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ABSTRACT

Various applications of spectral techniques for enhancing
graph bisection in genetic algorithms are investigated. Sev-
eral enhancements to a genetic algorithm for graph bisection
are introduced based on spectral decompositions of adja-
cency matrices of graphs and subpopulation matrices. First,
the spectral decompositions give initial populations for the
genetic algorithm to start with. Next, spectral techniques
are used to engineer new individuals and reorder the schema
to strategically group certain sets of vertices together on the
chromosome. The operators and techniques are found to
be beneficial when added to a plain genetic algorithm and
when used in conjunction with other local optimization tech-
niques for graph bisection. In addition, several world record
minimum bisections have been obtained from the methods
described in this study.

Categories and Subject Descriptors

1.5.3 [Computing Methodologies]: Pattern Recognition-
Clustering[algorithms, similarity measures]

General Terms

Algorithms, Experimentation, Performance

Keywords

Genetic algorithm, singular value decomposition, graph bi-
section, graph partitioning, spectral bisection, genetic engi-
neering, reduced rank approximation

1. INTRODUCTION

The technique of singular value decomposition (SVD) has
proven itself valuable in several different problem domains:
data compression [17], image recognition and classification
[20], chemical reaction analysis [41], document comparison
[14, 7], cryptanalysis [39, 46], and genetic algorithms [37,
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36]. Although these domains are quite different in some as-
pects, each can be reduced to the problem of ascertaining
or ranking relevance in data. Intuitively, the concept of rel-
evance depends critically on the nature of the problem at
hand. SVD provides a method for mathematically discov-
ering correlations within data. The focus of this work is to
investigate several possible methods of using SVD in a ge-
netic algorithm to better solve the minimum graph bisection
problem.

SVD is useful when bisecting certain types of graphs. To
obtain a bisection of a graph, SVD is performed directly on
the 0,1 adjacency matrix of the graph to be bisected. Next,
an eigenvector is chosen and its components are partitioned
based on the median of all of the components. Given that
each component of an eigenvector represents a vertex of the
graph, a partitioning of the graph is achieved. The process
of using eigenvectors to bisection graphs is called spectral
bisection. The technique’s roots stem from the works of
Fiedler [19], who studied the properties of the second small-
est eigenvector of the Laplacian of a graph, and Donath and
Hoffman [15], who proved a lower bound on the size of the
minimum bisection of the graph.

In addition to applying SVD directly to graphs, it is also
used in several ways to guide the search process of a Ge-
netic Algorithm (GA). SVD helps guide the search process of
the GA by identifying the most striking similarities between
genes in the most highly fit individuals of the optimization
history. The GA’s mutation operator is then restricted to
only modify the locus of the genes corresponding to these
striking similarities. In addition, individuals are engineered
out of the discovered similarities between genes across highly
fit individuals. The genes are also reordered on a chro-
mosome to group similar genes closer together on a chro-
mosome. The heuristics show remarkable performance im-
provements. In addition, the performance achieved is mag-
nified when the heuristics are combined with each other. As
further evidence for the applicability of these new heuristics,
several world record minimum bisections have been obtained
from the genetic algorithm described in this paper.

The first section gives background information on the graph
bisection problem, genetic algorithms, and SVD. The second
section discusses the implementation details for the genetic
algorithm. Section three describes the spectral heuristics
that augment the standard GA. The fourth section gives
experimental evidence for the applicability of the operators
described. The last two sections provide future research
ideas and a summary of the results.



2. BACKGROUND
2.1 Minimum Graph Bisection

2.1.1 Problem Statement

A bisection of a graph G = (V, E) with an even number of
vertices is a pair of disjoint subsets V1, Vo C V of equal size.
The cost of a bisection is the number of edges (a,b) € E
such that a € V4 and b € V5. The minimum graph bisection
problem takes as input a graph G with an even number of
vertices, and returns a bisection of minimum cost.

The minimum graph bisection problem arises in many im-
portant scientific problems. Several examples include the
splitting of data structures between processors for parallel
computation, the placement of circuit elements in engineer-
ing design, and the ordering of sparse matrix computations
[11]. The minimum graph bisection problem has been shown
to be NP-Complete [22], making it a prime candidate for re-
search and study.

