
On the Utility of the Multimodal Problem Generator for
Assessing the Performance of Evolutionary Algorithms

Fernando G. Lobo
IMAR - Centro de Modelação Ecológica

and UAlg Informatics Laboratory
DEEI-FCT, University of Algarve

Campus de Gambelas
8000-117 Faro, Portugal

flobo@ualg.pt

Cláudio F. Lima
UAlg Informatics Laboratory

DEEI-FCT, University of Algarve
Campus de Gambelas

8000-117 Faro, Portugal

clima@ualg.pt

ABSTRACT
This paper looks in detail at how an evolutionary algorithm
attempts to solve instances from the multimodal problem
generator. The paper shows that in order to consistently
reach the global optimum, an evolutionary algorithm re-
quires a population size that should grow at least linearly
with the number of peaks. A close relationship is also shown
between the supply and decision making issues that have
been identified previously in the context of population siz-
ing models for additively decomposable problems.

The most important result of the paper, however, is that
solving an instance of the multimodal problem generator is
like solving a peak-in-a-haystack, and it is argued that evo-
lutionary algorithms are not the best algorithms for such a
task. Finally, and as opposed to what several researchers
have been doing, it is our strong belief that the multimodal
problem generator is not adequate for assessing the perfor-
mance of evolutionary algorithms.

Categories and Subject Descriptors: I.2.8 [Artifi-
cial Intelligence]: Problem Solving, Control Methods, and
Search; I.2.6 [Artificial Intelligence]: Learning.

General Terms: Algorithms, Performance.

Keywords: Test problems, Experimental research.

1. INTRODUCTION
The multimodal problem generator has first been intro-

duced by De Jong, Potter, and Spears [2]. The genera-
tor creates problem instances with a controllable number
of peaks. The major motivation for developing that (and
other) test problem generators is primarily connected to a
lack of a sound methodology for conducting experimental
research. For many years, researchers have been proposing
new algorithms, or variations on existing algorithms, and of-
ten assess their performance on a limited number of ad-hoc

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

test functions hoping that the results can be generalized be-
yond that. Oftentimes, the results do not generalize beyond
those functions, and so, there is a large number of research
papers with unfair comparisons and claims that lack sub-
stantial support.

In addition to that, it is well known that it is not possi-
ble to have a search algorithm that is better than another
search algorithm for all possible problems [13]. The no-free-
lunch argument, however, is usually not a big concern for
researchers in the field because it is widely accepted that
evolutionary algorithms (EAs) do not attempt to solve all
(random) problems, but rather attempt to solve problems
that have some sort of structure that can be exploited by
the EA’s internal mechanisms.

Because of the above reasons, EA researchers have been
trying to identify classes of problems in order to find ap-
propriate algorithms for solving instances of those classes.
The idea of using a test problem generator becomes then
interesting as it removes to a large degree the possibility of
tweaking a particular algorithm to a particular test function.

In this paper we analyze in detail the multimodal prob-
lem generator. After its introduction in 1997, Spears used
the generator in the context of assessing the usefulness of
crossover versus mutation on that particular class of prob-
lems [12]. Since then, this problem generator has been used
by many researchers to assess the performance of evolution-
ary algorithms [7, 11, 1, 6, 3].

The rest of this text is organized as follows. We start by
describing the multimodal problem generator. Then, in sec-
tion 3 we set forth an hypothesis of how an EA attempts to
solve any given instance of the problem generator. Section 4
is an experimental section that confirms our hypothesis. Fi-
nally, section 5 shows that EAs are not the most adequate
algorithms for solving instances of the multimodal problem
generator. The paper is summarized in section 6, and the
major conclusions are highlighted in section 7.

2. THE MULTIMODAL PROBLEM
GENERATOR

The generator creates problem instances with a certain
number of peaks (the degree of multi-modality). For a prob-
lem with P peaks, P bit strings of length L are randomly
generated. Each of these strings is a peak (a local optimum)
in the landscape. Different heights can be assigned to dif-

1233

ferent peaks based on various schemes (equal height, linear,
logarithm-based, and so on). To evaluate an arbitrary in-
dividual x̄, first locate the nearest peak in Hamming space,
call it Peakn(x̄).

