
A Splicing/Decomposable Encoding and Its Novel
Operators for Genetic Algorithms

Yong Liang
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Shatin, N.T., HK, China

yliang@cse.cuhk.edu.hk

Kwong-Sak Lueng
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Shatin, N.T., HK, China

ksleung@cse.cuhk.edu.hk

Kin-Hong Lee
Department of Computer
Science and Engineering
The Chinese University of

Hong Kong
Shatin, N.T., HK, China

khlee@cse.cuhk.edu.hk

ABSTRACT
In this paper, we introduce a new genetic representation
— a splicing/decomposable (S/D) binary encoding, which
was proposed based on some theoretical guidance and ex-
isting recommendations for designing efficient genetic rep-
resentations. Our theoretical and empirical investigations
reveal that the S/D binary representation is more proper
than other existing binary encodings for searching of genetic
algorithms (GAs). Moreover, we define a new genotypic dis-
tance on the S/D binary space, which is equivalent to the
Euclidean distance on the real-valued space during GAs con-
vergence. Based on the new genotypic distance, GAs can re-
liably and predictably solve problems of bounded complex-
ity and the methods depended on the Euclidean distance
for solving different kinds of optimization problems can be
directly used on the S/D binary space.

Categories and Subject Descriptors
I.2 [Artificial Intelligence]: Problem Solving, Control Meth-
ods, and Search—heuristic methods.

General Terms
Algorithms

Keywords
Genetic algorithm, genetic representation

1. INTRODUCTION
Most of the real-world problems could be encoded by dif-

ferent representations, but genetic algorithms (GAs) may
not be able to successfully solve the problems based on their
phenotypic representations, unless we use some problem-
specific genetic operators. Therefore, a proper genetic rep-

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

resentation is necessary when using GAs on the real-world
problems [1] [7] [12].

A large number of theoretical and empirical investigations
on genetic representations were made over the last decades,
and have shown that the behavior and performance of GAs
is strongly influenced by the representation used. Origi-
nally, the schema theorem and the building block hypoth-
esis proposed by [1] and [4] to model the performance of
GAs to process similarities between binary bitstrings. The
most common binary representations are the binary, gray
and unary encodings. According to three aspects of rep-
resentation theory (redundancy, scaled building block and
distance distortion), Rothlauf [9] studied the performance
differences of GAs by different binary representations for
real encoding.

Analysis on the unary encoding by the representation the-
ory reveals that encoding is redundant, and does not repre-
sent phenotypes uniformly. Therefore, the performance of
GAs with the unary encoding depends on the structure of
the optimal solution. Unary GAs fail to solve integer one-
max, deceptive trap and BinInt problems [5], unless larger
population sizes are used, because the optimal solutions are
strongly underrepresented for these three types of problems.
Thus, the unary GAs perform much worse than GAs using
the non-redundant binary or gray encoding [9].

The binary encoding uses exponentially scaled bits to rep-
resent phenotypes. Its genotype-phenotype mapping is a
one-to-one mapping and encodes phenotypes without re-
dundancy. However, for non-uniformly binary strings and
competing Building Blocks (BBs) for high dimensional phe-
notype space, there are a lot of noise from the competing
BBs lead to a reduction on the performance of GAs. In ad-
dition, the binary encoding has the effect that genotypes of
some phenotypical neighbors are completely different. As a
result, the locality of the binary representation is partially
low, i.e. Hamming cliff [10]. In the distance distortion the-
ory, an encoding preserves the difficulty of a problem if it
has perfect locality and if it does not modify the distance
between individuals. The analysis reveals that the binary
encoding changes the distance between the individuals and
therefore changes the complexity of the optimization prob-
lem. Thus, easy problems can become difficult, and vice
versa. The binary GAs are not able to reliably solve prob-
lems when mapping the phenotypes to the genotypes.

The non-redundant gray encoding [10] was designed to

1225

overcome the problems with the Hamming cliff of the bi-
nary encoding. In the gray encoding, every neighbor of a
phenotype is also a neighbor of the corresponding genotype.
Therefore, the difficulty of a problem remains unchanged
when using mutation-based search operators that only per-
form small step in the search space. As a result, easy prob-
lems and problems of bounded difficulty are easier to solve
when using the mutation-based search with the gray cod-
ing than that with the binary encoding. Although the gray
encoding has high locality, it still changes the distance cor-
respondence between the individuals with bit difference of
more than one. When focused on crossover-based search
methods, the analysis of the average fitness of the schemata
reveals that the gray encoding preserves building block com-
plexity less than the binary encoding. Thus, a decrease in
performance of gray-encoded GAs is unavoidable for some
kind of problems [3] [12].

Up to now, there is no well set-up theory regarding the
influence of representations on the performance of GAs. To
help users with different tasks to search good representa-
tions, over the last few years, some researchers have made
recommendations based on the existing theories. For exam-
ple, Goldberg [1] has proposed two basic design principles for
encodings: (i), Principle of minimal alphabets — the alpha-
bet of the encoding should be as small as possible while still
allowing a natural representation of solutions; and (ii), Prin-
ciple of meaningful building blocks — the schemata should
be short, of low order, and relatively unrelated to schemata
over other fixed positions.

