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ABSTRACT
We propose a new gene reordering scheme for the graph bi-
section problem. Our gene reordering starts with two or
more vertices to capture the clustering structure of graphs
effectively. We devised a chromosome repairing method for
hybrid genetic search, which helps exploit clusters when
combined with gene reordering. Experimental tests showed
that the suggested reordering scheme significantly improves
the performance of genetic algorithms over previous reorder-
ing methods.

Categories and Subject Descriptors
G.1.6 [Numerical Analysis]: Optimization—Global opti-
mization

General Terms
Algorithms

Keywords
Gene reordering, genetic algorithm, graph partitioning, re-
pairing scheme, schema preprocessing, vertex ordering

1. INTRODUCTION
Let G = (V,E) be an unweighted undirected graph, where

V is the set of vertices and E is the set of edges. A balanced
k-way partition {C1, C2, ..., Ck} of the graph G is a par-
titioning of the vertex set V into k disjoint subsets where
the difference of cardinalities between the largest subset and
the smallest one is at most one, i.e., for all 1 ≤ i, j ≤
k, ||Ci| − |Cj || ≤ 1. The cut size of a partition is defined to
be the number of edges whose endpoints belong to different
subsets of partition. The k-way graph partitioning problem
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is the problem of finding a balanced k-way partition with
minimum cut size. In particular, it is called the graph bisec-
tion problem when k is equal to 2.
It is known that the bisection problem for general graphs

is NP-hard [8]. Bui and Jones [4] showed that even finding
good approximation solutions for general graphs is also NP-
hard. So, heuristic methods were used for the problem such
as Kernighan-Lin algorithm (KL) [13], Fiduccia-Mattheyses
algorithm (FM) [7], simulated annealing (SA) [12], genetic
algorithm (GA) [5], and tabu search [2]. Recently, there
have been a number of studies using GAs, reporting notable
results [14] [16] [17] [19].
Bui and Moon [5] introduced a gene reordering1 for the

graph partitioning problem. They reported superior results
to GAs without reordering. As a schema preprocessing tech-
nique, gene reordering helps genetic algorithms effectively
create and preserve high-quality schemata. It consequently
improves the performance of GAs. In this paper, we pro-
pose a new gene reordering scheme that captures the clus-
tering structure of graphs more effectively. One of the distin-
guishing features of our reordering method is that it starts
with two or more vertices (multi-attractor). We also devised
an improved chromosome repairing scheme which exploits
the clustering information obtained by reordering. In ex-
periments, the suggested reordering scheme and repairing
method excelled compared to other traditional approaches.
The remainder of this paper is organized as follows. We

give the concepts of vertex reordering and schema disruptiv-
ity in Section 2. In Section 3, we explain our multi-attractor
gene reordering. In Section 4, we describe our genetic algo-
rithm for the graph partitioning problem and give the con-
cepts of contiguous repairing for more effective search. Our
experimental results are presented in Section 5. Finally, the
conclusion is given in Section 6.

2. PRELIMINARIES

2.1 Vertex Reordering
Given the set of vertices V = {v1, v2, . . . , vn}, a vertex

reordering {vσ(1), vσ(2), . . . , vσ(n)} is defined by the bijective

map σ : {1, 2, . . . , n} → {1, 2, . . . , n}. Vertex vi is the jth

vertex in the vertex reordering if σ(j) = i.

1In this paper, we use “gene reordering” and “vertex re-
ordering” interchangeably.
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A number of studies on vertex reordering have been con-
ducted [1] [18]. BFS reordering performs a breadth first
search (BFS) on the input graph starting at a random ver-
tex. The visiting order of vertices in BFS is used to reorder
the vertices. In Max-Adjacency reordering [18], starting at
a random vertex, the vertex with the most edges incident
to the already ordered vertices is iteratively added to the
reordering.

Choose a random number a ∈ {1, 2, . . . , n};
σ(1) = a;
for i = 2 to n {

Find an unordered vertex vr

such that Attract(vr) is maximal;
σ(i) = r;

}
Reorder the vertices using the bijective map σ;

Figure 1: Framework of traditional reordering

Figure 1 shows the framework of traditional reordering
[1]. Attract(vi) means the attraction from vi to the set of
ordered vertices [1]. It can be represented as follows.