Hamming(x̄, P eakn(x̄)) =
P

min
i=1

(Hamming(x̄, P eaki))

Then the fitness of x̄ is the number of bits the string has in
common with that nearest peak, divided by L, and scaled by
the height of the nearest peak. In case there is a tie when
finding the nearest peak, the highest neighboring peak is
chosen.

f(x̄) =
L − Hamming(x̄, P eakn(x̄))

L
· Height(Peakn(x̄))

In this paper, and without loss of generality, we are going
to assume a linear scheme for assigning heights to peaks.
Under this scheme, the peak heights are linearly interpolated
between a maximum value of 1.0 and a minimum value of
h < 1.0. For instance, on a 6-peak problem with h = 0.5,
the heights of the peaks would be 0.5, 0.6, 0.7, 0.8, 0.9, and
1.0.

On this class of problems, any string has a fitness value
that ranges from 0.0 to 1.0. The goal of a search algorithm
when optimizing an instance of this class of problems is to
find the highest peak, a string with fitness 1.0. The difficulty
of the problem depends on the following aspects:

• Number of peaks.

• Distribution of peak heights.

• Distribution of peaks.

The higher the number of peaks, the more difficult the
problem. Likewise, the more peaks have heights close to the
global optimum, the more difficult the problem. Finally, the
location of the peaks in the search space can also make some
problem instances more difficult than others. To see why
this is so, consider a two-peak problem where the location
of peaks are the strings 111. . .111 and 000. . .000. Without
loss of generality, let us assume that the 000. . .000 string is
the global optimum. The peaks are maximally away from
each other in Hamming space, and therefore, it will be very
difficult for a solution that is very close to one of the peaks to
move to a solution that is close to the other peak. The case
when the optima are maximally away is of course an extreme
situation. Another extreme situation is the case where the
location of peaks are very close in Hamming distance. For
example, a string with all 0s, and a string with just one 1
and the rest all 0s. Under such a layout, the problem is
much easier to solve because solutions can easily jump from
peak to peak.

In order to wash away the effects of the layout of peaks, re-
searchers often conduct experiments by repeating their sim-
ulations for a number of different random layout of peaks
and then average the results. By doing so, the possibility
that a particular layout favors or not the EA diminishes.
In any case, even for a single random layout of peaks, the
extreme (and close to extreme) situations are very unlikely
to occur because the Hamming distance between any two
peaks follows a binomial distribution with L Bernoulli inde-
pendent trials, each with success probability 1/2. Thus, the

average distance between peaks is L/2, and the standard

deviation is
p

L/4.

3. HOW AN EVOLUTIONARY
ALGORITHM SOLVES THESE
PROBLEMS?

Spears [12] has made several controlled experiments with
the multimodal problem generator. The experiments in-
cluded problems with peaks with equal heights as well as
peaks with unequal heights using a linear interpolation as
described in our previous section. The major conclusions
from his experimental study was that an EA with recombi-
nation alone outperformed an EA with mutation alone on
a one-peak problem, but as the number of peaks increase,
recombination ends up having a deleterious effect. As op-
posed to that, the performance of mutation does not seem
to be much affected by the number of peaks. Spears also
observed that crossover benefits when the peaks have un-
equal heights, especially as the height h of the lowest peak
is reduced. In his experiments, Spears used a standard gen-
erational genetic algorithm (GA) with population size of 100
individuals, fitness-proportional selection with scaling, one-
point crossover with probability Pc = 0.6, and a bit-flip
mutation rate Pm = 0.001. The runs were stopped after
the completion of 30 thousand fitness function evaluations.
Spears also observed that using other crossover operators
(two-point or uniform) yielded similar results.

In the rest of this paper we are going to argue that the
fundamental issue here is not between the usefulness of
crossover versus mutation and vice-versa. Herein, we ar-
gue that both operators are qualitatively equally good (or
equally bad) for reliably solving this class of problems. Re-
liability should be emphasized, as we are particularly inter-
ested in the ability of an EA to consistently find the best
peak. In order to so, it doesn’t really matter if recombina-
tion is better than mutation or vice-versa. As we are about
to see, the critical issue is the population size. If the pop-
ulation size is not large enough, an EA will only be able to
find the best peak occasionally. On the contrary, if the pop-
ulation is sized properly, an EA can reliably find the best
peak.