The principle of minimal alphabets advises us to use bit
string representation. Combining with the principle of mean-
ingful building blocks (BBs), we construct uniform salient
BBs, which include equal scaled and splicing/decomposable
alleles.

This paper is organized as follows. Section 2 introduces
a novel splicing/decomposable (S/D) binary representation
and its genotypic distance. Section 3 proposes the new ge-
netic algorithm based on the S/D binary representation, the
splicing/Decompocable genetic algorithm (SDGA). Section
4 discusses the performance of the SDGA and compares the
S/D binary representation with other existing binary encod-
ings from the empirical studies. The paper conclusion are
summarized in Section 5.

2. A NOVEL SPLICING/DECOMPOSABLE
BINARY GENETIC REPRESENTATION

Based on above investigation results and recommenda-
tions, Leung et al. have proposed a new genetic representa-
tion, which is proper for GAs searching [6] [13]. In this sec-
tion, first we introduce a novel splicing/decomposable (S/D)
binary encoding, then we define the new genotypic distance
for the S/D encoding, finally we give the theoretical analysis
for the S/D encoding based on the three elements of genetic
representation theory (redundancy, scaled BBs and distance
distortion).

2.1 A Splicing/Decomposable Binary Encod-
ing

In [6], Leung et al. have proposed a novel S/D binary
encoding for real-value encoding. Assuming the phenotypic
domain Φp of the n dimensional problem can be specified
by

Φp = [α1, β1] × [α2, β2] × · · · × [αn, βn].

Figure 1: A graphical illustration of the splic-
ing/decomposable representation scheme, where (b)
is the refined bisection of the gray cell (10) in (a)
(with mesh size O(1/2)), (c) is the refined bisection
of the dark cell (1001) in (b) (with mesh size O(1/22)
), and so forth.

Given a length of a binary string l, the genotypic preci-

sion is hi(l) = (βi−αi)

2(�/n) , i = 1, 2, · · · , n. Any real-value vari-

able x = (x1, x2, ..., xn) ∈ Φp can be represented by a splic-
ing/decomposable (S/D) binary string b = (b1, b2, .., bl), the
genotype-phenotype mapping fg is defined as

x = (x1, x2, · · · , xn) = fg(b) = (

l/n∑
j=0

2(l/n−j) × bj×n+1,

l/n∑
j=0

2(l/n−j) × bj×n+2, · · · ,

l/n∑
j=0

2(l/n−j) × bj×(n+1)),

where

l/n∑
j=0

2(l/n−j) × bj×n+i ≤ xi − αi

hi(l)
<

l/n∑
j=0

2(l/n−j) × bj×n+i + 1.

That is, the significance of each bit of the encoding can be
clearly and uniquely interpreted (hence, each BB of the en-
coded S/D binary string has a specific meaning). As shown
in Figure 1, take Φp = [0, 1] × [0, 1] and the S/D binary
string b = 100101 as an example (in this case, l = 6, n = 2,
and the genotypic precisions h1(l) = h2(l) = 1

8
). Let us look

how to identify the S/D binary string b and see what each
bit value of b means. In Figure 1-(a), the phenotypic domain

Φp is bisected into four Φ
1
2
p (i.e., the subregions with uniform

size 1
2
). According to the left-0 and right-1 correspondence

rule in each coordinate direction, these four Φ
1
2
p then can be

identified with (00), (01), (10) and (11). As the phenotype x
lies in the subregion (10) (the gray square), its first building
block (BB) should be BB1 = 10. This leads to the first two
bits of the S/D binary string b. Likewise, in Figure 1-(b),

Φp is partitioned into 22×2 Φ
1
4
p , which are obtained through

further bisecting each Φ
1
2
p along each direction. Particularly

this further divides Φ
1
2
p = (BB1) into four Φ

1
4
p that can be

respectively labelled by (BB1, 00), (BB1, 01), (BB1, 10) and

1226

(BB1, 11). The phenotype x is in (BB1, 01)-subregion (the
dark square), so its second BB should be BB2 = 01 and the
first four positions of its corresponding S/D binary string b
is 1001.

In the same way, Φp is partitioned into 22×3 Φ
1
8
p as shown

in Figure 1-(c), with Φ
1
4
p = (BB1, BB2) particularly parti-

tioned into four Φ
1
8
p labelled by (BB1, BB2, 00), (BB1, BB2, 01),

(BB1, BB2, 10) and (BB1, BB2, 11). The phenotype x is
found to be (BB1, BB2, 01), that is, identical with S/D bi-
nary string b. This shows that for any three region par-
titions, b = (b1, b2, b3, b4, b5, b6), each bit value bi can be
interpreted geometrically as follows: b1 = 0 (b2 = 0) means
the phenotype x is in the left half along the x-coordinate
direction (the y-coordinate direction) in Φp partition with
1
2
-precision, and b1 = 1 (b2 = 1) means x is in the right half.