2.1.2 Literature Review

Many heuristics have been developed for this problem.
Frieze and McDiarmid provide an analysis of the perfor-
mance of algorithms on random graphs [21]. Perhaps the
best known heuristic is the Kernighan-Lin heuristic [32, 10].
The Kernighan-Lin heuristic has a time complexity of O(n?)
and is P-Complete [45, 27]. Fiduccia and Mattheyses gave a
simplification of the Kernighan—Lin heuristic that has time
complexity O(FE) [18]. The efficiency is gained by sorting
data using a method called the bucket sort. A simulated
annealing approach is used by Johnson et al. [29]. Spectral
techniques for graph bisection are motivated by the work of
Fiedler [19]. Indeed, spectral techniques are often used to
enhance graph algorithms [1, 43, 2, 5]. Donath and Hoffman
are among the first to suggest using spectral techniques for
graph partitioning [15]. Alpert and Yao showed that more
eigenvectors may help improve results [3]. Their main result
showed that when all eigenvectors are used, the min—cut
graph partitioning and max-sum vector partitioning prob-
lems objectives are identical. Graph partitioning with ge-
netic algorithms has been studied extensively [35, 12, 33,
48, 48]. Most GA methods incorporate other algorithms
and heuristics, such as spectral partitioning or Kernighan—
Lin. Singular value decomposition has also proved to be a
useful tool when clustering graphs [16, 31]. However, this
paper contains one of the first attempts to combine these
results, providing strategies for using singular value decom-
position in a genetic algorithm for the minimum graph bi-
section problem.

2.2 Genetic Algorithms

2.2.1 Background and Terminology

Genetic Algorithms (GAs) are search and optimization
methods that mimic natural selection and biological evolu-
tion to solve optimization and decision problems. The book
by David Goldberg [24] provides a thorough introduction to
the field of Genetic Algorithms. A brief overview of genetic
algorithms and some definitions of terminology follow.

A chromosome is a sequence of gene values. In this pa-
per, each gene will usually have a value of either a zero or
one. A potential solution to a problem is represented by a
chromosome. For graph problems, the number of vertices
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is the size of the chromosome. A schema is a pattern of
genes consisting of a subset of genes at certain gene posi-
tions. If n is the size of a chromosome, a schema is an
n—tuple {s1,s2, -+, sn} where Vi, s; € {0,1,*}. Positions in
the schema that have a x symbol correspond to don’t—care
positions. The non-+ symbols are called specific symbols,
and represent the defining values of a schema. The number
of specific symbols in a schema is called the order, and the
length between the first and last specific symbols in a schema
is called the defining length of the schema. The schema the-
orem implies that the smaller the order of a schema, the
more copies it will have in the next generation.

Although genetic algorithms do not specifically work with
schemata themselves, schemata are a fundamental concept
when analyzing the exploratory process of a genetic algo-
rithm. According to the building block hypothesis [24, 28],
GAs implicitly favor low—order, high—quality schemata. Fur-
thermore, as evolution progresses, the GA creates higher or-
der, high—quality schemata out of low—order schemata. This
is partially due to the nature of the crossover operator. The
repercussions of this behavior are impetus for the schema
reordering algorithms presented in Section 3.4.2.

2.3 Singular Value Decomposition

THEOREM 1. Let A be an m X n real matrix with rank r.
Then there exists an m X n diagonal matrix

E:{D 0} (1)

0 0
where the diagonal entries of D are the first r singular values
of A, 01 > 02 > -+ > o, > 0, and there exist an m X m
orthogonal matrix U and an n X n orthogonal matriz V such
that

A=Uxv" (2)

The existence and theory of SVD is established by several

mathematicians: Beltrami, Jordan, Sylvester, and Schmidt[47].

Stewart provides an excellent survey of the history of dis-
coveries that lead to the theory of the SVD. [49].