Before getting deeper into this issue, let us think about
how an EA tries to solve a problem with multiple peaks. No-
tice that a single-peak problem is precisely the exact same
problem as the counting ones problem (often referred to as
onemax). In the onemax problem, the fitness of a bit-string
is the number of bits with value 1. Normalizing the fitness
value (dividing by L) in onemax corresponds to a single-
peak problem where the location of the peak is the string
111. . .111. The onemax problem has been studied exten-
sively both in theoretical and empirical terms in the evo-
lutionary computation literature. It is a problem that is
considered easy for EAs, and that can be solved to optimal-
ity in O(L log L) fitness function evaluations, either with a
crossover-based EA [5, 10] or with a mutation-based EA [9].

Before analyzing how an EA solves a general P-peak prob-
lem, let us first consider the 2-peak problem described pre-
viously, where the location of the two peaks are 111. . .111
and 000. . .000. In this problem, the best solutions are strings
with a lot of 1s and strings with a lot of 0s. Strings that have
roughly half 0s and half 1s have low fitness values. As Spears
has pointed out, crossover performs poorly when combining

1234

two solutions that are close to the top of two distinct peaks.
Crossing a string with a lot of 1s with a string with a lot
of 0s, is likely to yield strings in the valley between the two
peaks. Notice however, that if we cross two strings near the
same peak, the resulting offspring are likely to be near that
same peak also. Mutation on the other hand, does a small
perturbation on a solution. If we mutate a solution that is
close to the top of some peak, the resulting solution will also
be close to the top of that same peak, perhaps a little bit
closer or a little bit further away.

In a population-based EA, the selection operator favors
fitter solutions. When having multiple peaks, what is likely
to occur in a regular EA (an EA without diversity preser-
vation techniques such as niching) is that fairly quickly, the
population will be concentrated in the basin of attraction
of a single peak. Once that happens it really does not
make much difference whether crossover or mutation is bet-
ter. Once the population is focused around a single peak,
the problem becomes akin to onemax and any operator (to-
gether with selection) will be able to climb up the peak.

Notice also that once the population is focused around
a peak, there is no information about the search space to
help to guide the algorithm to reach another peak. In other
words, there is no structure to exploit. Crossover is only
effective in these problems when it combines two solutions
near the same peak. Otherwise it cannot do much because
there is no sub-solutions to combine. The reason why there
is no structure to exploit is due to the random location of
peaks. Being near one peak, tell us nothing regarding where
other peaks might be.

For an EA to reach the top of the highest peak it has to fo-
cus its attention on that very best peak right from the early
stages of the search. Herein, we argue that an EA with a
small population size can only do so due to luck (for a large
number of peaks, of course). To reliably solve the problem,
the population sizing requirements are quite large as the GA
needs to have in the initial population enough samples of so-
lutions at the basin of attraction of the best peak, and then
hope that the selection operator is able to focus the popu-
lation on that region. Notice that it is not enough to have a
single instance of a solution near the best peak, because in a
single competition, that solution might lose with a solution
near another peak. The selection operator has to reliably
distinguish between solutions at the basin of attraction of
the best peak, and solutions at the basin of attraction of the
other peaks. These issues are analogous to the ones identi-
fied in previous population sizing models regarding building
block supply and decision making [5, 4]. The difference is
that in those studies, the models are centered around the
notion of a building block. In this case, however, there are
no building blocks. The competition is taking place at the
level of complete strings, with the different peaks competing
with each other to absorb the population.

4. EXPERIMENTAL VERIFICATION
To confirm our hypothesis, we run a standard GA on

a problem instance with multiple peaks, and monitor the
distribution of the population members among the various
peaks during the course of the run. Recall that in order
to compute the fitness of a solution, we have to locate the
nearest peak to that solution. In addition to computing the
fitness value for the solution, we keep track of the nearest
peak to that solution, and we do so for all the population

members. By doing that, we can have an idea of how many
solutions are at the basin of attraction of a particular peak
at any given point in time.

For a problem with P peaks, and assuming that the ran-
dom layout of peaks does not particularly favor one peak
over the other, we should expect that in a randomly initial-
ized population of size N , the number of solutions at the
basin of attraction of a given peak is on average N/P . In
practice we might observe that the distribution is not com-
pletely uniform, but has a slight preference for better peaks.
The reason for that lies in the fact that when 2 solutions are
equally distant to a peak, the highest peak is considered to
be the closest one.