Therefore, the first BB1 = (b1, b2) determine the 1
2
-precision

location of x. If b3 = 0 (b4 = 0), it then further indicates

that when Φ
1
2
p is refined into Φ

1
4
p , the x lies in the left half of

Φ
1
2
p in the x-direction (y-direction), and it lies in the right

half if b3 = 1 (b4 = 1). Thus a more accurate geometric
location (i.e., the 1

4
-precision location) and a more refined

BB2 of x is obtained. Similarly we can explain b5 and b6

and identify BB3, which determine the 1
8
-precision location

of x. This interpretation holds for any high-resolution l bits
S/D binary encoding.

2.2 A New Genotypic Distance on the Splic-
ing/Decomposable Binary Representation

For measuring the similarity of the binary strings, the
Hamming distance [2] is widely used on the binary space.
Hamming distance describes how many bits are different in
two binary strings, but cannot consider the scaled property
in non-uniformly binary representations. Thus, the distance
distortion between the genotypic and the phenotypic spaces
makes phenotypically easy problem more difficult. There-
fore, to make sure that GAs are able to reliably solve easy
problems and problems of bounded complexity, the use of
equivalent distances is recommended. For this purpose, we
define a new genotypic distance on the S/D binary space to
measure the similarity of the S/D binary strings.
Definition 1: Suppose any binary strings a and b belong

to the S/D binary space Φg, the genotypic distance ‖a− b‖g
is defined as

‖a − b‖g =

n∑
i=1

|
l/n−1∑
j=0

aj×n+i − bj×n+i

2j+1
|,

where l and n denote the length of the S/D binary strings
and the dimensions of the real-encoding phenotypic space
Φp respectively.

For any two S/D binary strings a, b ∈ Φg, we can define
the Euclidean distance of their correspond phenotypes:

‖a − b‖p =

√√√√√ n∑
i=1

(

l/n−1∑
j=0

aj×n+i

2j+1
−

l/n−1∑
j=0

bj×n+i

2j+1
)2,

as the phenotypic distance between the S/D binary strings
a and b. The phenotypic distance ‖ · ‖p and the genotypic
distance ‖ · ‖g are equivalents in the S/D binary space Φg

when we consider the convergence process of GAs. We state
this as the following theorem.

1010
(0.75)

1000
(0.5)

0010
(0.25)

0000
(0.0)

1011
(1.0)

1001
(0.75)

0011
(0.5)

0001
(0.25)

1110
(1.25)

1100
(1.0)

0110
(0.75)

0100
(0.5)

1111
(1.5)

1101
(1.25)

0111
(1.0)

0101
(0.75)

1010
(0.75)

1000
(0.5)

0010
(0.25)

0000
(0.0)

1011
(1.0)

1001
(0.75)

0011
(0.5)

0001
(0.25)

1110
(1.25)

1100
(1.0)

0110
(0.75)

0100
(0.5)

1111
(1.5)

1101
(1.25)

0111
(1.0)

0101
(0.75)

1010
(0.75)

1000
(0.5)

0010
(0.25)

0000
(0.0)

1011
(0.79)

1001
(0.56)

0011
(0.35)

0001
(0.25)

1110
(0.9)

1100
(0.71)

0110
(0.56)

0100
(0.5)

1111
(1.1)

1101
(0.9)

0111
(0.79)

0101
(0.75)

1010
(0.75)

1000
(0.5)

0010
(0.25)

0000
(0.0)

1011
(0.79)

1001
(0.56)

0011
(0.35)

0001
(0.25)

1110
(0.9)

1100
(0.71)

0110
(0.56)

0100
(0.5)

1111
(1.1)

1101
(0.9)

0111
(0.79)

0101
(0.75)

genotypic distances phenotypic distances

Figure 2: The genotypic and phenotypic distances
between ∗ ∗ ∗∗ and 0000 in the S/D binary represen-
tation.

Theorem 1: The phenotypic distance ‖·‖p and the geno-
typic distance ‖ · ‖g are equivalents in the S/D binary space
Φg because the inequation:

‖ · ‖p ≤ ‖ · ‖g ≤ √
n × ‖ · ‖p

is satisfied in the S/D binary space Φg, where n is the
dimensions of the real-encoding phenotypic space Φp.
Proof : For ∀a, b ∈ Φg:

‖a − b‖g =

n∑
i=1

|
l/n−1∑
j=0

aj×n+i − bj×n+i

2j+1
|

=

√√√√√(

n∑
i=1

|
l/n−1∑
j=0

aj×n+i − bj×n+i

2j+1
|)2

=

√√√√√√√
∑n

i=1(
∑l/n−1

j=0
aj×n+i−bj×n+i

2j+1)2

+
∑1≤i1,i2≤n

i1 �=i2
(2 × |∑l/n−1

j=0

aj×n+i−bj×n+i1
2j+1 |

×|∑l/n−1
j=0

aj×n+i−bj×n+i2
2j+1 |)

because

0 ≤
∑1≤i1,i2≤n

i1 �=i2
(2 × |∑l/n−1

j=0

aj×n+i−bj×n+i1
2j+1 |

×|∑l/n−1
j=0

aj×n+i−bj×n+i2
2j+1 |)

≤ (n − 1)

n∑
i=1

(

l/n−1∑
j=0

aj×n+i − bj×n+i

2j+1
)2,

then

‖a − b‖p ≤ ‖a − b‖g ≤ √
n × ‖a − b‖p.

