes automatically an el-
ement of Self. To implement threshold affinity a definition
of the variability parameter (henceforth called v) is needed.
An assumption that certain states are similar to recorded
normal states allows to define a level of deviation from given
data.

(a) (b)

Figure 1: Self space and detector sets for (a) low
and (b) high value of v

In [3], the authors proposed to use a spherical shape for
Self characterized by v being the radius of a hypersphere
centered in the recorded state. A spherical construction of
Self has a drawback when it comes to the detector con-
struction: covering Nonself with hyperspheres may not be
effective, as shown in [12]. Moreover, considering the detec-
tor construction proposed below (i.e. using hyperrectangu-
lar structures), the spherical Self is inappropriate because
the generated detectors have no chance to cover the Non-
self space completely. Figure 1 illustrates this case. As one
may see, subspaces are created that cannot be covered by
the detectors due to shape conflict between the structures
describing Self and Nonself.

Figure 2 presents our approach to construct a hyperdi-
mensional space, where a dimension (in this case 2D) de-
pends on a number of parameters taken into consideration.
V describes the similarity degree, therefore Self can be de-
fined as a subspace that contains all states with some level of
resemblance to recorded normal states. Hyperspherical con-
struction of Self cannot distinguish between the different
dimensions providing only one value (hyperradius) for every
dimension. Hyperrectangular construction provides differ-
ent values of v components for each dimension and allows
constructing more accurate Self. Henceforth, v is defined
as a vector v = (v1, . . . , vn). For a given state of the sys-
tem �x = (x1, . . . , xn) and v the structure of self space takes
the form of two vectors: low = (x1 − v1, . . . , xn − vn) and
high = (x1 + v1, . . . , xn + vn), where a pair lowj and highj

describes an interval for the parameter j considered as nor-
mal. A state of the system fitting in all intervals belongs to
the normal space.

Figure 2(a) illustrates Self for a relatively small value of
v , which implies that the detectors of Nonself have a greater
possibility of raising a false alarm (false positive error), but
less risk of leaving any anomaly undetected (false negative
error) [4]. On the other hand, Figure 2(b), shows a higher
false negative ratio, with lower number of false positives.
Figure 2(c) presents a Self constructed for two combined v
values, and shows, that the detector sets are different, like in
the Nonself classification process. One can see that v used
for construction of Self influences the tolerance, and allows
to construct complex security model.

Multiple detector sets that correspond to the different lev-
els of security are applied by assessing every state of the sys-
tem with all generated sets and defining, which one raises
an alarm [3]. The security levels have to be sorted out
by growing value of v that were used to construct Self.
The highest level defines the most tolerant set to abnor-
malities. Using more than one set, the Nonself classifica-
tion process is changed and the range of returned values is
widened using classify(�x) = max({level(DSets)} ∪ {0}),
where level(DSets) returns the highest index of detector
sets that raises an alarm. The system states used for the

(a) (b) (c)

Figure 2: Self space and detector sets for (a) low
and (b) high value of v , and (c) detection levels in
summary

construction of Self are recorded during a defined period and
create time series. The anomaly detection process is highly
dependant on the frequency of recording and on the process-
ing monitored values. Therefore, in order to improve the
precision of the Self construction process, the sliding win-
dow method is applied. Time series of recorded values R =
r1, r2, . . . , rn for monitored parameters with a certain fre-
quency are transformed to window series W = {(r1, . . . , rw),
(r2, . . . , rw+1), . . . , (rn−w+1, . . . , rn)}, and may also take the
form W = {rw1, rw2, . . . , (rwm)}, where m = n − w + 1
and rwi = ri/w + ri+1/w + · · · + ri+w/w with w as a pa-
rameter describing a window size. Applying sliding window
method allows to define the notation of the system state
as �x = (rw1

i , rw2
i , . . . , rwn

i). Authors in [3] apply different
kind of sliding window fashion to achieve aggregations be-
tween parameters. A number of search space dimensions is
increased by treating succeeding values of monitored para-
meters in sliding window as additional dimensions. There-
fore monitoring n parameters with window size w creates
n ∗ w-dimensional state space and greatly increases compu-
tational complexity.

