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ABSTRACT
In an evolutionary algorithm, the population has a very im-
portant role as its size has direct implications regarding solu-
tion quality, speed, and reliability. Theoretical studies have
been done in the past to investigate the role of population
sizing in evolutionary algorithms. In addition to those stud-
ies, several self-adjusting population sizing mechanisms have
been proposed in the literature. This paper revisits the lat-
ter topic and pays special attention to the genetic algorithm
with adaptive population size (APGA), for which several re-
searchers have claimed to be very effective at autonomously
(re)sizing the population.

As opposed to those previous claims, this paper suggests
a complete opposite view. Specifically, it shows that APGA
is not capable of adapting the population size at all. This
claim is supported on theoretical grounds and confirmed by
computer simulations.

Categories and Subject Descriptors: I.2.8 [Artifi-
cial Intelligence]: Problem Solving, Control Methods, and
Search; I.2.6 [Artificial Intelligence]: Learning.

General Terms: Algorithms, Performance.

Keywords: Parameter Control, Population Sizing.

1. INTRODUCTION
Evolutionary algorithms (EAs) usually have a number of

control parameters that have to be specified in advance be-
fore starting the algorithm itself. One of those parameters
is the population size, which in traditional EAs is gener-
ally set to a specified value by the user at the beginning
of the search and remains constant through the entire run.
Having to specify this initial parameter value is problematic
in many ways. If it is too small the EA may not be able
to reach high quality solutions. If it is too large the EA
spends too much computational resources. Unfortunately,
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finding an adequate population size is a difficult task. It has
been shown, both theoretically and empirically, that the op-
timal size is something that differs from problem to problem.
Moreover, some researchers have observed that at different
stages of a single run, different population sizes might be
optimal.

Based on these observations, researchers have suggested
various schemes [10] that try to learn a good population
size during the EA run itself. In a recent study [5], several
adaptive population sizing methods were compared head to
head on a set of instances of the multimodal problem genera-
tor [13]. The winner of that competition was found to be the
genetic algorithm with adaptive population size (APGA) [3],
where the parameter-less genetic algorithm [9] had the worst
performance out of 5 contestant algorithms, which included
a simple GA with a fixed population size of 100.

This paper revisits the comparison between APGA and
the parameter-less GA in what is claimed to be a more fair
basis than the one used before [5]. More important, the pa-
per shows that APGA is not capable of adapting the pop-
ulation size, a claim that is supported by theoretical and
empirical evidence.

The paper is structured as follows. The next section re-
views two adaptive population sizing methods based on age
and lifetime. Then, Section 3 analyzes in detail how one of
these algorithms, the APGA, resizes the population through
time. In Section 4 the analysis is verified with experimen-
tal results. The parameter-less GA is described in Section 5.
Section 6 makes a critical note regarding a past comparative
study of population (re)sizing methods, and Section 7 per-
forms a comparison between APGA and the parameter-less
GA for a class of problems that has well-known population
size requirements. The paper finalizes with a summary and
conclusions.

2. ADAPTIVE SCHEMES BASED ON AGE
AND LIFETIME

This section reviews two techniques for adapting the pop-
ulation size based on the concept of age and lifetime of an
individual. The first method was proposed for adapting
the population size of a generational GA, while the second
method is an extension of the first to allow adaptive popula-
tion sizing in a steady-state GA, incorporating also elitism.
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2.1 GAVaPS
The Genetic Algorithm with Varying Population Size

(GAVaPS) was proposed by Arabas, Michalewicz, and Mu-
lawka [1]. The algorithm relies on the concept of age and
lifetime of an individual to change the population size from
generation to generation. When an individual is created,
either during the initial generation or through a variation
operator, it has age zero. Then, for each generation that
the individual stays alive its age is incremented by 1.

At birth, every individual is assigned a lifetime which cor-
responds to the number of generations that the individual
stays alive in the population. When the age exceeds the
individual’s lifetime, the individual dies and is eliminated
from the population. The authors suggested three differ-
ent strategies: proportional, linear, and bi-linear allocation.
All those strategies relied on two parameters, MinLT and
MaxLT, which correspond to the minimum and maximum
lifetime value allowable for an individual.