Figure 2 shows the comparison of the genotypic distance
‖ · ‖g and phenotypic distance ‖ · ‖p between S/D binary
strings and 0000 in 2 dimensional phenotypic space, where
the length of the S/D binary string l = 4. For any two S/D
binary strings a and b, if ‖a−0‖p > ‖b−0‖p, then ‖a−0‖g >
‖b − 0‖g is also satisfied. This means that ‖ · ‖p and ‖ · ‖g
are equivalent for considering the points’ sequence converge
to 0. According to the distance distortion of the genetic
representation, using the new genotypic distance ‖ · ‖g can
guarantee GA to reliably and predictably solve problems of
bounded complexity.

2.3 Theoretical Analysis of the Splicing/
Decomposable Binary Encoding

First, we present the two integer-specific variations of the
one-max and the fully-deceptive trap problems we want to

1227

already converged USBBs no yet converged USBBs

convergence window USBB

111011011111 0100 010101000110

S/D binary string

Figure 3: Domino genotypic at the S/D encodings.

use for analyses and comparisons of different genetic repre-
sentations defined on binary strings.

The integer one-max problem is defined as

f1(x1, x2, · · · , xn) =

n∑
i=1

xi,

and the integer deceptive trap is

f2(x1, x2, · · · , xn) =

{ ∑n
i=1 xi : if each i, xi = xi,max∑n
i=1 xi,max − ∑n

i=1 xi − 1 : else.

where x ∈ Φp and n is the dimension of the problems.
The interpretation in the previous sections reveals an im-

portant fact that in the new genetic representation the sig-
nificance of the BB contribution to fitness of a whole S/D
binary string varies as its position goes from front to back,
and, in particular, the more in front the BB position lies, the
more significantly it contributes to the fitness of the whole
S/D binary string. We refer such delicate feature of the new
representation to as the BB-significance-variable property.
Actually, it is seen from the above interpretation that the
first n bits of an encoding are responsible for the location of
the n dimensional phenotype x in a global way (particularly,
with O(1

2
)-precision); the next group of n bits is responsi-

ble for the location of phenotype x in a less global (might
be called ‘local’) way, with O(1

4
)-precision, and so forth; the

last group of n-bits then locates phenotype x in an extremely
local (might be called ‘microcosmic’) way (particularly, with
O(1

2�/n)-precision). Thus, we have seen that as the encoding
length l increases, the representation

(b1, b2, · · · , bn, bn+1, bn+2, · · · , b2n, · · · ,

b(�−n), b(�−n+1), · · · , bl)

= (BB1, BB2, · · · , BBl/n)

can provide a successive refinement (from global, to local,
and to microcosmic), and more and more accurate represen-
tation of the problem variables.

In each BBi of the S/D binary string, which consists of the
bits (bi×n+1, bi×n+2, · · · , b(i+1)×n), i = 0, · · · , l/n− 1, these
bits are uniformly scaled. We refer such delicate feature of
BBi to as the uniform-salient BB (USBB). Furthermore, the
splicing different number of USBBs can describe the rough
approximations of the problem solutions with different preci-
sions. So, the intra-BB difficulty (within building block) and
inter-BB difficulty (between building blocks) [1] of USBB are
low. The theoretical analysis reveals that GAs searching on
USBB can explore the high-quality bits faster than GAs on
non-uniformly scaled BB.

The S/D binary encoding is redundancy-free representa-
tion because using the S/D binary strings to represent the
real values is one-to-one genotype-phenotype mapping. The
whole S/D binary string is constructed by a non-uniformly

 1111 01 11 0101

10 0101 1111 10

 1111 10 11 1011

10 0101 1111 01

Parents Children

Pair 1

Pair 2

Figure 4: The genetic crossover and selection in
SDGA.

scaled sequence of USBBs. The domino convergence of GAs
occurs and USBBs are solved sequentially from high to low
scaled.

The BB-significance-variable and uniform-salient BB prop-
erties of the S/D binary representation embody many im-
portant information useful to the GAs searching. We will
explore this information to design new GA based on the S/D
binary representation in the subsequent sections.

3. A NEW S/D BINARY GENETIC
ALGORITHM (SDGA)

The above interpretation reveals that for non-uniformly
binary strings and competing Building Blocks (BBs) in bi-
nary and grid encodings, there are a lot of noise from the
competing BBs lead to a reduction on the performance of
GAs. To avoid this problem, we propose a new splicing/ de-
composable GA (SDGA) based on the delicate properties of
the S/D binary representation. The whole S/D binary string
can be decomposed into a non-uniformly scaled sequence
of USBBs. Thus, in the searching process of GAs on S/D
binary encoding, the domino convergence occurs and the
length of the convergence window is equal to n, the length
of USBB. As shown in Figure 3 for 4 dimensional case, the
high scaled USBBs are already fully converged while the low
scaled USBBs did not start to converge yet, and length of
the convergence window is 4.

