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ABSTRACT
We present a modified version of Differential Evolution (DE)
for locating the global minimum at a higher convergence ve-
locity. The proposed model differs from conventional DE
by applying selection both for reproduction and survival,
whereas the original model applies exclusively “knock-out”
selection mechanism for survival. Because of its one-to-one
reproduction strategy DE often consumes too many fitness
evaluations to locate the global optimum. In this work we
show that selecting parents for breeding and offspring for
survival, DE’s search capability can be further accelerated,
which will be particularly useful for expensive function op-
timizations. Computational results using many benchmark
functions are reported which show significant improvements
in the convergence characteristics of the proposed algorithm
over the original one.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; G.1.6 [Optimization]: Global optimiza-
tion; G.3 [Probability and statistics]: Probabilistic algo-
rithms

General Terms
Algorithms, Performance, Experimentation

Keywords
Differential Evolution, Real parameter optimization, Evolu-
tionary Computation, Generational model

1. INTRODUCTION
Global optimization is the field of computational sciences

which deals with finding the absolutely best solution for
any mathematical problem. For finding a global optimal
solution for the problem, a set of parameters that mini-
mizes/maximizes a systems desirable properties is searched.
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The desirable properties to be minimized/maximized are of-
ten formulated as a function commonly known as objective
function. Finding the global optimum in the continuous do-
main is particularly difficult to solve exactly. Presence of
many local optimal solutions, epistasis among the parame-
ters, noise and inherent peculiarity of the objective function
make the optimization task even more obscure. Therefore, a
useful global optimization algorithm should be reliable to lo-
cate global optima, simple to implement, easy to use, robust
and fast in spite of such difficulties [2].

In last few decades, different kinds of deterministic and
stochastic algorithms have been proposed for optimization
in continuous domain. Among the stochastic approaches,
Evolutionary Computation (EC) offers a number of exclu-
sive characteristics e.g. easy to design, robust and reliable
performance, little or no information requirement etc. which
makes it an attractive choice. Therefore, there had been
many studies related to real-parameter optimization using
EC resulting in many variants such as Evolutionary Strate-
gies (ES) [4], Real Coded Genetic Algorithms (RCGA) [8,
14], Differential Evolution (DE) [12], Particle Swarm Opti-
mization (PSO) [5] etc.

Differential Evolution (DE) is one of the most recent Evo-
lutionary Algorithms (EAs) for solving real-parameter op-
timization problems. Like other EAs, DE is a population-
based, stochastic global optimizer capable of working reli-
ably in nonlinear and multimodal environments [12]. Using
a few and easily chosen parameters DE exhibits an overall
excellent performance for a wide range of benchmark func-
tions. Because of it simple but powerful search capability
it has got many real world applications, such as pattern
recognition, digital filter design, neural network training etc
[9]. The advantages of DE, such as simple and easy-to-
understand concept, compact structure, ease of use, high
convergence characteristics and robustness have proved it
as a high-class technique for real-valued parameter optimiza-
tion.

Though DE was designed using the common concepts of
EAs, such as multipoint searching, use of recombination and
selection operators, it has some unique characteristics that
make it different from many others in the family. The major
differences are in the way offspring are generated from par-
ents and the selection mechanism that DE applies to transit
from one generation to next. DE uses a one-to-one spawn-
ing and selection relationship between each individual of the
population and its offspring. Though these features are the
strength of the algorithm can sometime turn into weakness
especially when the global optimization should be located
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with an increased velocity. By breeding an offspring for each
individual DE sometimes explores too many search points
before locating the global optimum. Therefore, there remain
possibilities of exploiting other generational models available
in EC for accelerating the convergence characteristics of DE.
In this work we have presented such an effort.

The paper is organized as follows. The next section of
this paper contains a brief overview of DE. The third section
presents the newly proposed model for DE. Section 4 reports
experiments on benchmark functions with results. Section
5 discusses the results focusing on the proposed model char-
acteristics. Finally Section 6 concludes the paper.

2. DIFFERENTIAL EVOLUTION
Like other evolutionary algorithms, DE is a population-

based stochastic optimizer that starts to explore the search
space by sampling at multiple, randomly chosen initial point
[11, 9]. Thereafter, the algorithm guides the population to-
wards the vicinity of the global optimum through repeated
cycles of reproduction and selection. The generation alter-
nation model used in classic DE to refine candidate solutions
in successive generations is described as

DE

1. Generate an Initial Population P G

2. Evaluate P G

3. For each individual I in P G

4. Reproduce an offspring J from I

5. P G+1 = P G+1 ∪ Select (I , J)

6. Set G = G + 1

7. Repeat Step 3 to 6 until termination criteria
is met

Now different components of DE algorithm are summa-
rized as follows:

Parent Choosing: As shown in the DE model, each indi-
vidual in the current generation is allowed to breed through
mating with other randomly selected individuals from the
population. Specifically, for each individual xG

i , i = 1, · · · , P
, where G denotes the current generation, three other ran-
dom individuals xG

j , xG
k and xG

l are selected from the pop-
ulation such that j, k and l ∈ {1, · · · , P} and i �= j �= k �= l.
This way a parent pool of four individuals is formed for
breeding an offspring.