120

The values of the parameters are measured every period
and during this process two subsets of states are built, train-
ing set and testing set. The parameter v is calculated from
the standard deviation based on the distances between states
belonging to training set, and the testing set is used to ad-
just Self. It is achieved by checking, if created structures
intercept every state of the testing set. If it is not the case,
a new structure based on the uncaught state is created, and
the process is restarted from the beginning.

4. DETECTOR SET GENERATION
In our scheme, anomaly detection is a process of monitor-

ing Nonself by using detectors having a hyperrectangular
structure. Self elements are created from recorded states
with v and their number is potentially large in the case
when a long period is used to model Self. Therefore, it is
desirable to develop a set of structures (detectors) efficiently
covering Nonself, with a potentially large volume and a small
overall number. The detector set is described by [3] DSet =
{D1, . . . , Dk}, where Di : if Condition then Nonself, and
Condition = x1 ∈ [low1

i , high
1
i]∧ . . . ∧ xn ∈ [lown

i , highn
i].

A single detector classifies if a given state is captured by the
covered space defined in the conditional part by two vectors,
high and low. The construction of a space from junction of
intervals in every dimension is similar to the case of Self
elements (see Section 3).

4.1 Niching genetic algorithm
Creating a detector set is a complex multiobjective prob-

lem. In order to provide good solutions [3] proposes an
approach based on genetic algorithm (GA). The goal is to
cover the space as large as possible with detectors that avoid
Self elements and cover unique space, without overlaying the
same Nonself. A population of GA consists of individuals
constructed from a pair of vectors, reflecting high and low
values of a conditional part of a detector. Therefore, real-
coded GA [9] have to be applied to this problem, as long as
vectors of real values (from [0.0, 1.0] interval) are used. GA
schema goes as follows [3]:

DetectorSet ds=null ; numAtt=0; numDet=0;
while numDet < maxDet and numAtt < maxAtt

runGA(W,v);
D ← best evolved detector;
fit = calculateFitness(D);
if fit > minFit

ds.addDetector(D);
numAtt = 0;

else
numAtt = numAtt + 1;

end while
return ds,

where W is a learning set consisting of Self states, v is
a variability parameter used for Self structures construc-
tion, minFit is the minimal value of fitness expected from
evolved detector, maxAtt and numAtt are the maximal and
the current number of attempts to evolve a single detector,
respectively and maxDet and numDet are the maximal and
the current number of detectors in the detector set, respec-
tively.

GA has to deal with multiobjective problem and for this
reason niching GA (NGA) [1] has been applied to cover dif-

ferent subspaces of Nonself with volumes as large as possi-
ble. During each run of NGA the fitness function is modified
in order to focus the process of searching for new detectors
in subspaces not covered by the previously evolved detec-
tors. NGA goes as follows:

SolutionSet solSet = null;
while not solSet.satisfied()
Population = runGA();
for each Individual → ind from Population

Individual.calculateFitness();
for each Individual→ sol from solSet

sim = calculateSimilarity(ind, sol);
Individual.decreaseFitness(sim);

if ind.fitness() > minFitness

solSet.add(ind);
end while
return solSet.

The fitness is computed by taking under consideration
three factors, as shown below:

• Volume calculation - a volume of a given detector
is calculated as follows:

V olume(D) =

n�

i=1

(highi − lowi),

where high and low are elements of the vectors on the
positions corresponding to the used parameters.

• Overlaying with Self structures - a volume of the
space overlayed with Self is computed as follows:

SelfOverlay(D) =
m�

i=1

(D ∩ xsi),

where xsi is a structure created from a state coming
from the learning set W and variability parameter v ,
as described in Section 3.

• Overlaying with already developed detectors -
a volume of the space overlayed by already developed
detectors is calculated as follows:

DetectorOverlay(D) =
k�

i=1

(D ∩ Dk).

The fitness of a single detector is calculated from the equa-
tion

Fitness(D) = V olume(D)− (SelfOverlay(D) +
DetectorOverlay(D)) .