At every generation, a fraction ρ (called the reproduction
ratio) of the current population is allowed to reproduce. Ev-
ery individual of the population has an equal probability of
being chosen for reproduction. Thus, GAVaPS does not
have an explicit selection operator as traditional GAs do.
Instead, selection is achieved indirectly through the lifetime
that is assigned to individuals. Those with above-average
fitness have higher lifetimes than those with below-average
fitness. The idea is that the better an individual is, the
more time it should be allowed to stay in the population,
and therefore increase the chance to propagate its traits to
future individuals.

The authors tested GAVaPS on four test functions, com-
pared its performance with that of a simple GA using a
fixed population size, and observed that GAVaPS seemed to
incorporate a self-tuning process of the population size.

2.2 APGA
The Genetic Algorithm with Adaptive Population Size

(APGA) proposed by Bäck, Eiben, and Van der Vaart [3] is
a slight variation of the GAVaPS algorithm. The difference
between the two is that APGA is a steady-state GA, the
best individual in the population does not get older, and
in addition to the selection pressure obtained indirectly by
the lifetime mechanism, APGA also uses an explicit selec-
tion operator for choosing individuals to reproduce. Thus,
APGA uses a stronger selection pressure than GAVaPS. An
algorithmic description of APGA is presented in Figure 1.

As opposed to the authors of GAVaPS [1], Bäck et al.
set the values of MinLT and MaxLT to 1 and 11, because
according to them, initial runs with different values indi-
cated that MaxLT=11 delivers good performance. APGA
also needs the initial population size to be specified (Bäck
et al. used 60 individuals in their experiments).

At every iteration of the steady-state GA, all individu-
als (except the best one) grow older by 1 unit. Thus, it’s
quite likely that after MaxLT iterations, most of the indi-
viduals from the original population will have died and the
only ones that remain in the population are either: (1) the
individuals generated during the last MaxLT iterations, or
(2) the best individual from the initial population (recall
that the best individual does not get older). In other words,
after MaxLT iterations the population size will be of order
O(MaxLT ). This argument has been hinted before [10] and
its correctness is confirmed in the next sections.

procedure APGA

begin

t = 0;

initialize pop(t);

evaluate pop(t);

compute RLT for all members of pop(t);

while not termination-condition do

begin

t = t+1;

pop(t) = pop(t-1);

decrement RLT by 1 for all but

the best member of pop(t);

select 2 individuals from pop(t);

cross and mutate the 2 individuals;

evaluate the 2 individuals;

insert the 2 offspring into pop(t);

remove from pop(t) those members with RLT=0;

compute RLT for the 2 new members of pop(t);

end

end

Figure 1: Pseudocode of the genetic algorithm with
adaptive population size (APGA). RLT stands for
remaining lifetime.

In [3], the evolution of the population sizes through time
is not shown, but in all the reported experiments, the aver-
age population size at the end of the runs were in the range
between 7.8 and 14.1, which confirms our reasoning that
the population size in APGA tends to be of the same order
of MaxLT. We will also confirm this reasoning by perform-
ing experiments under different settings to observe how the
population size in APGA changes over time.

Similarly to GAVaPS, APGA can also use different life-
time strategies. Bäck et al. [3] used a bi-linear strategy
similar to the one proposed for GAVaPS.

3. HOW APGA REALLY WORKS?
Let us analyze in detail the population resizing mecha-

nism of APGA. Let P (t) be the size of the population at
generation t. Note that in the pseudocode shown in Fig-
ure 1, P (t) refers to the size of the population at the end of
the while loop. At every generation 2 new individuals are
created. Thus, the size of the population at generation t is
given by the following recurrence relation:

P (t) = P (t − 1) + 2 − D(t) (1)

where D(t) is the number of individuals which die at gener-
ation t.