• BFS Reordering: Attract(vi) = min{j | (vi, vσ(j)) ∈
E, vσ(j) is ordered}

• Max-Adjacency Reordering: Attract(vi) = |{(vi, vj) ∈
E | vj is ordered}|

As shown in Figure 1, traditional reordering starts with
a random vertex. We call this initial vertex an attractor.
In Section 3, we will introduce a generalized reordering that
starts with two or more attractors.

2.2 Schema and Its Disruptivity
In genetic algorithm for the graph bisection problem, each

solution is usually represented by a binary string with the
length of |V |. Each solution is called a chromosome; that is,
a chromosome corresponds to a partition of the graph. Each
gene corresponds to a vertex in the graph. It has the value
i−1 if the corresponding vertex belongs to set Ci. A genetic
algorithm for this problem evolves a group of chromosomes
under a genetic process. A schema is a pattern of genes
that can be described by a template consisting of {0, 1} and
asterisks; here, zero and one represent the pattern and the
asterisks represent “don’t care.”
Schema is the important terminology which can explain

a working principle of GA. According to the building block
hypothesis [9], a GA recombines and forms strings of higher-
order schemata from short, low-order schemata in the early
stages.
In the case of the graph bisection problems, a genetic al-

gorithm starts with a group of random initial binary strings
(solutions). Of course, the quality of the solutions is low
in the early stages of the genetic algorithm. However, most
low-quality solutions contain some schemata common to high-
quality solutions. The crossover operators of genetic algo-
rithms generate larger schemata by juxtaposition of smaller
schemata. So, it is important to preserve the valuable schemata.

1 2 3

 4

5

6

7 8 9 10

**0000****

(b) After reordering

**0****000

1 2 3 4 5 6 7

 8 9

(a) Before reordering

10

Figure 2: Decrease of defining length of schema

However, they are prone to be destroyed by the crossover op-
erators if the positions forming the schema are scattered2.
In Figure 2a, schema **0****000 (or **1****111) repre-

sents the set of solutions in which four vertices of the clique
belong to the same partition. This schema is a good exam-
ple of a schema with high quality. In Figure 2, reordering
decreased the defining length (distance between the first and
the last specific string position) of the schema from 7 to 3.
So the survival probability of the schema increases under
the traditional crossover, e.g., n-point crossover.
The objective of a vertex reordering (or gene reordering)

in genetic partitioning algorithm is to preserve the clustering
structure of the graphs and to decrease the defining lengths
of good schemata. Experimental results in Section 3.3 will
show that vertex reordering decreases the defining lengths
of good schemata.

3. MULTI-ATTRACTOR REORDERING
ALGORITHM

All the traditional reorderings are one-attractor reorder-
ings, which means that the reorderings start with one at-
tractor. Figure 3a is an example that demonstrates how
one-attractor reorderings do not work well. Vertices of most
cliques were not closely indexed. In particular, on large
graphs, one-attractor reorderings are prone to scatter the
specific symbols of the valuable schemata. As shown in Fig-
ure 3b, reordering with two or more attractors can preserve
the clustering structure well in this case. Our motivation in
undertaking this study starts from this observation.

3.1 Algorithm Overview
Figure 4 shows our reordering heuristic with two attrac-

tors. Like in previous methods [1] [18], starting with the
random attractors, it iteratively adds a new vertex to the
ordering based on the already ordered vertices. The main
difference lies in how the already ordered vertices are classi-
fied. We use two classes (A and B). One (A) is the former-
half ordered vertices and the other (B) is the latter-half or-
dered vertices. Maintaining the balance of two classes, the
heuristic allows 10 percent of skewness between the sets A
and B.
Let E(v, S) be the number of vertices adjacent to the

vertex v in a vertex set S. We define AttractA(v) and
AttractB(v) to be E(v,A)−E(v,B) and E(v,B)−E(v,A),
respectively. The vertex with the maximal value of AttractA