In the SDGA, genetic operators apply from the high scaled
to the low scaled USBBs sequentially. The process of the
crossover and selection in SDGA is shown in Figure 4. For
two individuals x1 and x2 randomly selected from current
population, The crossover point is randomly set in the con-
vergence window USBB and the crossover operator gener-
ates two children c1, c2. The parents x1, x2 and their chil-
dren c1, c2 can be divided into two pairs {x1, c1} and {x2,
c2}. In each pair {xi, ci}(i = 1, 2), the parent and child
have the same low scaled USBBs. The selection operator
will conserve the better one of each pair into next genera-
tion according to the fitness calculated by the whole S/D
binary string for high accuracy. Thus, the bits contributed
to high fitness in the convergence window USBB will be
preserved, and the diversity at the low scaled USBBs’ side
will be maintain. The mutation will operate on the con-
vergence window and not yet converged USBBs according
to the mutation probability to increase the diversity in the
population. These low salient USBBs will converge due to
GAs searching to avoid genetic drift. The implementation
outline of the SDGA is shown in Figure 5.

1228

Input: N—population size, m—number of USBBs,
g—number of generations to run;

Termination condition: Population fully converged;

begin
g ←− 0;
m←− 1;
Initialize Pg;
Evaluate Pg;
while (not termination condition) do
for t←− 1 to N/2;
randomly select two individuals x1

t and x2
t from Pg;

crossover and selection x1
t , x2

t into Pg+1;
end for
mutation operation Pg+1;
Evaluate Pg+1;
if (USBBm fully converged) m←− m + 1;
end while

end

Figure 5: Pseudocode for SDGA algorithm.

Since identifying high-quality bits in the convergence win-
dow USBB of GAs is faster than that GAs on the non-
uniform BB, while no genetic drift occurs. Thus, population
can efficiently converge to the high-quality BB in the posi-
tion of the convergence window USBB, which are a compo-
nent of overrepresented optimum of the problem. According
to theoretical results of Thierens [11], the overall conver-
gence time complexity of the new GA with the S/D binary
representation is approximately of order O(l/

√
n), where l

is the length of the S/D binary string and n is the dimen-
sions of the problem. This is much faster than working on
the binary strings as a whole where GAs have a approxi-
mate convergence time of order O(l). The gain is especially
significant for high dimension problems.

4. EMPIRICAL VERIFICATION
In this section we present an empirical verification of the

performance differences between the different genetic repre-
sentations and operators we described in the previous sec-
tions.

4.1 Comparison of the Performance of GAs
with Different Representations

In our experimentation, we use 30 dimensional one-max
and deceptive trap problems for a comparison of different
genetic representations defined on binary strings. For the
binary representation, the integer one-max problem is equal
to the BinInt problem [9]. These two problems have an expo-
nential salience or fitness structure for binary strings. The
integer one-max problem is a fully easy problem, whereas
the integer deceptive trap should be fully difficult to solve
for GAs.

In the first set of experiments we applied a standard GA
(SGA) using binary, gray, unary, S/D encodings and SDGA
on the integer one-max and deceptive trap problems to com-
pare their performance. We performed 50 runs and each run
was stopped after the population was fully converged. That
means that all individuals in the population are the same.
For fairness of comparison, we implemented SGA with dif-
ferent binary encodings and SDGA with the same parameter

20 60 100 140 180 220 260 300
0

500

1000

1500

2000

2500

population size

ge
ne

ra
tio

n

(b)

20 60 100 140 180 220 260 300
400

500

600

700

800

900

1000

population size

fit
ne

ss

(a)

 SDGA
S/D Coding
 Binary
 Gray
 Unary

Figure 6: Integer one-max problem of order 5.

setting and the same initial population. For SGA, we used
one-point crossover operator (crossover probability=1) and
tournament selection operator without replacement of size
two. We used no mutation as we wanted to focus on the
influence of genetic representations on selectorecombinative
GAs.

For the one-max problem, we used 30 dimensional prob-
lem for order 2 (in each dimension, the number of different
phenotypes s = 22 = 4), 3 (s = 23 = 8), 4 (s = 24 = 16) and
5 (s = 25 = 32). Because in our implementation, the global
optima of deceptive trap problems with low orders cannon
be explored by all GAs we used. The deceptive trap prob-
lems with high orders are more difficult than those with low
orders and are not solvable by GAs. Here, we only present
results for the 30 dimensional deceptive trap problems of
order 2 (s = 22 = 4) and 3 (s = 23 = 8). Using binary,
gray and S/D encoding results for the order 2 problems in
a string length l = 60, for order 3 in l = 90, for order 4 in
l = 120, and for order 5 in l = 150. When using unary en-
coding we need 30×3 = 90 bits for order 2, 30×7 = 210 bits
for order 3, 30×15 = 450 bits for order 4 and 30×31 = 930
bits for order 5 problems.

Figures 6 and 7 present the results for the integer one-max
problem of order 5 and the results for integer deceptive trap
problem of order 3 respectively. The plots show for SGA
with different representations and SDGA the best fitness
at the end of the run (left) and the run duration — fully
converged generation (right) with respect to the population
size N .