Starting from an initial population size P (0), which is
a parameter of the algorithm, it is possible to iterate the
recurrence relation and obtain the following expression for
the population size at generation t:

P (t) = P (0) + 2 t −
tX

i=1

D(i) (2)

The summation
Pt

i=1 D(i) denotes the number of individ-
uals which die in the first t generations. Based on this ob-
servation, it is easy to prove that regardless of the initial
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population size P (0), the population size after MaxLT gen-
erations cannot be greater than 2 MaxLT + 1.

Theorem 1. Regardless of P (0),

P (MaxLT ) ≤ 2 MaxLT + 1

Proof. With an exception for the best individual,
MaxLT is an upper bound on the number of generations
than any given individual is allowed to live. Thus, after
MaxLT generations we can be sure that all but the best
member from the initial population will be dead. That is,

MaxLTX
i=1

D(i) ≥ P (0) − 1

Using this result together with equation 2 yields,

P (MaxLT ) = P (0) + 2 MaxLT −
MaxLTX

i=1

D(i)

≤ 2 MaxLT + 1

which concludes the proof.

Now let us prove that 2 MaxLT + 1 remains an upper
bound for the population size for the remaining generations.

Theorem 2. For all t ≥ MaxLT ,

P (t) ≤ 2 MaxLT + 1

Proof. One just needs to notice that the exact same rea-
soning used to prove Theorem 1 can be used to prove the
same thing assuming that the starting point is not the initial
generation, but instead, some arbitrary generation k. That
is, regardless of P (k),

P (k + MaxLT ) ≤ 2 MaxLT + 1

Thus, using induction with k = 0 as a base case, we prove
that the upper bound 2 MaxLT + 1 holds for all k > 0.

The proofs that we have seen are relatively straightfor-
ward. Nevertheless, in order to make them more easily
understandable, Figure 2 depicts schematically an exam-
ple (with P (0) = 20 and MaxLT = 3) of what might
be the state of the population after MaxLT generations
have elapsed. The example shown corresponds to the upper
bound for the size of the population at generation maxLT ,
which is obtained when all individuals are assigned the max-
imum lifetime value during their creation. The numbers in
the figure denote the remaining lifetime (RLT) of the in-
dividuals. When an individual is created it is assigned a
RLT of 3. Then, at every generation, 2 new individuals are
created (and also assigned an RLT of 3) and the remaining
ones have their RLT value decremented by 1. An exception
occurs for the best individual of the previous generation. In
the example, we are assuming the fourth individual (from
left to right) to be the best one. Notice that when going
from generation to generation, the new best individual can
only be the previous best or one of two newly created solu-
tions. The upper bound of 2 MaxLT +1 corresponds to the
situation where the best solution remains the same for the
last MaxLT generations, as depicted in the figure.

3 32 21 1

3 3

...    ...

gen 0 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3

3 3

1 1 1 3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 2 2

2 2 2 3 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2  

3

gen 1

gen 2

gen 3

M
ax

L
T

 =
 3

P(0) = 20

Figure 2: An example with MaxLT = 3 of the evolu-
tion of the population size in APGA. The numbers
in the figure denote an upper bound for the remain-
ing lifetime of the individuals.

In summary, after MaxLT generations, the population
size in APGA is upper bounded by 2 MaxLT +1, and from
that point on until the end of the search, the population size
will not raise beyond that bound.

Notice that what we have shown is an upper bound on the
maximum population size. To discover that upper bound we
had to be conservative and assume that all individuals that
are created are able to stay in the population for MaxLT
generations. In practice, what is likely to occur in a real
APGA simulation is that the actual population size will be
somewhat less than that. Due to the effects of selection,
it is not clear what is the expected number of generations
that an individual stays in the population, but as a very
crude approximation, we could say that it should be a value
close to AvgLT = (MinLT + MaxLT )/2. This thought
experiment, suggests that if we replace MaxLT by AvgLT
in the upper bound expression, we can get an approximation
of the steady state population size of APGA.

Conjecture 1. For t ≥ MaxLT , the size of the popula-
tion is approximately MinLT + MaxLT + 1.