4.2 Coevolutionary mechanism in the detector
generation process

Although NGA tends to cover all Nonself in the most
efficient way, this process is unsupervised and the goal for
created detectors is based only on constraints. The criterion
of volume does not specify, where exactly in search space de-
tector should lay, therefore a goal is not precisely defined.
Additional information could lower the computational cost
of the generation process and, in effect, give more specialized
detectors covering certain subspaces in Nonself. For that
purpose a coevolutionary algorithm is used. Coevolution is

121

relatively new research area in the field of evolutionary com-
putation. The basic idea is taken from the world of Nature,
where two or more coexisting species are constraining one
other to evolve better features. Among many coevolution
models, one seems to be useful to the detector generation
problem. Predator - prey paradigm [10] describes a model,
where individuals of one type (predators) are trying to catch
individuals of another type (preys). The population of the
first species develops features that allow it to catch its prey
easily, and attributes of the second one evolve to make es-
cape from a predator possible. Applying this process to the
detector generation mechanism could improve it, by pro-
viding a certain goal in search space. Coevolution allows
controlling the process, by enforcing on generated detec-
tors certain features, indicating areas to cover. Some de-
finitions [10] have to be assumed to apply coevolutionary
algorithm to detector generation problem:

• Constraint Satisfaction Problem (CSP): a class
of problems effectively solvable by coevolutionary al-
gorithms. The first of two coevolving populations is a
population of solutions (henceforth called Solutions),
and the other one is a population of constraints (hence-
forth called Constraints) that Solutions have to fit.
Because of their static nature, Constraints cannot evolve
but their fitness can be also evaluated.

• Encounter: a confrontation between individuals from
Solutions and Constraints results in the a victory of
one and the loss of the other. A Solution wins if it
fits given Constraint, and loses if Constraint cannot
be satisfied by a given solution.

• LifeTime Fitness Evaluation (LTFE): in opposite
to the classic GA, every individual is tested multiple
times and has a list of his encounters that changes, as
it might be said, through its lifetime. A fitness is cal-
culated on the basis of confrontations with individuals
from coevolving population. LTFE regulates a number
of confrontations, and thus, affects calculated fitness.
Probability of choice to encounter depends on fitness,
therefore, even if Constraints cannot evolve, winning
ones are tested more frequently against Solutions.

To apply the coevolutionary algorithm to the detector
generation problem, the second (coevolving) population has
to be assumed. To define proper constraints for detectors,
a set of anomalies has to be constructed. Similarly to the
predator - prey, the proposed model considers a situation
when individuals from the detector set try to intercept indi-
viduals from a set of anomalies. An anomaly (individual) is
defined as a certain state from Nonself space in the form of
a vector a = (a1, ..., an), where ai is a value for correspond-
ing parameter. An encounter between a detector and an
anomaly leads to an assessment checking if the anomaly is
placed inside the subspace covered by the detector. The de-
tector wins the encounter if it intercepts the given anomaly,
otherwise the constraining state is the winner.

A fitness of a given detector is finally computed after run-
ning the coevolutionary algorithm as follows:

Fitness(D) = Fitness(D) +
EncounterHistory(D) ∗ Fitness(D) ,

where EncounterHistory(D) is a function returning the
summarized effect of all encounters for a given detector.

This way generated individuals are focused on certain sub-
spaces, and specialized in capturing states from Nonself de-
fined as the coevolving population. This process resembles
vaccination, the way the specialization of antibodies in the
human immune system is achieved by presenting negative
examples.

5. EXPERIMENTAL RESULTS
A number of experiments have been performed to find

out the effectiveness of nonself approach to the anomaly
detection problem, based on hyperrectangular Self struc-
tures and involving the coevolutionary algorithm. The Self
space for this experiment was constructed using data gath-
ered at MIT [8]. The first week of the collected network
traffic using tcpdump was unaffected by anomalies, and for
one of chosen computers figuring IP 172.16.114.50 (marx),
the states of network parameters were collected and used for
the Self structures development. The network traffic para-
meters used for experiments are the number of bytes per
second (P1), the number of packets per second (P2) and the
number of ICMP packets per second (P3), and a state of the
system takes form of the vector state = {P1, P2, P3}
including values measured for the given IP address. The Self
structures for GA were created from the first week data in
a proportion 70:30 of training to testing sets.