2.3.1 Summary

As Theorem 1 states, SVD expresses an m X n matrix
A as the product of three matrices, U, ¥, and VT. The
matrix U is an m x m matrix whose first r columns, u;
(1 <4 < r), are the orthonormal eigenvectors that span
the space corresponding to the row auto-correlation matrix
AAT. The last m — r columns of U form an orthonormal
basis for the left nullspace of A. Likewise, V is an n x
n matrix whose first r columns, v; (1 < ¢ < r), are the
orthonormal eigenvectors that span the space corresponding
to the column auto-correlation matrix AT A. The last n —r
columns of V form an orthonormal basis for the nullspace
of A. The middle matrix, ¥, is an m x n diagonal matrix
with 3;; = 0 for ¢ # j and ¥;; = 0y > 0 for Vi . The o;’s are
called the singular values and are arranged in descending
order with 01 > 02 > -+ > o, > 0. The singular values are
defined as the square roots of the eigenvalues of AAT and
AT A. The SVD can equivalently be expressed as a sum of
rank one matrices

r=rank(A)

A= (3)

g;U;V;
i=1



The u;’s and v;’s are the columns of U and V respectively.
Using the Golub-Reinsch algorithm [25, 23], U, %, and V
can be calculated for an m by n matrix in time O(m?n +
mn? + n?).

2.3.2 Reduced Rank Approximations

The magnitudes of the singular values indicate the weight
of a dimension. To obtain an approximation of A, all but the
k < r largest singular values in the decomposition are set to
zero. This results in the formation of a new low-dimensional
matrix Ag, of rank k, corresponding to the £ most influential
dimensions.

k
Ar = UkaVkT = Zaiui’UiT (4)
i=1

Here, Uy and Vj are the matrices formed by keeping only
the eigenvectors in U and V' corresponding to the k largest
singular values. Eckart and Young’s paper is a rediscovery
of this property, first proved by Schmidt [47].

3. IMPLEMENTATION DETAILS

Individuals are represented in binary in the following man-
ner. If the i** component of an individual is one, then the
it" vertex is placed in the set V. Otherwise, if the i*" com-
ponent of an individual is zero, then the i** vertex is put in
the set V2. Notice that individuals are symmetrical in this
representation. That is, flipping every bit in one solution
gives the exact same bisection. Before the GA starts, the
ordering of the vertices is permuted to prevent the results
from containing any possible bias on the ordering of the in-
put. Tests are performed using a custom GA, implemented
entirely in Java”™. The SVD is computed using LAPACK
routines and the Matrix Toolkits for Java™/ (MTJ).

3.1 The Genetic Algorithm

An approach similar to the (u + \) evolution strategy is
used, with populations of size 100 generating 100 candidate
individuals. Reinsertion is achieved by picking the best 100
individuals out of the 200 total parents and children. The
results correspond to the average of the best individual at
each generation, over 100 different random initial popula-
tions. Let f(x) be the value of the function that is being
optimized when applied to an individual z. The log fitness
of an individual is defined as

1
<0
"1y |f(x) — target| —

logfitness(xz) =1 (5)
In this fitness function, the function value f(x) approaches
its target (for example the minimum) as the fitness function
approaches zero. Individuals with higher fitness represent
better solutions than those with lower fitness. An individual
with a fitness equal to zero is an exact solution because only
then will f(z) = target.

A pseudocode listing of the genetic algorithm appears in
Figure 1. An explanation of each individual function ap-
pears in Sections 3.2, 3.3, and 3.4.

3.2 Local Improvements

Hybrid GAs are those that incorporate a local search pro-
cedure during each generation on the new offspring. Local
searches are almost always problem specific. Their goal is
to improve a candidate solution to a problem by exploring
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spectral_injection;
do {
reorder_schema;
restrict_space;
for i from 1 to 100 do
choose parentl and parent2 from population;
child = crossover(parentl, parent2);
mutate(child);
modified_kernighan_lin(child);
children.add(child);
end for;
replace(population, children);
engineered = engineer(population);
replace(population, engineered);
} until(stopping condition)

Figure 1: The Hybrid Genetic Algorithm

locally around the solution’s values. Hybrid GAs are a hy-
bridization of a genetic algorithm with a local search heuris-
tic that is tailored specifically for solving a certain problem.
Generally, the performance of the local improvement heuris-
tic is compromised to give a lower time complexity when
creating a hybrid GA. This ensures that the local improve-
ment heuristic does not overwhelm the overall running time
of the GA.