SGA with different scaled binary representations includ-
ing binary, gray and S/D encodings complies domino conver-
gence, genetic drift and noise from BBs. For small popula-
tion sizes, genetic drift strongly occurs and many bits in the
binary strings are randomly fixed, so SGA fully converged
faster but the best fitness is too bad. That means SGA is
premature using small population sizes. For larger popula-
tion sizes, SGA can explore better solutions, but its run du-
ration is significantly increasing due to domino convergence.
Furthermore, for these high dimensional problems, the pop-
ulation size increases to 300 still not enough to avoid the
noise from BBs, so SGA cannot converge to the optima of
the problems, which are overrepresented by BBs.

Due to the problems of the unary encoding with redun-
dancy, which result in an underrepresentation of the optimal
solution, SGA using unary encoding perform increasingly
badly with increasing problem orders. Therefore, for one-
max and deceptive trap problems of order more than three
the performance of SGA using unary encoding performance

1229

20 60 100 140 180 220 260 300
0

500

1000

1500

population size

ge
ne

ra
tio

n

(b)

20 60 100 140 180 220 260 300
100

120

140

160

180

200

220

population size

fit
ne

ss
(a)

 SDGA
S/D Coding
 Binary
 Gray
 Unary

Figure 7: Deceptive trap problem of order 3.

is significantly worse than when using binary, gray and S/D
encodings. SGA with gray encoding performs worse than
the binary encoding for the one-max problems, and better
for the deceptive trap problems.

As expected, SGA using S/D encoding performs better
than that using binary and gray encodings for the one-max
and the deceptive trap problems. Because in S/D encoding,
more salient bits are continuous to construct short and high
fit BBs, which are easily identified by SGA. This reveals that
the S/D encoding is proper for GAs searching. However,
lower salient bits in S/D binary string are randomly fixed by
genetic drift and noise from BBs, the performance of SGA
with S/D encoding cannot significantly better than those
with binary and gray encodings.

As shown Figures 6 and 7, the performance of SDGA
is significantly better than SGA with different encodings.
Using small population size, the explored solutions when
SDGA fully converged are much better than those of SGA
because each bit is identified by the searching process of
SDGA, and not randomly fixed by genetic drift and noise
from BBs. According to the same reason, the run duration
of SDGA is longer than that of SGA. That means there no
premature and drift occur. For larger population sizes, the
performance of SDGA is much better than that of SGA due
to the high-quality solutions and short run duration, be-
cause GAs search on USBBs of S/D binary encoding faster
than the non-uniformly scaled BBs and domino convergence,
which occurs only on the non-uniformly sequence of USBBs,
is too weak.

Table 1 summarizes the experimental results for the one-
max and the deceptive trip problems. The best fitness (run
duration) of each problem is calculated as the average of
the fitness (generations) GAs fully converged with different
population sizes.

The average fitness of SDGA is much better than that of
other SGA. The standard deviations of best fitness and run
duration of SDGA for different problems are significantly
smaller than other SGA. That reveals the population size is
important parameter for SGA searching, but does not the
significant parameter for SDGA searching. The run dura-
tions of SDGA for one-max problems with orders 4 and 5
are longer than those of SGA because SGA is strongly pre-
mature for the long binary string and small population sizes.

As in Table 1 described, for one-max and deceptive trap
problems, all GAs converge to sidewise of the optima, which
are overrepresented by BBs. But SGA with different binary
representation cannot explore the optima of the problems.
The ability of SDGA to explore optima, which are over-

represented by BBs, is significantly better than SGA. To
explore the global optimum of the deceptive trap problems,
we need use other niche methods to divide the whole pop-
ulation into some sub-populations. In each subpopulation,
the global optimum is overrepresented by BBs, thus SDGA
can efficiently explore this global optimum of the deceptive
trap problems.

Table 1: Comparison of results of SGA with differ-
ent binary representations and SDGA for the one-
max and deceptive problems.

one-max (order 2) one-max (order 3) one-max (order 4)

Pm best fit. run dur. best fit. run dur. best fit. run dur.

(s. d.) (s. d.) (s. d.) (S. d.) (s. d.) (s. d.)

SDGA 89.6 383.1 209.2 577.3 448.1 768.7

(1.24) (43.6) (2.9) (77.4) (6.8) (107.2)

S/D 81.1 446.1 180.9 597 375.9 694.9

coding (9.8) (187.4) (21.16) (287) (54.3) (377.2)

Binary 80.1 473.7 177.7 651 370.5 748.8

(10.3) (192.7) (21.9) (316.8) (42.2) (398)

Gray 78.3 496.9 173.1 691.2 365.2 803.6

(9.6) (196.3) (20.5) (328.5) (42.2) (434.8)

Unary 76.1 536.8 150.5 844.2 281.5 1006

(10.6) (218.5) (21.3) (416.7) (26.6) (558.4)

one-max (order 5) decep. (order 2) decep. (order 3)

SDGA 926.6 952.9 88.74 380 208.1 573.1

(9.8) (118.2) (0.78) (48) (2.8) (75.6)

S/D 777.1 761.8 80.02 428 182.9 602.9

coding (101) (422.4) (9.7) (173) (21.6) (285.4)