(a)

(b)

Figure 3: Self space and detector sets for (a) 0.3v
and (b) 1.0v

5.1 Experiment #1 - Generation of the
detector set for different v values

In the first experiment GA was used for development of
self space and detector sets for different v levels. NGA was
run with max. num. of runs equal to 20, max. num. of
attempts to evolve rule equal to 15, a number of genera-
tions equal to 750 and a population size equal to 100. The
following GA operators have been used [9]: a tournament se-
lection with the tournament size equal to 2, vector crossover,

122

Gaussian mutation with probability 0.1 and border mutation
with border values 0 and 1, and probability 0.01.

Figure 3 shows the comparison between the covered Non-
self space with the detectors developed for the case of two
values of v . Figures 3(a) and 3(b) show only a part of the
generated detectors. The total size of the detector set in
both cases is equal to 15.

5.2 Experiment #2 - Anomaly detection process
for different v and w values

Detector sets generated by NGA have been used to anom-
aly detection process on MIT data [8]. The second week con-
tains five simulated attacks, one for every day of the network
traffic, as shown in Table 1.

Table 1: MIT Second week attacks
Day Name Type Start Duration

1 Back DoS 9:39:16 00:59
2 Portsweep Probe 8:44:17 26:56
3 Satan Probe 12:02:13 02:29
4 Portsweep Probe 10:50:11 17:29
5 Neptune DoS 11:20:15 4:00

Figure 4: ROC diagram for different w sizes

A ROC (Receiver Operating Characteristics [4]) diagram
presented on Figure 4 shows the classification performance
of the detector sets for a given window size equal to 1, 3, 5
and 7, respectively. Points marked on each curve correspond
to values of v equal to 1.3, 1.0, 0.7 and 0.3, respectively. One
can notice that for given window size detection rate grows,
when value of v decreases. It is worth noticing that the
window size influences the precision of detection, and that
the detector set constructed for w=7 performs well even for
relatively large v , what results in decreasing the number of
false alarms.

The results of monitoring the anomaly detection process
are presented in Figures 5 and 6. Figure 5(a) presents anom-
alies detected by the set of detectors for 0.3v and w=1, and
Figure 5(b) for w=3. Figure 6 presents detection effects for
the set with 1.0v and w=1 (Figure 6(a)), and w=3 (Figure
6(b)). The analysis of this Figure indicates greater sensitiv-
ity of detectors constructed for Self with w=3, what can be

explained, if temporal patterns are taken under considera-
tion. With larger window size, one can intercept time de-
pendencies between preceding and succeeding states, what
is impossible for detectors based on w=1.

(a) (b)

Figure 5: Attacks detected using 0.3v and w equal
(a) one and (b) three

(a) (b)

Figure 6: Attacks detected using 1.0v and w equal
to (a) one and (b) three

Figure 6 indicates that combining both detector sets re-
sults in discovering all five attacks, though having relatively
high level of v . As one may notice, some peaks in these
Figures (1485 and 4491 minutes in Figure 5(a), 4498 in Fig-
ure 6(a) and 1487 in Figure 6(b)) are groups of multiple
lines. After the analysis of Table 1 it is possible to notice,
that the duration of attacks 2 and 4 was relatively long and
the system raised more than one alarm during the mon-
itoring process. Those attacks on Figures 5(b) and 6(b)
are indicated as groups of lines having alarm number equal
to or more than 10, what makes them look like bold lines.
An interesting fact can be observed after the comparison of
alarms raised for each attack - obviously, probe attacks are
recognized with greater accuracy than DoS attacks. Addi-
tionally, the window size seems to have optimal values for
every attacks, as it may be observed in Figure 6, where w=1
manages to capture the first attack, but misses the last one,
and for w=3 the first attack remains unreported, but last
one is displayed. Interesting case is the attack number three,
indicated with a great strength in every parameter config-
uration though relatively short duration time. It may be
explained by dependencies between an attack type and the
structure and parameters used in Self construction.