The implemented GA uses a trimmed down variant of the
Kernighan—Lin [32] optimization algorithm. The traditional
Kernighan—Lin heuristic has a time complexity of O(n®) and
is not guaranteed to provide the minimum bisection. The
algorithm’s time complexity is trimmed down in the exact
way that is described in Bui and Moon’s paper on graph
partitioning with a GA [12].

Additionally, the data structures and implementation of
the algorithm are done in constant time by using the meth-
ods of Fiduccia and Mattheyses [18]. Fiduccia and Matthey-
ses gave a simplification of the Kernighan—Lin heuristic that
has time complexity ©(E) [18]. The efficiency is gained by
sorting vertex gains using a method called the bucket sort.
The addition of the Fiduccia—Mattheyses technique grants
the ability to perform a limited, low cost, local search when
solving various graph bisection problems.

3.3 Genetic Operators

The mutation rate is set at 12%. A modified mutation
method of switching two random genes is implemented to
keep the number of ones and zeroes in an individual equal.
In the case of subproblem evolution, a gene from the sub-
problem area is flipped and an opposite gene from the non—
subproblem area is also flipped. In plain GAs, the mutation
operator simply exchanges the values of two opposite genes.
The crossover operator is duplicated from an earlier paper
about graph bisection with genetic algorithms by Bui and
Moon [12]. The crossover operator is a modified 5-point
crossover that considers the symmetric nature of chromo-
somes in the graph bisection problem. After mutation and
crossover, repair operators are utilized to repair the result-
ing partitions that are not perfectly balanced. The repair
process is also implemented in the same manner as Bui and
Moon [12].



INPUT = Adjacency Matrix A
OUTPUT = Partition List P

1. Compute all of the eigenvectors of the input matriz A.

2. For each eigenvector, compute the median of its com-
ponents and place vertex i in the first partition if the
i’th component of the eigenvector is less than or equal
to the median. Otherwise, place vertex i in the second
partition.

If necessary, repair the partition to make the number of
vertices equal by moving vertices from the bigger parti-
tion to the smaller partition until the number of nodes
in each partition is equal. Start with nodes that are
closer to the other partition in terms of their corre-
sponding eigenvector’s component.

Add the resulting partition to the list of all partitions
to return, P.

Figure 2: Algorithm for Spectral Bisection

3.4 SVD Incorporation

The goal is to discover the genes that are used similarly
across the best individuals. The ideas to be presented next
can be generalized to other methods of determining similarly
used genes. However, SVD yields accurate identification of
subproblems in optimization problems whose solutions have
a block representation [42]. The SVD of a matrix contain-
ing the best few (5) individuals in the entire optimization
history is computed. Instead of aiming for the sole fittest in-
dividual, the GA used SVD to decompose the best few fittest
individuals and therefore directed the search towards a com-
bination of the best individuals. The computational com-
plexity of computing the SVD may outweigh the complexity
of the problem being solved. However, problems with a com-
putationally expensive fitness function may benefit from the
methods to be described. In particular, if complex problems
can be decomposed into smaller and simpler subproblems,
then the benefit will outweigh the cost of computing the
SVD. Several time optimizations can also be made to de-
crease the amount of time used computing the SVD. For
example, existing SVDs can be updated using special algo-
rithms for adding or removing rows and columns [6]. Also,
random projections are a fast alternative to SVD [42].

3.4.1 Spectral Injection

The technique of spectral bisection provides initial popu-
lation seedings for the genetic algorithm. Initially, the SVD
of the adjacency matrix of the graph to be bisected is com-
puted. All bisections are created using the algorithm in
Figure 2. The best spectrally found bisections are initially
injected into the population to influence the GA towards
good bisections. Experiments with this method show that
spectral injection gives the GA a tremendous head start in
comparison to not using it at all. The motivation for using
spectral partitioning is that the eigenvalues and eigenvec-
tors of many types of adjacency matrices have been shown
to have many relationships to properties of graphs. More-
over, every eigenvalue and eigenvector of a matrix can be
computed efficiently in polynomial time. Therefore, eigen-
values and eigenvectors are prime candidates for construct-

1252

ing efficient algorithms for solving various intractable graph
problems.