We now show the results of running a standard GA on
a 100-bit problem instance with 2, 10, and 100 peaks. The
GA is generational, using two-point crossover with probabil-
ity Pc = 0.7, binary tournament selection without replace-
ment, bit-flip mutation with probability Pm = 1/L = 0.01,
and population size 100. We let the GA run until it either
reaches the global optimum or if a maximum of 30 thousand
function evaluations have elapsed. For all problems, peak 0
is the highest peak, peak 1 is the second highest peak, peak
2 is the third highest peak, and so on. It should be stressed
at this point that we are not trying to tweak the GA by any
means, or that these parameters and operators are the best
for these problems. What we are particularly interested in
showing with the experiments is the evolution of the distri-
bution of solutions around the peaks, and that turns out to
exhibit a similar behavior for a large combination of param-
eter settings and operators.

Figure 1-a shows the distribution of solutions around the
peaks for the first 70 generations of a two-peak problem. The
results were obtained from a single run on a single problem
instance. Although it is usually important to do a number
of independent simulations when testing EAs, we believe
that the presentation is easier by looking in detail at what
happens in a single run (we did perform more independent
runs and obtained similar results). Out of a total of 100
individuals, 58 were near peak 0 and 42 were near peak 1 at
generation 0. The slight preference towards peak 0 can be
explained in part due to chance variation alone (recall that
this is a single run), and in part due to the fact that ties are
resolved by assigning the nearest peak to be the highest one.
Notice that fairly quickly the whole population is focused
around a single peak, which happens to be the best one in
this case. By generation 6, the whole population is at the
basin of attraction of the best peak, and from that point
on until the end of the search, the distribution of solutions
around the peaks remain like that.

Figure 1-b shows the fitness of the best solution in the
population at any given point in time for the exact same
run on the 2-peak problem. The interesting part to notice
from both plots is that around generation 6, the popula-
tion only contains solutions near peak 0, and by that time
the best solution of the population is only worth 0.73 (it is
at a Hamming distance of 27 bits to the global optimum).
But from that point on, the problem becomes as easy as the
onemax problem, and any operator (with more or less effort)
together with selection is able to climb up the peak. Notice
that for these problems, the GA would be able to climb
the peak faster had it used uniform crossover rather than
two-point crossover, for the exact same reason why uniform
crossover is also faster when solving the onemax problem.

1235

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50 60

fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 n

ea
r

a
pe

ak

generation number

peak 0
peak 1

(a) Distribution of solutions

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50 60

be
st

 fi
tn

es
s

generation number

(b) Fitness of the best solution

Figure 1: Distribution of solutions around the peaks and the fitness of the best solution in the population
for a 2-peak problem using a population size of 100.

 0

 20

 40

 60

 80

 100

 0 10 20 30 40 50

fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 n

ea
r

a
pe

ak

generation number

peak 0
peak 1
peak 2
peak 3
peak 4
peak 5
peak 6
peak 7
peak 8
peak 9

(a) Distribution of solutions

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 10 20 30 40 50

be
st

 fi
tn

es
s

generation number

(b) Fitness of the best solution

Figure 2: Distribution of solutions around the peaks and the fitness of the best solution in the population
for a 10-peak problem using a population size of 100.

Nevertheless, that’s not the point that we want to make.
We are not advocating that one particular crossover opera-
tor is better than another crossover operator, nor that it is
better than mutation. What we want to emphasize here is
that when a GA solves the 2-peak problem, it fairly quickly
focuses the population on a single peak, and from that point
on the problem is akin to the trivial onemax problem.

In this particular run, the population did focus its atten-
tion to the very best peak. The reason why that happened
was because the population was sufficiently large in order to
decide, in a statistical sense, in favor of the best peak.

Now let us do the same experiments for a 10-peak prob-
lem. Using the same parameter settings as before, we did a
single run on a single instance of a 10-peak problem. The
results are depicted in figure 2. The behavior of the GA on
this instance is identical to the one obtained with the 2-peak
problem. Again, around generation 10, the whole popula-

tion is focused around a single peak, which happens to be
again the best peak. Once the population is focused around
that peak, the GA proceeded to solve it very easily, again
just like onemax.