5.3 Experiment #3 - Anomaly detection process
for spherical construction of Self

(a) (b)

Figure 7: Sphere detectors efficiency for 0.5v and w
equals (a) one and (b) three

The approach presented in [3] is based on detector sets
developed for Self constructed of hyperspheres, which are

123

created using a given state of the system as a center and
single value of v as a hyperradius. Experimental results
presented in [3] show, that a hyperspherical design of Self
was sufficient to catch four attacks at most, with a win-
dow size equal to 3, and three with a window size equal
to 1. It is worth emphasizing that due to different sliding
window construction in [3], w=3 defined nine dimensional
space, making detector generation computationally more ex-
pansive. Experiments carried out for this paper include also
the construction of Self with hyperspheres, and the detec-
tor generation for this purpose. Figure 7 presents detected
anomalies for 0.5v with w=1 (Figure 7(a)) and w=3 (Fig-
ure 7(b)). Because of the proposed way of computing v ,
the results differ from those presented in [3], while in both
cases with hyperspherical the Self construction system was
unable to discover all five attacks. The comparison with the
detector sets based on hyperrectangular structure indicates
that the approach presented in this paper is more precise
and offers better performance for anomaly detection.

5.4 Experiment #4 - Coevolution effectiveness
for randomly generated set of anomalies

Mechanisms of coevolution has been tested to check, if
there is a possibility of applying it to enhance the detector
generation process. A set of 1000 randomly generated vec-
tors (Set A) from Nonself has been assumed as the second
population coevolving with the population of generated de-
tectors. After generation of a detector set using both coevo-
lutionary and classic NGA, this set has been tested against
the Set A, to check how many of elements have been caught.
The detector generation process has been slightly altered for
coevolutionary NGA, including max. num. of attempts, or
catching all anomalies as conditions of finishing a generation
process.

Table 2: Performance of detector sets for randomly
generated set of anomalies

Generations LTFE Anomalies caught

100

5 866
10 899
20 928
— 895

300

5 981
10 962
20 982
— 972

500

5 963
10 961
20 973
— 987

Table 2 presents the results of the performed experiments,
and the best of them have been highlighted by using bold
fonts. The detector sets have been developed for three dif-
ferent number of generations and for three different values
of LTFE parameter. One additional detector set has been
generated using standard NGA, without coevolution mech-
anism, marked with “— ” symbol in LTFE column. The
number of anomalies that have been caught differs, but the
gain brought by coevolutionary NGA is insignificant, and for
500 generations classic NGA surpasses one with coevolution.
These results can be explained by the random generation of

anomaly set. The distribution of states in Nonself is reg-
ular, and classic NGA, while trying to cover largest space
possible, intercepts also states generated without any spe-
cialization.

5.5 Experiment #5 - Coevolution effectiveness
for a specialized set of anomalies

Figure 8: Comparison of coevolution efficiency with
classic NGA approach

An alternative set of anomalies (Set B) has been generated
for the detector set developed with the classical NGA, and
used as coevolving population in the coevolutionary mech-
anism. Set B was specialized by generating its elements in
Nonself space and beyond subspace covered by this given
detector set. The distribution of anomalies from Set B is
irregular and some of its elements belong to areas, where
detectors are harder to develop, for example, in small sub-
spaces between Self structures. Results of the conducted
experiments are presented in Figure 8. The second experi-
ment including coevolution shows a significant advantage of
coevolutionary NGA and proves that the additional popu-
lation can stimulate the detector generation process. Even
relatively small number (100) of generations allowed the co-
evolutionary NGA to obtain better results than the clas-
sic NGA with 750 generations and, consequently with less
computational cost. Furthermore, one can notice that the
efficiency of coevolution is LTFE dependent, but also de-
pends on number of generations, and results for more than
300 generations are worth further study. Another concern
is a tradeoff between coevolution efficiency and detector fit-
ness, calculated on the basis of various factors (see Section
4), which may cause worse performance of coevolutionary
detectors development.

5.6 Experiment #6 - Coevolution effectiveness
for less restrictive detector overlay criteria

The influence of detector overlay factor on coevolution
performance has been examined. The detector generation
criteria were less strict, allowing overlying a certain percent
of its volume between detectors. Set B was used for the
coevolution mechanisms. Figure 9 illustrates dependencies
between LTFE factor and the number of anomalies caught
for three certain overlay tolerance levels. As one may see, ef-
ficiency of capturing anomalies rises with tolerance for other
detectors in the set, what can be explained by the difference
of goals between NGA and the coevolutionary mechanism.