The relationships between the spectrum of a graph (which
are the eigenvalues of its adjacency matrix) and the proper-
ties of the graph itself have been popular topics for research
and discovery in the last fifty years [13]. The spectrum
has been used to help solve the problem of graph isomor-
phism [50]. Certain eigenvectors of adjacency matrices in
several representations sometimes tend to partition its cor-
responding graph into two halves such that the conductance
of the parts is high, but the conductance between parts is
low. FEigenvectors have been used to find good minimum
cut partitions and to find good colorings for graphs [8, 5, 4].
However, most studies usually only focus on one eigenvector
of one representation type for the adjacency matrix. This
eigenvector is called the Fiedler vector, and corresponds to
the second smallest eigenvalue of the Laplacian [19]. In the
context of this paper, spectral bisection is performed on ev-
ery eigenvector of the adjacency matrix of the graph. The
best 100 resulting partitions are then used to seed the ge-
netic algorithm’s first population.

3.4.2 Schema Reordering

Due to the nature of the problems addressed, good schema
are apt to be destroyed during crossover if the locations
forming the schema are scattered apart on the chromosome.
To combat the disruptive nature of crossover, chromosomes
are reordered to group the similar genes closer together on a
chromosome. This helps to create higher—quality schemata
with shorter defining lengths. SVD defines the reordering
at every generation during optimization. The reordering
groups similar genes together, allowing the GA to benefit
from the building block hypothesis. This is in contrast to
a strategy that only performs an initial schema preprocess-
ing once before the GA for the minimum graph bisection
problem starts [12]. It should be noted that this schema
reordering technique affects the defining length, but not the
order of the schema.

As the building block hypothesis suggests, the computa-
tional power of genetic algorithms largely comes from ma-
nipulating the solutions of subproblems, i.e., building blocks.
Hence, identifying subproblems has been a center of many
subfields within genetic and evolutionary computation. Three
examples of related fields that should be studied to better
connect the use of SVD to current GA research are Linkage
Learning [26], Probabilistic Model Building Genetic Algo-
rithms [44], and Learnable Evolution Models [38].

3.4.3 Restricted Mutation

The mutation operator is restricted to a strategically cho-
sen subset of the genes. This isolates the search process to
the genes in highly fit solutions, facilitating the determina-
tion of the local optimum. The subset of genes is chosen by
using a SVD process described in a previous paper by Mar-
tin[36]. The subset of genes is chosen randomly from the set
of all sets of highly correlated genes identified by SVD. The
restriction only happened every other generation. This al-
lows the mutation operators to have full access to the entire
space of possible chromosomes.



3.4.4 Genetic Engineering

A genetic engineering approach is tested at every gener-
ation. First, the rank—2 SVD of 5 to 10 proportionally se-
lected individuals is computed. The number of individuals
is chosen uniformly at random. Then, using a process simi-
lar to that described in a previous paper [36], a new graph
of correlated genes is generated. Specifically, the magnitude
of the (,7) entry in unit scaled matrix AsAZ determines
if an edge appears between vertex ¢ and vertex j in the
new graph. If the entry is bigger than 0.9, an edge is cre-
ated. The vertices in the new graph represent represent the
original graph’s vertices but are instead connected to those
vertices that the top 5 to 10 best individuals collectively
believe should be clustered into the same side of the bisec-
tion. Ironically, a minimum bisection of the new graph gives
a good approximation of the combination of the best indi-
vidual minimum bisections in the original graph. To keep
the problem from becoming self referentially intractable, an
approximate minimum bisection of the new graph is discov-
ered by running only one iteration of full Kernighan—Lin on
a randomly generated individual. If better, the newly gener-
ated individual replaces the worst individual in the current
population.