2Holland [11] showed that schemata with shorter defining
lengths have higher survival probabilities in a single-point
crossover. Also in multi-point crossover with odd numbers
of crossover points, it was shown that shorter schemata have
higher chances to survive [6].
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Figure 3: Need of new reordering

is added to the former-half ordering and the set A. Simi-
larly, the vertex with the maximal value of AttractB is added
to the latter-half ordering and the set B. We name this
reordering heuristic 2-attractor reordering. Multi-attractor
reordering with 2n attractors is based on 2-attractor reorder-
ing. It first reorders vertices with 2-attractor reordering and
recursively applies 2-attractor reordering to each partition.
In our experiments, 2-attractor reordering and 4-attractor
reordering were used.
FM algorithm for graph partitioning uses a bucket data

structure to maintain the gains of vertices in linear time
[7]. Using a bucket data structure like in FM algorithm
to compute attraction, multi-attractor reordering heuristic
takes Θ(|V |+|E|) time. When a tie occurs, we use the stack-
based management3 (i.e., the most recently inserted vertex
has the highest priority in each bucket) in our reordering
and Max-Adjacency reordering.

3.2 Finding Good Attractors
Traditional vertex reorderings start with an attractor. This

attractor affects the quality of reordering. Figure 5 shows
examples of reordering with a good attractor and a bad at-
tractor. We devised some metrics for evaluating the quality
of reordering (one for BFS reordering and another for multi-
attractor reordering). As the computational cost of reorder-

3This management is traditional and attractive [10].

Choose two different random numbers a, b ∈ {1, 2, . . . , n};
σA(1) = a, σB(1) = b;
A = {va}, B = {vb};
for i = 3 to n {

Find an unordered vertex vA
r ∈ V \(A ∪ B)

such that AttractA(v
A
r ) is maximal;

Find an unordered vertex vB
r ∈ V \(A ∪B)

such that AttractB(v
B
r ) is maximal;

if |B|/|A| > α∗ then
σA(|A|+ 1) = vA

r , A = A ∪ {vA
r };

else if |A|/|B| > α∗ then
σB(|B|+ 1) = vB

r , B = B ∪ {vB
r };

else if AttractA(v
A
r ) ≥ AttractB(v

B
r ) then

σA(|A|+ 1) = vA
r , A = A ∪ {vA

r };
else

σB(|B|+ 1) = vB
r , B = B ∪ {vB

r };
}
for i = 1 to n {

if i ≤ |A| then
σ(i) = σA(i)

else
σ(i) = σB(i− |A|)

}
Reorder the vertices using the bijective map σ;

∗ In our experiments, we set the skewness parameter α to
be 1.1.

Figure 4: Two-attractor reordering
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Figure 5: Reordering examples

ing is low4, we can run BFS and multi-attractor heuristic
several times. Among the results of reordering, our GA
chooses an attractor with the longest diameter in BFS re-
ordering and a pair of attractors with the minimum cut size
between the two classes in 2-attractor reordering, respec-
tively.
Table 1 shows the correlation coefficient5 between these

metrics and the results of GAs. In each class of graphs,
only four largest graphs in Section 5.2 are included. More
specifically, in the case of BFS reordering, the correlation

4In the experiments, 50 repetitions of BFS reordering took
0.6 percent of total running time and 50 repetitions of 2-
attractor reordering took 2.4 percent of total running time,
on average. However, the total running time decreased, in-
stead. See experimental results in Section 5.2.
5The correlation coefficient of X and Y is

ρ(X,Y ) =
E[(X −E(X))(Y −E(Y ))]p

V ar(X)V ar(Y )
.
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Table 1: Correlation coefficient between each metric
and the bisection result of GA

Graph BFS 2-Att†

G1000.2.5 0.00 −0.01
G1000.05 −0.02 −0.03
G1000.10 0.05 0.04
G1000.20 −0.04 0.01
U2000.05 −0.47 0.57
U2000.10 0.01 0.37
U5000.05 −0.25 0.87
U5000.10 −0.42 0.65
pcart.1052 −0.35 0.28
pcart.5252 −0.37 0.38
prcart.994 −0.50 0.22
prcart.5114 −0.40 0.20

∗ Average over 1,000 runs.

† Two-attractor reordering.

coefficient is between the size of the diameter and the bisec-
tion cut size of the GA, in the case of 2-attractor reordering,
it is between the cut size of the attraction sets and the bisec-
tion cut size of the GA. We can observe a strong correlation
between these metrics and the performance of GAs. The
results show that, except on random graphs (G*.*), BFS
reordering with long diameters and 2-attractor reordering
with low cut sizes improve the performance of GAs. We
could not find an appropriate metric for Max-Adjacency re-
ordering. In our experiments, we set the number of trials to
be 50, both in BFS reordering and multi-attractor reorder-
ing.