P (t) ≈ 2 AvgLT + 1

= 2 (MinLT + MaxLT )/2) + 1

= MinLT + MaxLT + 1

At this point, it is time to do some simulations to confirm
the theory.

4. VERIFYING THE THEORY
APGA was tested on 3 problem instances (1, 50, and

100 peaks) of the multimodal problem generator used in [5].
This generator creates problem instances with a controllable
number of peaks (the degree of multi-modality). For a prob-
lem with P peaks, P L-bit strings are randomly generated.
Each of these strings is a peak (a local optima) in the land-
scape. Different heights can be assigned to different peaks
based on various schemes (equal height, linear, and so on).
To evaluate an arbitrary individual x̄, first locate the nearest
peak in Hamming space, call it Peakn(x̄). Then the fitness
of x̄ is the number of bits the string has in common with
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Figure 3: Starting from an initial population size
of 60, after MaxLT = 11 generations the population
size is fluctuating around 11 and never raises past
2 MaxLT + 1 = 23.

that nearest peak, divided by L, and scaled by the height of
the nearest peak.

f(x̄) =
L − Hamming(x̄, P eakn(x̄))

L
· Height(Peakn(x̄))

Figures 3, 4, 5, monitor the population size as time goes
by using an initial population size of 60, and minimum and
maximum lifetime values of 1 and 11 (like suggested by their
authors [3, 5], 1 and 1000, and also 100 and 100. The latter
setting was tested deliberately to verify the upper bound
for the size of the population. Note that when MinLT =
MaxLT , all individuals are assigned that same value as their
lifetime, and that should correspond to the situation where
the population size stays as close as possible to the upper
bound of 2 MaxLT +1, as depicted schematically in figure 2.

For completeness, we also use the exact same settings for
the other parameters and operators as those used by Eiben
et al.: two-point crossover with Pc = 0.9, bit-flip mutation
with Pm = 1/L = 0.01, and binary tournament selection.

We have also performed similar experiments starting with
an initial population size value of 1000 individuals (see fig-
ures 6, 7, 8). Again, the theory is confirmed.

These results constitute a strong evidence that APGA
is not capable of adapting the population size. Indepen-
dently of the problem being solved, after MaxLT gener-
ations have elapsed (2 MaxLT function evaluations), the
population size tends to fluctuate around a value close to
MinLT +MaxLT . In other words, the parameters MinLT
and MaxLT end up acting as the traditional population size
parameter.

We now leave APGA for a little while and briefly review
another algorithm that does not require the specification of
a fixed population size, the parameter-less GA. Later in the
paper, both algorithms will tested head-to-head.

5. PARAMETER-LESS GA
The parameter-less GA introduced by Harik and Lobo [9]

was developed with the assumption that solution quality
grows monotonously with the population size. Based on that
observation, Harik and Lobo suggested a scheme that sim-
ulates an unbounded (potentially infinite) number of pop-

 0

 200

 400

 600

 800

 1000

 1200

 1400

 1600

 0  500  1000  1500  2000  2500  3000  3500  4000

po
pu

la
tio

n 
si

ze

generation number

P(0)=60, minLT=1, maxLT=1000

1 peak
50 peak

100 peak

Figure 4: Using MaxLT = 1000, the population raises
initially from 60 to 1000 and then stabilizes around
that value.
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Figure 5: This example comes very close to the up-
per bound. Using MinLT = MaxLT = 100, the popu-
lation keeps raising by 2 individuals for the first 99
generations. At generation 100, drops to a value of
200 (or 201).

ulations running in “parallel” with exponentially increasing
sizes. Their scheme gives preference to smaller sized popula-
tions by allowing them to do more function evaluations than
the larger populations. The rationale is that all other things
being equal, a smaller sized population should be preferred.