We can now go further and test the GA with the exact
same settings on an instance of a 100-peak problem. In this
case it would be hard to read a plot with 100 lines show-
ing the distribution of solutions around peaks through time.
Rather than doing that, we use a bar plot for showing the
distribution of solutions at particular points in time. Specif-
ically, parts a), b), and c) of Figure 3, show the distribution
of solutions at generation 0, 5, and 10, respectively. By gen-
eration 16, the whole population is at the basin of attraction
of a single peak. This time however, it was not the best peak
(no need for figure at generation 16—it is a single bar for
peak 7). Figure 3-d shows the fitness of the best population
member through time. The algorithm reaches a maximum

1236

 0

 20

 40

 60

 80

 100

 0 20 40 60 80fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 n

ea
r

a
pe

ak
 (

ge
ne

ra
tio

n
0)

peak number

(a) Distribution of solutions at generation 0

 0

 20

 40

 60

 80

 100

 0 20 40 60 80fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 n

ea
r

a
pe

ak
 (

ge
ne

ra
tio

n
5)

peak number

(b) Distribution of solutions at generation 5

 0

 20

 40

 60

 80

 100

 0 20 40 60 80fr
eq

ue
nc

y
of

 s
ol

ut
io

ns
 n

ea
r

a
pe

ak
 (

ge
ne

ra
tio

n
10

)

peak number

(c) Distribution of solutions at generation 10

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 50 100 150 200 250 300

be
st

 fi
tn

es
s

generation number

(d) Fitness of the best solution

Figure 3: Distribution of solutions around the peaks at generation (a) zero, (b) five, (c) ten, and the (d)
fitness of the best solution in the population for a 100-peak problem using a population size of 100.

fitness value of 0.965 by generation 70 (which correspond to
the height of peak 7), and then fluctuates around that value
until the end of the run.

This time, it took slightly longer for the GA to settle
around a single peak. But by generation 16, all the popula-
tion members were near peak 7. Again, once that happened
the GA proceeded to solve the problem, climbing that peak
just like it does on onemax. This time, however, it didn’t
reach the very best peak, and because of that, the GA con-
tinued to run until the 30 thousand function evaluations
elapsed (300 generations).1 But it should be obvious to the
reader that even if we let the GA run much longer, it would
be nearly impossible for the algorithm to reach the very best
peak. We say nearly impossible because when mutation is
turned on, it is always possible to reach any other solution in
the search space. But it is easy to recognize that in this case
it would take an exponential time to do so. The reason is

1For the sake of simplicity, we evaluate the whole population
in each generation, but we are aware that in a careful imple-
mentation we could evaluate only those individuals which
have been affected by crossover or mutation

simple. Once the population members are all concentrated
at the basin of attraction of the same peak, it is just a matter
of a few generations until all population members become
very close to the top of that peak. At that point, recom-
bination will not be able to do much other than generating
two solutions near that same peak, and mutation will only
be able to move a solution to the basin of attraction of an-
other peak if something like O(L) bits are mutated at once.
Notice also that having a single solution at the basin of at-
traction of the best peak would not be sufficient. It would
have to be a solution very close to the top of the best peak,
or otherwise it would not be propagated by selection. Given
a random layout of peaks, the expected Hamming distance
between any two peaks is L/2 bits. In order for mutation
to move a solution from the top of some peak to the top of
the best peak, it would have to mutate on average L/2 bits
and not mutate the remaining L/2 bits. With a mutation
rate of 1/L (or with any other mutation rate) it would take
an exponential time to do such a jump!

We now set forth an hypothesis that if we increase the
population size, the GA will have a better chance at fo-

1237

 0

 20

 40

 60

 80

 100

 51200 25600 12800 6400 3200 1600 800 400 200 100

S
uc

ce
ss

 r
at

e
(S

R
)

population size

(a) Success rate: Percentage of runs able to reach
the best peak for the various population sizes.

 1000

 10000

 100000

 1e+06

 1e+07

 51200 25600 12800 6400 3200 1600 800 400 200 100

A
vg

. e
va

lu
at

io
ns

 to
 s

ol
ut

io
n

(A
E

S
)

population size

(b) Average number of evaluations. The error
bars shown for each population size denote the
standard deviation of the experiments.