124

The first one tends to cover a space as large as possible,
without overlaying already covered detectors. For the sec-
ond one the goal is to capture certain points enclosed in
certain subspaces, and these are more important than the
volume of detector. Therefore, the development of coevo-
lutionary stimulated detectors that includes constraints of
classical NGA, restrains them from covering anomalies, if it
would lead to overlap detector spaces.

Figure 9: Comparison of coevolution efficiency for
detector overlay tolerance

It is worth noticing that the growing level of overlay tol-
erance is related to the smoothness of lines, along with the
efficiency of detector set. It proves that high sensitivity for
overlapping of detectors may interfere and cause bad per-
formance of coevolutionary stimulation in search for certain
anomalies. Only three LTFE values are presented for tol-
erance level 0.75, showing the most significant peak for a
given interval. These values seem to be optimal for the cor-
responding experiments presented below.

5.7 Experiment #7 - Initial population gener-
ation process

Results presented in experiment #6 suggest, that some
of the anomalies are impossible to reach for detectors over-
lapping with each other, even for high tolerance level. This
suggests, that unreachable points lay in vicinity of self struc-
tures, and are impossible to capture, which results from the
criterion of avoiding self space. To improve performance of
NGA looking for nonself detectors, a new initial population
generation mechanism has been developed. For every run of
NGA, a population of initial detectors was generated in such
way, that none of them overlap with self space structure,
or any already developed detector. This process (hence-
forth called constrained generation) has been applied to the
coevolutionary NGA to search for new detectors rather in
uncovered space, and to lower the probability of the de-
velopment of improper detectors, overlapping with self, or
detector structures. Figure 10 illustrates performance of co-
evolutionary NGA based upon a constrained initial popu-
lation, and the results for all three LTFE values are very
similar. Although constrained generation offers greater effi-
ciency, not all Set B was covered. This indicates that some
of anomalies are close enough to self states and still cause
interferences for nonself detectors while intercepting them.
Constraint generation seems to be a good method for nar-
rowing the search space, but not sufficient. LTFE factor

has small influence on interception process of the most dif-
ficult group, even taking into account a greatly increased
fitness due to the captured anomalies. It plays no role if the
detector covers Self space.

Figure 10: Coevolution efficiency for constrained
generation of detectors

Recent work [2] suggests that gene libraries can be an ef-
ficient mechanism for improving coevolution process, there-
fore to provide population of NGA with sufficient informa-
tion, a different method of initial population generation has
been designed (henceforth called library generation). Only
one library of information has been constructed, treating el-
ements of Set B as information about the detector construc-
tion. Vertebrate immune systems develop antibody detec-
tors using libraries of genes, providing immature antigens
with certain knowledge and information. As mentioned in
Section 3, detector consists of two vectors, high and low,
and library generation process is based on a specific con-
struction of detectors, assuming for those vectors two ran-
domly chosen, but different anomaly points. Detectors con-
structed this way will not necessarily be correct, but infuse
certain information into population. This kind of detector is
constructed only with certain probability, which grows with
number of detectors developed, due to succeeding reduction
of anomalies set, and those most difficult that are left to
find. Figure 11 presents the results of experiment involv-
ing library generation. Probability increment after single
detector development was equal to 0.01.

As one may notice, the performance is better using a
library-generated population, and for value of starting prob-
ability 0.3 and 0.35 it was possible to capture all presented
anomalies by the developed detector sets. This mechanism
seems to be efficient and using a properly constructed anom-
aly set it can boost the efficiency of entire detection system.

Figure 12 presents results of comparing three different
methods of initial population generation: unsupervised, con-
strained and library generation. All methods seem to have
similar progress, but constrained generation method offers
better results, while library generation is the best in terms
of number of covered anomalies. Analysis of Figure 12 indi-
cates that group of about 980 anomalies is easier to reach by
generated detectors, and they present groups, that can be
covered by a single detector. The group of anomalies possi-
ble to reach only by library-generated population is spread
into subspaces that are hard to reach: every new detector
manages to cover only few of them, and over half of all non-

125

Figure 11: Coevolution efficiency for library gener-
ation of detectors

self detectors developed with last method is covering these
20 anomalies. It proves that coevolution assures both effec-
tiveness and accuracy, because a low number of detectors
capture anomalies easier to cover, and those that are diffi-
cult to cover are captured as well, but with larger number
of detectors.