3.4.5 Low Rank Approximations

Two forms of the SVD are tested. The first is the full
rank version of the SVD. The second is based on the re-
duced rank version, where all but the first k largest singular
values are set to zero, giving Ax. As expected, the reduced
rank strategies generally discover the subproblems more effi-
ciently than the full rank versions. This is due in part to the
theoretical results mentioned in the probabilistic analysis of
reduced rank spectral clustering in a well known paper by
Papadimitriou et al. [42]. The performance may also have
improved because, in the application domains tested, the
GA is only seeking one block in the solution space. Re-
duction to a lower rank correctly directs the search towards
the correct block because a lower value of k in Ay increases
the cosines of the angles between vectors of similar types [9].
Another reason may be that in comparison with higher rank
reductions, lower rank reductions are less restrictive and will
identify larger subsets of related genes as the rank is reduced.
Therefore, lower rank reductions allow the restrictive muta-
tion and crossover operators to have more freedom during
exploration. However, lowering the rank too much may not
always increase the performance because all genes will be
seen as similar to all other genes.

4. EMPIRICAL RESULTS

Intuitively, the number of generations it takes to find a so-
lution is the greatest factor in proving a genetic algorithm’s
performance. It is also illuminating to compare the aver-
age best individual at every generation. This allows one to
discover the convergence properties of a particular configu-
ration of the GA. The results are based on average of the
best or average individual fitness at each generation over 100
independent runs of the GA.

The GA is compared with various combinations of genetic
operators, local search functions, and techniques used for
solving the minimum graph bisection problem. To assess the
amount of benefit achieved using the SVD heuristics, com-
parisons are made to a plain genetic algorithm that does not
use the SVD heuristics. The plain GA serves as a strawman
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for the SVD methods. Unless otherwise indicated, the plain
GA is augmented with local search. In some cases, the spec-

tral injection heuristics discussed earlier are also included in
the plain GA.

4.1 Minimum Graph Bisection

4.1.1 Graph Types

Geometric and caterpillar graphs are studied and used as
the basis of experiment. A description of the notation and
construction details of each type of graph follows. Exper-
iments on other types of graphs (random, grid, path, and
highly clustered) give similar results but are not included in
this paper due to space restrictions.

1. Random Geometric Graphs — U, 4 : A graph on
n vertices created by associating n vertices with dif-
ferent locations on the unit square. The unit square
is located in the first quadrant of the Cartesian Plane.
Therefore, each vertex’s location is represented by a
pair (z,y) € R for some 0 < z,y < 1. An edge is cre-
ated between two vertices if and only if the Euclidean
distance between the two is d or less. These graphs are
defined and tested in the simulated annealing study by
Johnson et al. [29].

. Caterpillar Graphs — CAT,, : A caterpillar graph
on n vertices. Two of the vertices are the head and
tail of the caterpillar. Next, L@J vertices are cho-
sen to represent the discs in the spine of the caterpillar.
To each of these vertices is then attached 6 legs from
the remaining (n — 2) — LLf)j vertices. The cater-
pillar graphs considered here have an even number of
discs in their spine. This implies that the only possible

caterpillars have an even number of vertices with

ne{(ix6+1:)+2:Vi>24mod 2=0}
= {16,32,44, -~ ,352,---}

Here, i represents the total number of discs on the
spine. Caterpillar graphs have been shown to be very
difficult for standard graph bisection algorithms such
as Kernighan-Lin [30, 12]. In addition, the minimum
bandwidth problem for caterpillars with hair length 3
is NP-Complete [40].

4.1.2 Discussion

The SVD engineering technique is similar in function to
a voting scheme. Evidence for this is provided in Figure 3.
The voting technique takes the top 5 to 10 proportionally
selected individuals and calculates a vote for which side of
the bisection each vertex should belong. Before the vote is
counted, every bit in an individual’s representation is flipped
if and only if the first bit is zero. This helps account for
the symmetrical nature of candidate solutions for the graph
bisection problem. Next, the vote is taken and a new indi-
vidual is engineered from the resulting votes. It can be seen
from Figure 3 that the cut solution qualities of the gener-
ated individuals are similar, but that the SVD engineering
performs better. In addition, the average generated cut size
increases rapidly in the first 10 generations, and then rapidly
decreases. This indicates that the GA needs some time to
discover good basis individuals for engineering. Finally, the
hypothesis that the SVD engineering technique acts as a
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Figure 3: Cut size comparisons between voting and
SVD engineering approaches with no local improve-
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shared approximate vote is validated by the similarities be-
tween the optimization curves for voting and SVD.