3.3 Effect of Schema Preprocessing
We examined the effect of vertex reordering by measuring

the defining lengths of the schemata associated with clus-
ters before and after reordering. For measuring the defining
lengths of the clusters, we located 10 maximal cliques of size
3 or more for each run. We compared the defining lengths
of the schemata corresponding to these cliques before and
after gene reordering.

Table 2: The defining lengths of schemata represent-
ing cliques before and after reordering

Graph None BFS Max-Adj 2-Att 4-Att Clique size
G500.2.5 369.57 81.86 75.11 48.38 34.30 3.00
G500.05 327.83 161.47 90.34 131.92 120.74 3.00
G500.10 326.17 209.88 169.11 166.55 161.90 3.00
G500.20 315.47 237.65 204.11 195.38 183.34 3.05
G1000.2.5 554.89 190.86 113.35 135.92 112.12 3.00
G1000.05 534.41 334.29 176.34 228.06 215.90 3.00
G1000.10 682.01 420.12 295.10 346.76 330.67 3.00
G1000.20 637.61 470.08 384.09 384.26 383.27 3.01
U500.05 324.24 15.30 15.51 10.23 10.29 4.72
U500.10 388.94 33.59 25.97 29.29 28.32 6.40
U1000.05 646.20 14.03 10.73 11.62 11.46 4.41
U1000.10 758.83 50.68 30.88 36.00 31.28 6.36
U2000.05 1310.37 23.44 17.49 14.43 11.68 4.57
U2000.10 1516.67 72.33 60.57 50.87 46.48 6.31
U5000.05 3217.93 49.81 37.04 23.40 17.01 4.36
U5000.10 3817.27 111.88 107.36 80.29 50.49 6.50

∗ Average over 100 runs (a total of 1,000 cliques).

† There is no clique of size 3 or more in caterpillar graphs.

Table 2 shows the effect of each reordering scheme on
random graphs (G*.*) and random geometric graphs (U*.*).

The column “None” shows the result without reordering,
and “Max-Adj” shows with Max-Adjacency reordering. The
columns labeled “2-Att” and “4-Att” show the results of 2-
attractor reordering and 4-attractor reordering, respectively.
Each reordering significantly decreased the defining lengths
of schemata associated with the cliques, which are expected
to be of high quality. The fact is also remarkable that there
are few cliques of size 4 or more in random graphs.

4. GENETIC FRAMEWORK

4.1 Overview
A genetic algorithm generates a set of initial solutions

and evolves over a number of iterations. When GA meets
some condition, the best solution is returned and the algo-
rithm is terminated. Our genetic algorithm generates only
one offspring per generation (steady-state GA) and use a lo-
cal improvement heuristic after crossover and repairing step
(hybrid GA). In the following, our genetic algorithm for the
graph bisection problem is described.

• Encoding: A binary string for each chromosome to
represent a bisection is used. Each gene in a chromo-
some has the value 0 or 1 depending on the partition
which the matching gene belongs to.

• Initialization: When GA starts, thirty chromosomes
are created at random.

• Selection: The roulette-wheel-based proportional se-
lection is used. The probability that the best chromo-
some is chosen was set to four times higher than the
probability that the worst chromosome is chosen. The
fitness value fi of the ith chromosome can be repre-
sented as follows, where cb, cw, and ci are the cut sizes
of the best chromosome, the worst chromosome, and
the ith chromosome, respectively.

fi = (cw − ci) + (cw − cb)/3.

• Crossover and mutation: We used the crossover op-
erator proposed in [5]. It first produces two offspring.
One is from traditional 5-point crossover and the other
is from 5-point crossover which copies the part of the
first parent and the complement values of the part of
the second parent. After crossover, chromosomes are
usually unbalanced. So the repairing process is neces-
sary, which is described in Section 4.2 (as it produces
some mutation effect, we did not add any specific mu-
tation). Among two repaired offspring, better one is
chosen as the final offspring.

• Replacement: We used the replacement scheme of [5].
If the offspring is better than its closer parent in Ham-
ming distance, GA replaces its closer parent. If not,
the other parent is replaced if the offspring is better.
If not again (i.e., the offspring is worse than both par-
ents), we replace the worst member of the population.