Figure 12: Comparison of efficiency of three differ-
ent initial population generation processes

6. CONCLUSION
Results of conducted experiments indicate, that detectors

generated with NGA proved to be effective, and hyperrec-
tangular Self structures construction made a precise detec-
tion process possible. The presented approach is efficient
and allows capturing all five kinds of simulated attacks in
MIT data. While the hyperspherical design of Self, as pre-
sented in [3] made possible to catch only four out of five
attacks, and applied for Self development and NGA pre-
sented in this paper, three of them. It also has been shown
that the coevolutionary mechanisms can enhance the detec-
tors generation process and in the result can make detec-
tion process more effective against given patterns of attack.
Gathering data about some of those patterns in the form
of coevolving sets can give in effect detector sets containing
knowledge about attack subspaces. This mechanism can be
compared to vaccine, which makes natural immune system
more effective against certain illnesses.

Variability parameter v has been proven to be an impor-
tant factor in the detector development process by influ-
encing the Self volume. This parameter is responsible for
adjusting the false alarms levels. Therefore, an algorithm of
calculating v from learning is very important in the attempt
to improve the detection ability of a system, and application
of statistical approach presented in [12] seems to be inter-
esting in this context.

Further research may involve different parameter types
and greater number of them. The analysis of the detection
process data shows, that the system performs very effective
in the case of Satan attack in a relatively short duration
time, and has more problems with attacks like Portsweep or
Neptune, although their duration last several times longer
(see Table 1). Looking for dependencies between parameters
and attack types is also promising field of the research.

7. REFERENCES
[1] D. Beasley, D. R. Bull, and R. R. Martin. A sequential

niche technique for multimodal function optimization.
Evolutionary Computation, 2(1):101–125, 1993.

[2] S. Cayzer, J. Smith, J. Marshall, and T. Kovacs.
What have gene libraries done for ais? In Proceedings
of the 4th International Conference on Artificial
Immune Systems, 2005.

[3] D. Dasgupta and F. González. An immunity-based
technique to characterize intrusions in computer
networks. IEEE Transactions On Evolutionary
Computation, 6(3):1081–1088, 2002.

[4] T. Fawcett. Roc graphs: Notes and practical
considerations for data mining researchers. Technical
Report HPL-2003-4, 2003.

[5] S. Forrest, A. Perelson, L. Allen, and R. Cherukuri.
Self-nonself discrimination in a computer. In
Proceedings of IEEE Symposium on Research in
Security and Privacy, 1994.

[6] S. M. Garret. How do we evaluate artificial immune
systems? Evolutionary Computation, 13(2), 2005.

[7] M. Glickman, J. Balthrop, and S. Forrest. A machine
learning evaluation of an artificial immune system.
Evolutionary Computation, 13(2), 2005.

[8] http://www.ll.mit.edu/IST/ideval/index.html.

[9] Z. Michalewicz. Genetic Algorithms + Data Structures
= Evolution Programs. Springer, 1992.

[10] J. Paredis. Constraint satisfaction with coevolution. In
New Ideas in Optimization. McGraw-Hill, 1999.

[11] M. Roesch. Snort - lightweight intrusion detection for
networks. In Proceedings of the 13th Systems
Administration Conference, 1999.

[12] T. Stibor, J. Timmis, and C. Eckert. A comparative
study of real-valued negative selection to statistical
anomaly detection techniques. In Proceedings of the
4th International Conference on Artificial Immune
Systems, 2005.

[13] T. Stibor, J. Timmis, and C. Eckert. On the
appropriateness of negative selection defined over
hamming shape-space as a network intrusion detection
system. In Proceedings of the 4th International
Conference on Artificial Immune Systems, 2005.

[14] S. T. Wierzchon. Artificial immune systems. Theory
and application (in polish). Exit, Warsaw, Poland,
2001.

126

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