Initially the algorithm only has one population whose size
is a very small number N0 (say 4). As time goes by, new
populations are spawned and some can be deleted (more
about that later). Thus, at any given point in time, the
algorithm maintains a collection of populations. The size of
each new population is twice as large as the previous last
size. The parameter-less GA does have one parameter! (al-
though Harik and Lobo fixed its value to 4). That parameter
(call it m) tells how much preference the algorithm gives to
smaller populations. Specifically, it tells how many genera-
tions are done by a population before the next immediate
larger population has a chance to do a single generation.

An example is helpful to illustrate the mechanism. Fig-
ure 9 depicts an example with m = 2. Notice that the
number of populations is unbounded. The figure shows the
state of the parameter-less GA after 14 iterations. At that
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Figure 6: P(0)=1000, MinLT=1, MaxLT=11. Same
behavior as in figure 3.
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Figure 7: P(0)=1000, MinLT=1, MaxLT=1000.
Same behavior as in figure 4.

point, the algorithm maintains three populations with sizes
4, 8, and 16. Notice how a population of a given size does
m = 2 more generations than the next larger population.
In the figure, the numbers inside the rectangles denote the
sequence in which the generations are executed by the al-
gorithm. The next step of the algorithm (not shown in the
figure) would spawn a new population with size 32.

This special sequence can be implemented with a m-ary
counter as suggested by the original authors [9], and also
with a somewhat simpler implementation as suggested by
Pelikan and Lin [12].

In addition to maintaining an unbounded collection of
populations, the algorithm uses a heuristic to eliminate pop-
ulations when certain events occur. In particular, when the
average fitness of a population is greater than the average
fitness of a smaller sized population, the algorithm elimi-
nates the smaller sized one. The rationale for taking this
decision is based on the observation that the larger popula-
tion appears to be performing better than the smaller one,
and it is doing so with less computational resources (recall
that the algorithm gives preference to smaller populations).
Thus, whenever such an event occurs, Harik and Lobo hy-
pothesized that as a strong evidence that the size of the
smaller population was not large enough, and the algorithm
should not waste any more time with it. By doing so, the
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Figure 8: P(0)=1000, MinLT=100, MaxLT=100.
Same behavior as in figure 5.
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Figure 9: The parameter-less GA simulates an un-
bounded number of populations.

algorithm maintains an invariant that the average fitness of
the populations are in decreasing order, with smaller sized
populations having higher average fitness than larger popu-
lations.

In the absence of mutation, the parameter-less GA also
eliminates populations that converge (convergence meaning
that the whole population consists of copies of identical in-
dividuals) since its not possible to generate new individuals
thereafter. Elsewhere it has been shown that the worst case
time complexity of the parameter-less GA is only within a
logarithmic factor with respect with a GA that starts with
an optimal fixed population size [11].

6. A CRITICAL NOTE ON EXPERIMEN-
TAL RESEARCH METHODOLOGY

A comparative study of EAs with on-the-fly population
size adjustment has been made in a recent paper [5]. In
that study, in addition to APGA and the parameter-less
GA, three other algorithms entered the competition: a tra-
ditional GA with a fixed population size of 100 (TGA), the
GA with random variation of population size (RVPS), and a
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newly introduced algorithm called PRoFIGA. A description
of the algorithms is available elsewhere [5, 10].

To compare the algorithms, the multimodal random peak
problem generator from Spears [13] was used. Eiben et al.
compared the performance of the 5 algorithms on problems
with different number of peaks ranging from 1 to 1000. For
each problem instance, 100 independent runs were done and
the following 3 performance measures were recorded:

• Success Rate (SR), the percentage of runs in which the
global optimum was found.

• Mean Best Fitness (MBF), the average of the best fit-
ness in the last population over all runs.

• Average number of Evaluations to a Solution (AES),
the number of evaluations it takes on average for the
successful runs to find the optimum. If a GA has no
success (SR=0) then the AES measure is undefined.

With the exception of population size, all algorithms
used the same parameter settings and operators: two-point
crossover with Pc = 0.9, bit-flip mutation with Pm = 1/L,
binary tournament selection, and delete worst-2 replacement
strategy. For all algorithms the GA model was steady-state,
not generational.