Binary 752.6 838.6 77.16 482 172.8 690.1

(91) (481.6) (9.1) (192) (21.1) (334.8)

Gray 719.8 909.5 78.76 453 177.9 647

(87.9) (502) (9.4) (183) (21.8) (309.5)

Unary 560.8 1216 74.18 549 150.7 882.7

(72.4) (726.9) (10.5) (221) (20.6) (451.9)

4.2 SDGA with the Mutation Operator
In this subsection we have consider the action of the mu-

tation operator for SDGA searching. We have implemented
our SDGA with different mutation probabilities to solve 30
dimensional integer one-max problem of order 3. Results
are averaged over 50 independent runs. Figure 8 presents
the experimental results where mutation probabilities are
0.001, 0.005, 0.01, 0.05 and 0.1 respectively. The plots show
for SDGA the run duration — fully converged generations
with respect to the population size N .

As shown in Figure 8, when the mutation probabilities are
smaller than 0.01, SDGA can fully converge with small and
large population sizes and the run durations do not increase
too long. When the mutation probabilities increase larger
than 0.01, SDGA with large population sizes are difficult to
fully converge, and only when using small population sizes,
SDGA can fully converge, but the run durations increase
significantly.

Table 2 summaries the experimental results with popula-
tion sizes 20, 40 and 60. For small population sizes (20 and
40), the mutation operators can improve the performance
of SDGA, because it can find some high-quality bits, which
are not included in current population. For large population

1230

20 40 60 80 100 120 140 160 180 200 220 240 260 280 300
400

600

800

1000

2000

4000

6000

10000

population size

ge
ne

ra
tio

n
Mutation Probability = 0.1
Mutation Probability = 0.05
Mutation Probability = 0.01
Mutation Probability = 0.005
Mutation Probability = 0.001
Mutation Probability = 0

Figure 8: SDGA with the mutation operator by dif-
ferent mutation probabilities for one-max problem
of order 3.

sizes (≥ 60), all high-quality bits are included in the initial
population, so mutation operator cannot improve the best
fitness when SDGA fully converged. Furthermore, when the
mutation probability is large than 0.01, SDGA cannot fully
converge in a reasonable time (here we set the upper bound
of the run duration equal to 106 generations).

Table 2: Comparison of results of SDGA with dif-
ferent mutation probabilities for one-max problem
of order 3. (“-”: cannot fully converged during 106

generations)

N = 20 N = 40 N = 60

Pm best fit. run dur. best fit. run dur. best fit. run dur.

(s. d.) (s. d.) (s. d.) (s. d.) (s. d.) (s. d.)

0 198.6 393 208.9 470 210 488

(5.7) (72) (1.2) (55) (0) (54)

0.001 201.7 411 209.4 472 210 517

(100) (49) (1.2) (43) (0) (54)

0.005 202.7 422 208.9 492 210 535

(2.9) (55) (1.3) (82) (0) (89)

0.01 203.8 415 209.1 504 210 545

(2.2) (59) (1.2) (76) (0) (80)

0.05 209.3 534 209.9 739 210 1202

(1) (158) (0.3) (202) (0) (317)

0.1 209.8 688 210 5629 210 66514

(0.6) (133) (0) (1857) (0) (21328)

0.2 209.8 10981 − − − −
(0.4) (7668) (−) (−) (−) (−)

4.3 Genotypic Distance on the S/D Binary
Representation

To validate the predictions about the methods depended
on the distance of real-valued space, can be directly used on
the S/D binary space based on our new defined genotypic
distance, we have combined SGA with the S/D binary en-
coding and the dynamic niche sharing methods [8] for mul-

timodal function optimization to solve 4 benchmark multi-
modal optimization problems as listed in Table 3. To assess
the effectiveness of the new genotypic distance on the S/D
binary space, its performance is compared with the combi-
nation of SGA with S/D binary representation and the dy-
namic niche sharing methods based on Hamming distance.
In applying SGA, we set the initial population size N = 100,
the maximal generations gmax = 1000, the length of S/D bi-
nary string for each dimension l/n = 32, the crossover prob-
ability pc = 0.8 and the mutation probability pm = 0.005.

Figure 9 shows the comparison results of the dynamic
niche sharing methods with the S/D genotypic distance and
Hamming distance for f6(x). Table 4 lists the solution qual-
ity comparison results in terms of the numbers of multiple
optima maintained. We have run each algorithm 10 times.
The dynamic niche sharing methods with the S/D genotypic
distance can explore all optima in f3(x)−f6(x) at each run.
Contrary, for the niche methods with Hamming distance,
the final population converged to a single optimum of the
multimodal problem and cannot find multiply optima. That
means the niche method cannon work due to the distance
distortion between genotypic space (S/D binary space) and
phenotypic space (real-valued space) when using Hamming
distance.