Reproduction: After choosing the parent individuals
DE applies a differential mutation operation for generating
a mutated individual yG

i , according to following equation

yG
i = xG

j + F (xG
k − xG

l ) (1)

where F , commonly known as scaling factor or amplifica-
tion factor, is a positive real number typically less than 1.0
that controls the rate at which population evolves. Next, to
complement the differential mutation search strategy, DE
employs a crossover operation often referred to as discrete
recombination in which the mutated individual yG

i is mated
with xG

i to generate the offspring or trial individual xG+1
i .

The genes of xG+1
i are inherited from xG

i and yG
i determined

by a parameter called crossover probability (Cr ∈ [0, 1]) as
follows

xG+1
i,t =

{
yG

i,t with probability Cr

xG
i,t with probability (1 − Cr)

(2)

where t = {1, · · · , N} denotes t-th parameter of individual
vectors. From above description another difference between
DE and GA becomes clear; that is in DE the mutation is ap-
plied before crossover which is just opposite in GA. Moreover
in GA mutation is applied occasionally to maintain diver-
sity in the population whereas is in DE mutation is a regular
operation applied to generate each offspring.

Selection: DE applies selection pressure only when re-
placing individuals. A knock-out competition is played be-
tween each individual xG

i and its offspring xG+1
i and the

winner is selected deterministically and promoted to next
generation.

3. PROPOSED DE VARIANT
Generally two types of selection methods are applied in

EC, selection for reproduction and selection for survival [1].
The first one determines how to distribute reproductive op-
portunity among the individuals of the population and the
later one determines how to administer the life span of dif-
ferent individuals for favoring the survival of promising in-
dividuals. Different EAs apply different combinations and
implementations of these two selection criteria. In DE no
individual is favored for reproduction compared to others
[9]. In other words each individual gets an opportunity to
spawn its offspring mating with other individuals. Generally
DE is expected to work with a larger generation, typically
between 5N to 10N , where N is the problem dimension [12,
11]. Therefore generating an offspring for each individual of
current population often DE visits too many search points
before reaching the global optimal.

On the other hand using one-to-one survivor selection cri-
teria, DE ignores many promising individuals, exploitation
of which could accelerate the search. Actually DE exercises
a knock-out competition that retains only the best individ-
ual that each index or position has ever experienced. Due to
this positional elitism strategy it discards an offspring which
is better than the most of the current population but worse
than its parent [9]. However such rejected individual could
be useful to accelerate the search for global optimum.

Therefore, in an attempt to improve the classic DEs selec-
tion mechanism we propose a generation alternation model
that is commonly found in different EAs. The modified DE
algorithm which we call genDE can be described as follows

genDE
1. Generate an Initial Population P G

2. Evaluate P G

3. Choose a parent pool Pp

4. For each individual I in Pp

5. Reproduce an offspring J

6. Pc = Pc ∪ J

7. Select P G+1 from P G ∪ Pc

8. Set G = G + 1

9. Repeat Step 3 to 8 until termination criteria
is met

Now implementation of different portions of the genDE
algorithm is described in following lines.

Parent Choosing: The set of parents each member of
which will get the opportunity of reproduction is selected in
two parts. First, a deterministic selection operator is used to
select P1 best individuals of current population as parents.
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Then a stochastic selection operator is used to select P2 in-
dividuals from the rest of the population. Selecting the first
P1 parents based on their objective function value, reproduc-
tion preference is given to superior individuals. The other
P2 parents are selected randomly to maintain the population
diversity. Thus selecting Pp = P1 + P2 parents partially de-
terministically and partially stochastically a balance in the
selection pressure is triggered.

Reproduction: Now these Pp selected parents are em-
ployed to generate Pp offspring just like what is done in clas-
sic DE. That is for each parent vector, three other distinct
random individuals are chosen from the current population
P G and then they are mated using differential mutation and
discrete recombination operation to generate the offspring.

Selection: The survivor selection is performed using a
selection operator similar to one found in (µ+λ) Evolution-
ary Strategy (ES). In this elitist strategy we choose survivors
(based on fitness) from a combined population consisting of
all the individuals of current generation and offspring. That
is the best P individuals from (P +Pp) individuals of current
and offspring population are chosen as survivors.