The experiments were performed on 100-bit string prob-
lems and the contestants were allowed to run until either
they found the global optimal solution, or a maximum of
10000 function evaluations elapsed. The reader is referred
to the original source [5, 14] for more details.

The authors run the experiments and claimed the supe-
riority of APGA, followed closely by PRoFIGA. It is our
strong belief that such conclusions are unjustified. A num-
ber of issues should be highlighted.

1. Only allowing the algorithms to run for 10000 function
evaluations, is not sufficient to draw any conclusion as
to what might happen if the algorithms are allowed to
run for longer (or shorter) time spans. The very low
success rate obtained for the more difficult problems
suggest that the 10000 function evaluations were not
sufficient to let the algorithms display their ability in
adapting or not the population size.

2. One of the contestants, PRoFIGA, requires the spec-
ification of 7 additional parameters that were tuned
a-priori for these same problems [14].

3. The parameter-less GA was not properly implemented
because the maximum population size was upper
bounded, and the parameter-less GA has no such
bound. Quoting [5], “the parameter-less GA is run
in parallel with the following 8 population sizes: 2,
4, 8, 16, 32, 64, 128, 256.” In addition to that, the
authors should have taken care of only incrementing
the 4-base counter after doing N/2 generations of the
steady state GA (N being the population size) because
that is the equivalent of one generation in a gener-
ational GA, otherwise large populations are created
very quickly violating the principle that more fitness
function evaluations are given first to small sized pop-
ulations.

In addition to the above mentioned flaws, the class of
problems generated by the random peak problem generator

Table 1: APGA versus Parameter-less GA under a
maximum of 1 million function evaluations.

Problem Measure APGA Parameter-less GA

SR 33% 100%
50 peaks AES 1112 40142

MBF 0.982 1.000
SR 17% 96%

100 peaks AES 1282 74654
MBF 0.976 0.999

is probably not the most appropriate for assessing the per-
formance of evolutionary algorithms as shown elsewhere [2].
In any case, and for the purpose of demonstrating that the
comparative study presented in [5] is unfair, let us redo the
experiments for 2 instances of the multimodal problem gen-
erator, one with 50 and another with 100 peaks. For each
instance, 100 independent runs are performed. This time,
however, instead of letting the algorithms run until a maxi-
mum of 10 thousand function evaluations, we let them run
for a maximum of 1 million evaluations.

The APGA uses the exact same settings as those reported
in [5]: MinLT=1, MaxLT=11, binary tournament selection,
2-point crossover with probability Pc = 0.9, and bit-flip mu-
tation with Pm = 1/L = 0.01 The parameter-less GA uses
the exact same settings with the exception of the selection
rate. It uses a tournament size of 4. The reason why we do
so is to make the two algorithms have more or less the same
selection pressure (note that APGA has also an extra selec-
tion pressure incorporated in its lifetime mechanism). No-
tice also that in the original parameter-less GA, Harik and
Lobo [9] recommended a crossover probability of Pc = 0.5,
but we are ignoring those recommendations here in order
to run both algorithms under similar conditions. Harik and
Lobo also did not give any recommendations regarding mu-
tation rates, but a small mutation rate of Pm = 1/L cannot
possibly do much harm. The performance measures for the
50 and 100 peak problem instances are shown in table 1.

By allowing the algorithms to run for a longer time, the
conclusions are completely different from those obtained
in [5]. On those occasions where APGA reaches the highest
peak, it does so very fast. The problem is that APGA is
not consistent in reaching the highest peak, not even with
1 million function evaluations. As opposed to that, the
parameter-less GA is capable of achieving high success rates,
but it can only do it if we give it enough time to do so.

Let us observe now what are the population sizes needed
by both algorithms to reach the highest peak. The popula-
tion size needed by APGA to reach the highest peak is on
average 9.9 (for 50 peaks) and 10.0 (for 100 peaks). That
is expected because MinLT = 1 and MaxLT = 11. For
the parameter-less GA the average population size is 182.5
(for 50 peaks) and 283.4 (for 100 peaks). The parameter-
less GA however exhibits a high variance. Sometimes solves
the problem as quickly as APGA using a population of size
8, and sometimes needs around 800000 evaluations using a
population of 2048.