Figure 4: Success rate and average number of evaluations to find the highest peak when solving an instance
of a 100-peak problem.

cusing on the best peak, and therefore reliably solve the
problem to optimality. To test our hypothesis we run the
GA with the exact same settings but varying the popula-
tion size with exponentially increasing sizes: 100, 200, 400,
800, 1600, 3200, 6400, 12800, 25600, and 51200. For each
population size we conduct 100 independent runs. We let
the algorithm run until it either finds the best solution, or
the distribution of the population members is concentrated
around a peak other than the best one (once that happens
it takes exponential time to solve the problem to optimality
and we do not have time to wait for that). Figure 4 shows
the success rate (SR), the number of runs that were able to
reach the best peak for the different population sizes, as well
as the average number of function evaluations (AES) needed
by the algorithm to reach the best peak. This measure is an
average of only those runs which were successful in finding
the best peak.

Notice that increasing the population size does help the
GA to obtain higher success rates, but the population sizing
requirements are large. Even a population size of 51200 was
only sufficient to reach a 65% success rate, and we did not
do further experiments with larger sizes. Nonetheless, it can
be expected that by raising the population size even further
we can get closer and closer to a 100% success rate. The
AES measure grows linearly with the population size. That
makes sense because the number of generations needed to
climb a peak is more or less independent of the population
size [10]. Thus, doubling the population size makes the GA
take twice as much function evaluations to reach the highest
peak.

5. ARE EVOLUTIONARY ALGORITHMS
ADEQUATE FOR THESE PROBLEMS?

The results so far suggest that on this class of problems
the relative merits of crossover over mutation and vice-versa
are a secondary issue. We have shown that an EA rapidly
concentrates its population members around a single peak,

and from that point on, the problem becomes equivalent
to the onemax problem, for which the debate of crossover
versus mutation is rather pointless since both can solve the
problem in O(L log L) function evaluations. What our re-
sults suggest is that the population size plays a crucial role
in the ability of an EA to reliably reach the highest peak.
The population sizing requirements are large, and clearly
depend on 2 issues: (1) we need to have enough samples of
solutions at the basin of attraction of the best peak right
from the beginning of the search, and (2) the EA has to
be able to propagate those solutions rather than propagat-
ing solutions at the basin of attraction of other peaks. Al-
though we did not derive a population sizing model for this
class of problems, it is clear that such a model would have
to take into account the number of peaks, and the ability of
the selection operator to distinguish between solutions near
the best peak, and solutions that are near the second best
peak (the toughest competitors). As pointed out before,
there is a strong connection between these issues and the
building block supply and decision making issues from ex-
isting population sizing models for additively decomposable
problems [5, 4].

We now stop for a moment to reflect whether an EA is
an appropriate algorithm to solve instances from this class
of problems. The answer is no and there is a simple reason
to it. EAs are good when there is some structure to be ex-
ploited. Instances from the multimodal problem generator
have their structure confined to the neighborhood of a peak,
but peaks are random and have nothing to do with one an-
other. Thus, in order to solve the problem the EA has to
either get lucky and concentrate on the best peak, or use a
population size that should be at least O(P). But if those
are the requirements for reliably solving the problem, then
a multi-restart hillclimbing algorithm should be able to do
the job much faster. Such an algorithm has no population at
all. Starting from a random solution, it climbs up the peak.
Once there, it restarts from another random solution and
climbs the peak again, and so on until a specified maximum

1238

Table 1: Multi-restart nest ascent hillclimbing on a
100-peak problem.

Success Rate 100
Avg. Evaluations to Solution 22779
Std. Deviation of Evals. to Solution 21369
Avg. number of Restarts 52.9
Std. Deviation of number of Restarts 49.7

number of function evaluations has elapsed or some other
stopping criterion is reached. On a problem with P peaks,
we should expect an average of P/2 restarts.

We have conducted such experiments using a multi-restart
next-ascent hillclimbing algorithm. In next-ascent hillclimb-
ing, the bits are flipped in a predefined (randomly generated)
sequence. A flip is accepted if the new solution has a higher
fitness than the current solution. In that case, the new solu-
tion becomes the current solution, and the process continues
until no further improvement is possible by flipping a single
bit.