• Stopping criterion: For stopping, we use the number
of consecutive fails to replace one of the parents. We
set the number to be 30.

• Local optimization: KL algorithm [13] is used for lo-
cal optimization. KL proceeds in a series of passes.
During each pass, the algorithm improves on an initial
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solution by swapping pairs of vertices to create a new
solution. This process is repeated on the new bisection
until no improvement can be obtained.

Let (A,B) be an initial bipartition of G = (V,E). De-
fine the gain gv of a vertex v to be the cut-size reduc-
tion by moving v to the opposite set. The gain g(a, b)
as a result of swapping vertices a ∈ A and b ∈ B is as
follows:

g(a, b) = ga + gb − 2δ(a, b)

where

δ(a, b) =


1, if (a, b) ∈ E
0, otherwise.

The pair (a, b) which maximizes g(a, b) is selected.
Once a and b are selected, they are assumed to be
exchanged and not considered any more for further ex-
change. A sequence of pairs (a1, b1), . . . , (an/2−1, bn/2−1)
are selected in this way, where n is the number of
vertices. The algorithm chooses a pair (X,Y ), X =

{a1, . . . , ak} and Y = {b1, . . . , bk}, such that
Pk

i=1 g(ai, bi)
is maximized. The algorithm exchanges X and Y .
This is a pass of KL. KL repeats the above pass until
no improvement is possible.

In our genetic algorithms, we used the fast variation
of KL proposed in [5]. Its time complexity is O(|E|).

4.2 Repairing Scheme

Contiguous-Repairing (addset)
{

gab = |V |/2 − |Caddset|;
Choose a random number r ∈ {0, 1, . . . , n− 1};
p−1 = r, p1 = r;
direction = 1;
while (gab > 0) {

if (chromosome[r + 1] = 1− addset) {
chromosome[r + 1] = addset;
gab = gab− 1;

}
else

direction = −direction;
pdirection = pdirection + direction;
r = pdirection mod n;

}
}

Figure 6: Contiguous repairing

After the crossover in genetic partitioning algorithms, an
offspring may not have the same number of 0s and 1s in most
cases. So, repairing is necessary and the repairing strategy
can affect the quality of solutions.
In general, the random repairing scheme is used, which se-

lects the required number of random 1s (or 0s) and changes
them to 0s (or 1s). But with reordering, GA can do repairing
more effectively. In Bui and Moon’s study [5], GA selects a
random point on the chromosome and repairs the required
number of 1s to 0s (or 0s to 1s) starting at that point on
to the right (and wrapping around if necessary). But the

1 1 1 0 1 1 1 1 1

1 0 0 1 1 1 10 00

0

(a) Unbalanced chromosome

starting point

1 2 3

5

6

7 8 9

(b) Balanced chromosome after contiguous repairing

10
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7 8 9 10

4

4

Figure 7: An example of contiguous repairing

study only mentioned the mutation effect of repairing. Ex-
perimental results in Section 5.1 will show the importance
of repairing scheme in genetic algorithms for the graph bi-
section problem.
Figure 6 shows our contiguous repairing algorithm, an im-

proved version of [5] and Figure 7 shows an example of the
repairing. First, GA selects a random starting point on the
unbalanced chromosome. It changes 1s to 0s (or 0s to 1s)
to the right until the consecutive string of 1s (or 0s) ends.
GA changes 1s to 0s from the starting point to the left until
consecutive string of 1s (or 0s) on the left side ends. This
process is repeated until the required number of 1s (or 0s)
are changed to 0s (or 1s).
The main difference from [5] lies in that our repairing

minimizes the length of the repaired part of the chromo-
some. Contiguous repairing increases the probability of a
good schema being generated in the repairing process.

5. EXPERIMENTAL RESULTS
In this section, we give our experimental results on the

graphs that were used in [5] and [14]. Test graphs are
composed of 8 random graphs (G*.*) [12], 8 random geo-
metric graphs (U*.*) [12], and 8 caterpillar graphs (pcart.*
and prcart.*) [5]. We omit results on quite easy benchmark
graphs such as dense geometric graphs (U*.20, U*.40), ran-
dom regular graphs [3] and grid graphs [5], on which our
GAs found the best known solutions in most runs6. All
benchmark graphs are available on the web7.
The code was programmed in C language on a Pentium IV

2.8GHz computer with Linux. It was compiled using GNU’s
gcc compiler.
Since we performed 1,000 runs for all the experiments, the

confidence intervals of the results are quite narrow.