The reason why this happens is because of the character-
istics of the multimodal problem generator. As explained
elsewhere [2], instances with a large number of peaks can
only be solved reliably by an EA if a large population size
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is used. Otherwise, it can only be solved due to luck, and
in those cases, it can be solved very fast, even with a very
small population size. The intuition behind this reasoning
comes from the observation that when an EA attempts to
solve a problem with multiple peaks, it fairly quickly con-
centrates the population around a single peak. From that
point on, the peak can be easily climbed, and obviously it
can be climbed faster if a small population size is used. The
problem though, is that it is unlikely for the EA to focus its
population on the best peak. This reasoning also explains
the observation of Eiben et al. that the AES measure for
APGA did not seem much affected by the number of peaks
(recall that the AES measure only averages the successful
runs).

We now look at another type of problem, an instance of
an additively decomposable problem, which has well known
population sizing requirements [8, 6]. We will be looking
at how APGA and the parameter-less GA try to solve the
problem.

7. TO ADAPT OR NOT TO ADAPT
Although it can be argued that real world problems are

unlikely to be completely decomposable, this class of prob-
lems allow researchers to exploit modularity, hierarchy, and
bounded difficulty, in a controllable manner. Moreover, this
class of problems is the only one for which theoretical pop-
ulation sizing models exist. Thus, they are a natural candi-
date for testing self-adjusting population sizing mechanisms.

An example of a decomposable problem is a function com-
posed of multiple deceptive sub-functions. Deceptive func-
tions normally have one or more deceptive optima that are
far away from the global optimum and which misleads the
search in the sense that the attraction area of the deceptive
optima is much greater than the one of the optimal solution.
A well known deceptive function is the k-trap function [4]
defined as follows:

ftrap(u) =

(
1 if u = k

(1 − d) ∗
“
1 − u

k−1

”
otherwise

(3)

where u is the number of 1s in the string, k is the size of the
trap function, and d is the fitness signal between the global
optimum and the deceptive optimum.

If the whole problem is deceptive, there is no way to find
the global optimum efficiently by any algorithm because the
problem is akin to a needle in a haystack. But if the level of
deception is bounded to a few number of bits, the problem
becomes solvable by GAs. A commonly used bounded de-
ceptive problem consists of a concatenation of m copies of
a k-bit trap function. Then, the fitness of a solution is the
sum of the contributions of the m trap functions.

f(X) =
m−1X
i=0

ftrap(xki, xki+1, . . . , xki+k−1). (4)

On this type of problems, GAs are able to reliably find the
global optimum in an efficient way, provided that the pop-
ulation is properly sized [6, 8], and also assuming that the
crossover operator is not too disruptive. Since this problem
has well known population sizing requirements, it is a nat-
ural candidate for testing the ability of EAs incorporating
self-adjusting population sizing mechanisms.

Table 2: Performance measures. The APGA uses an
initial population size of 2000, MinLT = 1, MaxLT =
2000. APS stands for the average population size
needed to solve the problem.

tweaked APGA Parameter-less GA

SR 94 100
AES 35786 147285
APS 1685 840

We will be testing both APGA and the parameter-less
GA on a single instance of the concatenated trap problem,
an 80-bit problem consisting of m = 20 concatenated 4-
bit trap functions (we use d = 1/k = 0.25). The goal of
the experiments is not to make a strict comparison of the
algorithms, nor saying that one is better than the other.
Instead, we want to illustrate how the population resizing
mechanisms of the algorithms behave on a problem that is
known to have minimal population sizing requirements in
order to be solved efficiently. For both algorithms we use
the same parameter settings as described in the previous
section.