We performed 100 independent runs of a multi-restart
next-ascent algorithm, and for each one we let the algo-
rithm run until either it found the best peak, or a maximum
of 1 million function evaluations was reached. The results
are summarized in table 5. As expected, the multi-restart
next ascent algorithm consistently reaches the highest peak
in all runs, taking on average close to 23 thousand eval-
uation, and needing on average 53 restarts to do so. We
are tempted do say that solving a problem instance from
the multimodal generator is not as difficult as finding a
needle-in-a-haystack but it is really like finding a peak-in-
a-haystack. The structure in a peak-in-a-haystack problem
is confined to the neighborhood of peaks, but peaks are com-
pletely unrelated to each other. In order to solve such prob-
lems, it is unlikely that any EA is capable of doing any better
than a multi-restart hillclimbing algorithm.

It should be pointed out that even iterated local search
algorithms [8] would have difficulties in solving these prob-
lems unless they are capable of adjusting their perturbation
strength to move very far away from an optimum. In other
words, to do a complete restart. The reason for this has
been mentioned before. Peaks have nothing to do with one
another, and that goes against the basic principles of op-
eration of iterated local search methods. These methods
search the space of local optima. The problem is that in
this case, a local optimum gives no information whatsoever
as to whether other local optima might be.

6. SUMMARY
This paper looked in detail at the multimodal problem

generator, a test problem generator that has been used by
many researchers to assess the performance of evolutionary
algorithms.

After setting an hypothesis of how an EA attempts to
solve problems from this class, we conducted computer sim-
ulations that confirmed our suspicion. It was shown that
the EA rapidly concentrates its population around a sin-
gle peak, and after that, the algorithm simply climbs that
peak, having virtually no chance from that point on to reach
another peak.

The paper then showed that the only way to reliably solve
these problems with an EA is by raising the population size

so that supply and decision making issues are taken into
consideration. Finally, the paper argued that the multi-
modal problem generator produces instances that are like a
peak-in-a-haystack, and that EAs are not the most adequate
algorithms for solving such problems.

7. CONCLUSIONS
Several researchers have been using the multimodal prob-

lem generator for assessing and comparing the performance
of various evolutionary algorithms. Based on those ex-
perimental studies, researchers have been making different
claims as to the adequacy of an operator over another, or the
relative merits of a particular EA with respect to another.
The results presented in this paper suggest that such argu-
ments are not important and that it really doesn’t matter
which operator is used (for this class of problems) as long
as the population size is large enough so that the EA is able
to discriminate between solutions at the basin of attraction
of the best peak and solutions at the basin of attraction of
other peaks. The paper shows that on this class of prob-
lems, the EA very quickly concentrates the population at
the basin of attraction of a single peak, and once that hap-
pens, the problem becomes equivalent to the the onemax
problem, which has been widely studied by the evolutionary
computation community.

Finally, the paper argues that the multimodal problem
generator should not be used for assessing the performance
of EAs. Due to the characteristics of the problem generator,
it is very unlikely that any EA is capable of beating (both
in speed and reliability) the performance of a multi-restart
hillclimbing algorithm. Thus, when using this problem gen-
erator to assess the relative merits of different EAs, the best
performing ones are likely to be those that better mimic the
behavior of a multi-restart hillclimbing algorithm — EAs
using elitism with very small populations and subject to
restarts when there is no improvement after some number
of generations. Without restarts, an EA can only reliably
solve instances from the multimodal problem generator if
the population is sized properly to take into account the is-
sues of supply and decision-making, but that turns out to be
much more expensive than using a multi-restart hillclimbing
algorithm in the first place.

The class of problems that can be solved efficiently by a
multi-restart hillclimbing algorithm is limited and does not
allow EAs to exhibit their full potential. Population-based
search algorithms such as EAs should in principle be able to
efficiently solve problems that are not easily solvable by a
multi-restart hillclimber. If that was not the case, then one
could question the utility of having EAs themselves as func-
tion optimizers — hillclimbers would be sufficient. These
arguments gives us enough support to claim that the mul-
timodal problem generator should not be used to assess the
performance of EAs.