6More than 90 percent of trials.
7http://soar.snu.ac.kr/benchmark/
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5.1 Comparison of Repairing Schemes
Table 3 shows the bisection cut sizes using the random

repairing and the contiguous repairing. In each class of
graphs, only four largest graphs are included. In GA without
reordering, repairing scheme did not affect results. When
combined with reordering, the contiguous repairing scheme
improved the performance of genetic bisection algorithms
dramatically on geometric graphs and caterpillar graphs.

5.2 Results of Bisection
Table 4 shows the performance of genetic bisection algo-

rithms without reordering and using BFS, Max-Adjacency,
2-attractor, 4-attractor reordering, respectively. As reported
by Bui and Moon [5], the improvement resulting from the
reordering heuristic is dramatic, yet simple and low-cost.
The contiguous repairing heuristic augmented the improve-
ment in our experiments. Except on G1000.2.5 and U500.10,
one of the multi-attractor reorderings performed better than
the other reorderings within comparable time. GAs pre-
processed by multi-attractor reorderings separately outper-
formed GAs with the other two reorderings, on almost all
the benchmark graphs.
In particular, on large geometric graphs such as U2000.*

and U5000.*, multi-attractor reorderings considerably out-
performed the others. On U2000.05, U5000.05 and U5000.10,
only the GAs with multi-attractor reorderings found the
best known value in [14]. On U5000.05 and U5000.10, GAs
preprocessed by multi-attractor reorderings obtained the av-
erage cut sizes even better than the best of the 1,000 runs
of GAs preprocessed by the other traditional reorderings.
Compared to GA without reordering, GAs with multi-

attractor reordering slightly decreased cut sizes of random
graphs. A study of the problem space [15] hints why im-
proving the performance of genetic partitioning algorithm
by reordering on random graphs is hard.
Mostly, GAs preprocessed by reorderings had similar run-

ning times to GAs without reordering. Furthermore, on
large geometric and caterpillar graphs, reordering consider-
ably decreases total running time.

6. CONCLUSIONS
In this paper, we proposed a multi-attractor gene reorder-

ing method for graph bisection. We also suggested the con-
tiguous chromosomal repairing as a good combination with
the reordering method. Experimental results on bisection
problem showed that the new reordering scheme and repair-
ing scheme significantly improves the performance of GAs.
Further applications of multi-attractor reordering such as

the multi-way partitioning problem or the circuit partition-
ing problem are left for future study.
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Table 3: The effect of contiguous repairing scheme
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random contiguous random contiguous random contiguous random contiguous random contiguous
G1000.2.5 97.53 97.43 97.57 97.44 97.46 97.41 97.44 97.42 97.42 97.45
G1000.05 451.97 452.04 451.89 451.85 451.74 451.54 451.56 451.40 451.56 451.47
G1000.10 1368.16 1368.15 1367.74 1367.89 1367.68 1367.43 1367.44 1367.36 1367.23 1367.25
G1000.20 3387.74 3387.53 3387.32 3387.15 3386.82 3386.61 3387.06 3386.22 3386.59 3386.21
U2000.05 35.09 34.91 29.38 7.89 28.65 8.09 29.25 4.13 28.52 4.17
U2000.10 75.89 75.23 59.26 62.68 58.89 54.60 56.60 47.83 57.33 48.32
U5000.05 128.48 129.11 124.00 21.24 118.33 22.50 114.83 4.99 114.08 5.14
U5000.10 253.16 255.18 182.54 125.97 171.95 147.07 165.64 82.47 163.34 81.97
pcart.1052 17.52 17.29 3.81 2.64 5.00 2.68 4.15 2.12 4.28 2.52
pcart.5252 91.39 91.77 6.94 2.75 8.54 2.84 7.72 2.35 7.56 2.70
prcart.994 5.94 5.98 2.63 1.96 2.89 2.37 2.34 1.50 2.74 1.87
prcart.5114 20.58 20.65 2.99 2.48 3.70 2.60 3.08 1.96 3.20 2.31

∗ Average over 1,000 runs.

† Bisection cut sizes.

Table 4: The results of bisection
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