Figure 4 depicts the results from an experiment that com-
pares most of the described heuristics. In addition, local
searches are performed at each generation. Spectral injec-
tion, subproblem restriction and rotation[36], engineering,
and schema reordering are all verified to positively influ-
ence the performance of the genetic algorithm separately
for this graph. Figure 5 shows that the performance in-
crease is much more dramatic when the the local search op-
erator is not performed. However, Figure 6 shows that when
the Kernighan—Lin local improvement is used with graphs
for which KL does not perform well (caterpillars), the SVD
techniques outperform the plain GA by a more significant
margin. This indicates that SVD may be a viable alterna-
tive to KL and that it can be successfully paired with KL
to provide additional performance.

In addition to the previous experiments, several record
size minimum bisections for real world graphs are found us-
ing the techniques described in this paper. The three graphs
for which record bisections are achieved are named data,
add20 (a 20 bit adder), and besstk33 (a statics module of a
pin boss). These results are listed in Chris Walshaw’s graph
partitioning archive located at http://staffweb.cms.gre.
ac.uk/~c.walshaw/partition/ [48].

S. FUTURE WORK

The positive benefits of adding SVD to KL based algo-
rithms have been explored in this paper. Analysis of vari-
ance (ANOVA) tests should be conducted to better prove
that the presented methods work well in combination with
each other. ANOVA tests should also be used to better iso-
late the benefits of each operator.

1254

U1500.0.079

Fitness

"Engineering (rank=2) spectral best' ——

"Engineering Subproblem Rotation (rank=2) schema spectral best"
"Engineering Subproblem Rotation (rank=2) spectral best"

"Plain schema spectral best"
"f’lain spegtral best”‘

95 I I I I I I
50 100 150 200 250 300

Generation

350 400 450 500

Figure 4: Average best fitness per generation when
using spectral injection and the modified KL ap-
proach on Uis00.079778s

U1000.20

5000

‘ "Enbineering éubproblém Rotatio‘n (rank=2)‘ cut size"‘ —

"Engineering Subproblem Rotation (rank=2) schema cut size"
"Plain schema cut size"

4500

4000

3500

3000

2500

Cut Size

2000

1500

1000

500

Generation
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A graph bisection technique called Lock-Gain (LG) parti-
tioning was recently introduced by Kim and Moon [34]. LG
partitioning extends KL by using a new tie-breaking strat-
egy that intelligently selects the best highest gain vertex to
exchange during one pass of KL. In addition, the gain of
a vertex is calculated in a manner that takes into account
vertices that have already been moved. The various com-
binations of the SVD operators and techniques described
herein should be investigated in conjunction with the lock
gain partitioning method and other metaheuristics for min-
imum graph bisection.

Additional operators and procedures based on spectral
information should be considered. For example, a spectral
crossover operator can be used to give a linkage probability
to chromosomes that is related to the information provided
by the spectral decomposition of the adjacency matrix of
the graph to be bisected. This type of operator is justified
because many of the eigenvectors of several adjacency matrix
representations tend to group vertices together that should
be placed in the same partition. The distance between the
valuations for the vertices in the eigenvectors can be used
to determine the probability that two genes travel together
during crossover. Another example is the possibility of using
spectral information to enhance tie-breaking strategies in
LG and KL. Finally, the possible benefits of starting with a
spectral population should be examined in detail.

6. CONCLUSION

This paper presents several methods for enhancing the
performance of a genetic algorithm to better solve the min-
imum graph bisection problem. First, spectral techniques
are employed to seed the initial population with good so-
lutions. SVD is also used to engineer, restrict the locus of
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mutation, and to define schema reorderings based on ap-
proximations of highly fit individuals. The new operators
and techniques are investigated with respect to their con-
sequences on performance in conjunction with a hybridized
genetic algorithm employing the Kernighan—Lin local search
operator and other operators described in previous research
papers [12, 36]. All of the introduced techniques are shown
to be beneficial to the genetic algorithm. Empirical results
obtained from the combination and application of these new
heuristics are encouraging.
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