Table 3: The test suite of multimodal functions used
in our experiments.
Two-peak trap function (2 peaks):

f3(x) =

200
2

(2 − x), for 0 ≤ x < 2;

190
18

(x − 2), for 2 ≤ x ≤ 20;

Deb’s function (5 peaks):

f4(x) = sin6(5πx), x ∈ [0, 1];

Deb’s decreasing function (5 peaks):

f5(x) = 2−2((x−0.1)/0.9)2 sin6(5πx), x ∈ [0, 1];

Roots function (6 peaks):

f6(x) =
1

1 + |x6 − 1| , where x ∈ C, x = x1 + ix2 ∈ [−2, 2];

The experimental investigations reveal that the methods
depended on the Euclidean distance on the real-valued space
can be directly used on the S/D binary space with our new
defined genotypic distance.

Table 4: Comparison of results of the dynamic niche
sharing methods with the S/D genotypic distance
and Hamming distance.

Distance S/D genotypic distance Hamming distance

threshold Opti. No. Success rate Opti. No. Success rate

f3 2.0 2 100% 1 0%
f4 0.16 5 100% 1 0%
f5 0.16 5 100% 1 0%
f6 0.8 6 100% 1 0%

1231

−2
0

2

−2

0

2
0

0.5

1

S/D coding genotypic distance

fit
ne

ss

−2
0

2

−2

0

2
0

0.5

1

(b)

Hamming distance

fit
ne

ss

(a)

Figure 9: Comparison of results of the dynamic
niche sharing methods with S/D genotypic distance
and Hamming distance for f6(x). (key: “o” — the
optima in the final population)

5. CONCLUSIONS
In this paper, we introduced a new genetic representation

— a splicing/decomposable (S/D) binary encoding, which
was proposed based on some theoretical guidance and ex-
isting recommendations for designing efficient genetic rep-
resentations. The S/D binary representation can be spliced
and decomposed to describe the rough approximations of the
problem solutions with different precisions by different num-
ber of uniform-salient building blocks (USBBs). According
to the characteristics of the S/D binary representation, ge-
netic algorithms (GAs) can be applied from the high scaled
to the low scaled BBs sequentially to avoid genetic drift and
noise of the competing BBs and improve GAs’ performance.
Our theoretical and empirical investigations reveal that the
S/D binary representation is more proper than other ex-
isting binary encodings for GAs searching. Moreover, we
defined a new genotypic distance on the S/D binary space,
which is equivalent to the Euclidean distance on the real-
valued space during GAs convergence. Based on the new
genotypic distance, GAs can reliably and predictably solve
problems of bounded complexity and the methods depended
on the Euclidean distance for solving different kinds of op-
timization problems can be directly used on the S/D binary
space.

6. ACKNOWLEDGMENTS
This research was partially supported by RGC Earmarked

Grant 4173/04E of Hong Kong SAR and RGC Research
Grant Direct Allocation of the Chinese University of Hong
Kong.

7. REFERENCES
[1] D. E. Goldberg, D. E, Genetic Algorithms in Search,

Optimization, and Machine Learning. Reading, MA:
Addison-Wesley, 1989

[2] R. Hamming, Coding and Information Theory,
Prentice-Hall, 1980

[3] K. H. Han, and J. H. Kim, Genetic quantum
algorithm and its application to combinatorial
optimization problem, Proceeding of Congress on
Evolutionary Computation 2000, 1: 1354-1360, 2000

[4] J .H. Holland, Adaptation in Natural and Artificial
systems, Ann Arbor, MI: University of Michigan
Press, 1975

[5] B. A. Julstrom, Redundant genetic encodings may not
be harmful, Proceedings of the Genetic and
Evolutionary Computation Conference 1999, 1: 791,
San Francisco, CA: Morgan Kaufmann Publishers,
1999

[6] K. S. Leung, J. Y. Sun, and Z. B. Xu, Efficiency
speed-up strategies for evolutionary computation: an
adaptive implementation, Engineering Computations,
19 (3): 272-304, 2002

[7] G. E. Liepins, and M. D. Vose, Representational issues
in genetic optimization, Journal of Experimental and
Theoretical Artificial Intelligence, 2: 101-115, 1990

[8] S. W. Mahfoud, Niching methods for genetic
algorithms, Doctoral Thesis, University of Illinois at
Urbana-Champaign, 1996

[9] F. Rothlauf, Representations for Genetic and
Evolutionary Algorithms, Heidelberg; New York:
Physica-Verl., 2002

[10] J. D. Schaffer, R. A. Caruana, L. J. Eshelman, and R.
Das, A study of control parameters affecting online
performance of genetic algorithms for function
optimization, Proceedings of the Third International
Conference on Genetic Algorithms, San Mateo, CA:
Morgan Kaufmann, 1989

[11] D. Thierens, Analysis and Design of Genetic
Algorithms, Leuven, Belgium: Katholieke Universiteit
Leuven, 1990

[12] D. Whitley, Local search and high precision gray
codes: Convergence results and neighborhoods. In
Martin, W., & Spears, W. (Eds.), Foundations of
Genetic Algorithms 6, San Francisco, California:
Morgan Kaufmann Publishers, Inc., 2000

[13] Z. B. Xu, K. S. Leung, Y. Liang, and Y. Leung,
Efficiency speed-up strategies for evolutionary
computation: fundamentals and fast-GAs, Applied
Mathematics and Computation, 142: 341-388, 2003

1232