Notice that we are not saying that the multimodal prob-
lem generator is uninteresting. It is in fact quite instructive
because it reveals interesting algorithm dynamics. We also
do not make any claims regarding the existence or not of
real world problems with characteristics similar to those of
instances obtained from the multimodal generator. But one
thing is sure. If there are real world problems with such
characteristics, then an evolutionary algorithm (no matter
if it has this or that operator) is certainly not the algorithm
of choice for those problems.

1239

As a final remark, we would like to say that the idea of
having problem generators is, in our opinion, a nice idea and
an interesting research topic to pursue as far as experimental
research is concerned. But in order to be useful for assessing
the performance of EAs, it is important that the generators
are capable of generating problem instances that have some
sort of structure that can be exploited by EAs, as opposed
to problem instances that are relatively easily solvable by
hillclimbing alike algorithms.

Acknowledgments
We thank the support of the Portuguese Foundation
for Science and Technology (FCT/MCES) under grants
POSI/SRI/42065/2001, POSC/EEA-ESE/61218/2004, and
SFRH/BD/16980/2004. We also thank the anonymous re-
viewers for their helpful comments and suggestions.

8. REFERENCES
[1] E. Alba and J. M. Troya. Cellular evolutionary

algorithms: Evaluating the influence of ratio. In H.-P.
Schwefel et al., editors, Parallel Problem Solving from
Nature - PPSN VI 6th International Conference,
pages 29–38. Springer-Verlag, 2000.

[2] K. A. De Jong, M. A. Potter, and W. M. Spears.
Using problem generators to explore the effects of
epistasis. In T. Bäck, editor, Proceedings of the
International Conference on Genetic Algorithms
(ICGA 1997), pages 338–345, San Francisco, 1997.
Morgan Kaufmann.

[3] A. E. Eiben, E. Marchiori, and V. A. Valko.
Evolutionary algorithms with on-the-fly population
size adjustment. In X. Yao et al., editors, Parallel
Problem Solving from Nature PPSN VIII, LNCS 3242,
pages 41–50. Springer, 2004.

[4] D. E. Goldberg, K. Deb, and J. H. Clark. Genetic
algorithms, noise, and the sizing of populations.
Complex Systems, 6:333–362, 1992. Also IlliGAL
Report No. 91010.

[5] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999.

[6] S. Hill and C. O’Riordan. Inversion revisited - Analysis
of an inversion operator using problem generators. In
F. Rothlauf and D. Thierens, editors, Proceedings of
the Analysis and Design of Representations and
Operators (ADoRo), part of GECCO 2003, 2003.

[7] J. Kennedy and W. M. Spears. Matching algorithms
to problems: An experimental test of the particle
swarm and some genetic algorithms on the
multimodal problem generator. In Proceedings of 1998
IEEE International Conference on Evolutionary
Computation, pages 78–83, Piscataway, NJ, 1998.
IEEE Press.

[8] H. R. Lourenco, O. Martin, and T. Stützle. Iterated
local search. In F. Glover and G. Kochenberger,
editors, Handbook of Metaheuristics, pages 321–353,
Norwell, MA, 2002. Kluwer Academic Publishers.

[9] H. Mühlenbein. How genetic algorithms really work:
I.Mutation and Hillclimbing. In R. Männer and
B. Manderick, editors, Parallel Problem Solving from
Nature 2, pages 15–25, Amsterdam, The Netherlands,
1992. Elsevier Science.

[10] H. Mühlenbein and D. Schlierkamp-Voosen. Predictive
models for the breeder genetic algorithm: I.
Continuous parameter optimization. Evolutionary
Computation, 1(1):25–49, 1993.

[11] G. Ochoa, I. Harvey, and H. Buxton. On
recombination and optimal mutation rates. In
W. Banzhaf et al., editors, Proceedings of the Genetic
and Evolutionary Computation Conference
(GECCO-99), pages 488–495, San Francisco, CA,
1999. Morgan Kaufmann.

[12] W. M. Spears. Evolutionary Algorithms: The role of
mutation and recombination. Springer, 2002.

[13] D. H. Wolpert and W. G. Macready. No Free Lunch
Theorems for Optimization. IEEE Transactions on
Evolutionary Computation, 1(1):67–82, 1997.

1240

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