We do 100 independent simulations and stop the algo-
rithms either when the global optimum is found, or when a
maximum of 1 million function evaluations is reached. The
APGA failed to solve a single run to optimality because it
is not capable of adapting the population size and tries to
solve the problem with populations sized around 9-10 indi-
viduals, a value of the same order of magnitude as MaxLT .
The parameter-less GA (we use m = 4 as suggested in [9]),
on the other hand, was able to learn that it had to raise the
population well beyond that, and obtained 100% success
rate, taking on average 147 thousand function evaluations
to reach the global optimum. The population size needed by
the parameter-less GA to reach the optimum was on average
840, and the distribution was 256 (2/100 runs), 512 (43/100
runs), 1024 (50/100 runs), and 2048 (5/100 runs).

Figure 10 shows how the ranges of population sizes main-
tained by the parameter-less GA evolves as time goes by.
The figure shows what happens on a single run alone. Other
runs have a similar behavior. In the figure there are two
lines. The bottom one is for the lowest sized population
maintained by the algorithm. The line above it is for the
largest sized population maintained by the algorithm at any
given point in time. Notice how early in the run, the algo-
rithm is using small sized populations, but fairly quickly it
detects that those small sizes are not enough and eliminates
them. Each vertical step in the lower line corresponds to an
event where a population is deleted (because a larger popu-
lation has a higher average fitness). Regarding the top line,
each vertical step corresponds to an event where a new pop-
ulation is being created for the first time. For example, the
population of size 1024 was first created when the algorithm
had already spent around 30 thousand evaluations.

Now let us give a little help to APGA by repeating the
experiments with MaxLT = 2000. Presumably, this time
APGA should be able to solve the problem because it is go-
ing to “adjust” the population size to a value of that order
of magnitude. Contrary to our intuition, the APGA failed
to solve the problem reliably even with MaxLT = 2000. A
closer look at what was going on revealed what was wrong.
We were using an initial population size of 60 (recall that
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Figure 10: Range of population sizes maintained by
the parameter-less GA. The dashed line is the min-
imum population size, and the solid line is the max-
imum population size maintained by the algorithm
at any given point in time.

APGA also has an initial population size parameter). Al-
though the algorithm quickly raises those 60 individuals
up to 2000, what happens is that by the time the popu-
lation sets around that value, it has already been affected
by a substantial amount of selection pressure, and some
sub-structures end up having a low supply of raw building
blocks [7].

The problem was fixed by setting the initial population
size to 2000 (rather than 60) so that APGA can start right
from the beginning with a sufficient amount of raw build-
ing blocks. As expected, the APGA with P (0) = 2000,
MinLT = 1 and MaxLT = 2000 solves the problem with a
success rate of 94% (still missed 6 runs), and its AES mea-
sure is 35786, faster than the parameter-less GA. This time,
however, the average population size (see Table 2) used by
APGA to solve the problem was 1685. Again, a value of the
same order of magnitude of MaxLT .

What we are showing with these results is not that one
algorithm is faster than the other. What our results do show
is that the parameter-less GA is capable or learning a good
population size for solving the problem at hand, but APGA
is not. What we also show is that APGA (or any other GA)
can be faster than the parameter-less GA, but it needs to
be tweaked to do that.

8. SUMMARY AND CONCLUSIONS
This paper revisited two algorithms that resize the pop-

ulation during the EA run itself. It was shown that one
of these algorithms, the APGA, is not capable of properly
adapting the population size, and that its newly introduced
parameters act as the actual population size parameter of a
traditional GA. This behavior is independent of the prob-
lem being solved, is supported on theoretical grounds, and
confirmed by computer simulations.

The paper also raises important issues regarding empirical
comparative studies. The utilization of test problem gener-
ators eliminates to some extent the degree of tweaking that
can be done to make a particular algorithm beat another
algorithm. But the utilization of a test problem generator
by itself is not sufficient to make fair empirical comparisons.

The population plays a very important role in an evolu-
tionary algorithm and it is unfortunate that is continues to
be largely underestimated and poorly understood by many.

We could not disagree more with the conclusions drawn in
previous research studies [3, 5]. As of yet, the lifetime prin-
ciple has not shown to be an effective method for adapting
the population size, and fixes such as those incorporated
in APGA constitute a poor implementation of that general
idea.
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