4. EXPERIMENTS

4.1 Test Suite
We evaluate the performance of the proposed genDE al-

gorithm comparing with classic DE algorithm using a test
suite consisting of 15 benchmark functions. First five test
functions of the suite are commonly found in the litera-
ture namely Sphere, Ackley’s, Griewank’s, Rastrigin’s and
Rosenbrock’s functions. The other benchmarks are the first
10 functions from the newly defined test suite for CEC 2005
special session on real-parameter optimization [13]. Our test
suite was as follows:

1. Fsph: Sphere Function
2. Fack: Ackley’s Function
3. Fgrw: Griewank’s Function
4. Fras: Rastrigin’s Function
5. Fros: Rosenbrock’s Function
6. F1: Shifted Sphere Function
7. F2: Shifted Schwefel’s Problem 1.2
8. F3: Shifted Rotated High Conditioned Elliptic Func-

tion
9. F4: Shifted Schwefel’s Problem 1.2 with Noise in Fit-

ness
10. F5: Schwefel’s Problem 2.6 with Global Optimum on

Bounds
11. F6: Shifted Rosenbrock’s Function
12. F7: Shifted Rotated Griewank’s Function without Bounds

13. F8: Shifted Rotated Ackley’s Function with Global
Optimum on Bounds

14. F9: Shifted Rastrigin’s Function
15. F10: Shifted Rotated Rastrigin’s Function

Definitions of the first five functions are follows

Fsph(�x) =

n∑
i=1

x2
i ,

− 100 ≤ xi ≤ 100; F ∗
sph = Fsph(0, · · · , 0) = 0

Fack(�x) = 20 + exp(1) − 20exp

⎛
⎝−0.2

√√√√ 1

n

n∑
i=1

x2
i

⎞
⎠

− exp

(
1

n

n∑
i=1

cos(2πxi)

)

− 32 ≤ xi ≤ 32; F ∗
ack = Fack(0, · · · , 0) = 0

Fgrw(�x) =
n∑

i=1

x2
i

4000
−

n∏
i=1

cos
xi√

i
+ 1

− 600 ≤ xi ≤ 600; F ∗
grw = Fgrw(0, · · · , 0) = 0

Fras(�x) = 10n +

n∑
i=1

x2
i − 10 cos(2πxi)

− 5 ≤ xi ≤ 5; F ∗
ras = Fras(0, · · · , 0) = 0

Fros(�x) =

n−1∑
i=1

(100(xi+1 − x2
i )

2 + (1 − xi)
2)

− 100 ≤ xi ≤ 100; F ∗
ros = Fros(1, · · · , 1) = 0

Functions F1 to F10 are designed by modifying classical
benchmark functions to test the optimizers ability to lo-
cate a global optimum under a variety of circumstances such
as translated and/or rotated landscape, optimum placed on
bounds, Gaussian noise and/or bias added etc [13]. A com-
plete definition of these functions are available in [13] and
online at http://www.ntu.edu.sg/home/epnsugan. In our
test suit F1 to F5, Fsph and Fros are unimodal and the rest
are multimodal functions.

4.2 Performance Evaluation Criteria
For evaluating the performance of the algorithms we used

criteria similar to that defined in [13]. We investigated the
performance of genDE compared to DE for the above men-
tioned benchmark functions using function error value. The
function error value is defined as (f(x)− f(x∗)) where x∗ is
the global optimum of the function. The maximum number
of fitness evaluations we allowed for each algorithm to min-
imize this error was 500, 000. We repeated 25 trails on each
function. The fitness evaluation criteria were as follows

1. Error: The minimum function error value that algo-
rithm can find, using 500,000 fitness evaluations at maxi-
mum, was recorded in each run and the average and stan-
dard deviation of the error values were calculated. Also the
number of runs in which the error reached zero was counted
and presented. For this criterion the notation AV GEr ±
SDEr(CNT ) was used in Table 1 and Table 3. We evalu-
ated all the benchmark functions at dimension N = 30 with
various population size and reported the results in Table 1.

2. Evaluation: Number of function evaluations required
to reach the error value less than 10−6 range were recorded in
different runs and then the average and standard deviation
of the number of evaluations were calculated. Again the
number of runs in which the algorithms could reach this
accuracy level using maximum 500, 000 fitness evaluations
were counted. For this criterion the notation AV GEv ±
SDEv(CNT ) was used. We evaluated all the benchmark
functions at dimension N = 10 and N = 30 and reported
the results in Table 2.
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Figure 1: Convergence curves for Fsph
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Figure 2: Convergence curves for Fack
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Figure 3: Convergence curves for Fgrw
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Figure 4: Convergence curves for Fros

3. Convergence Graphs: Convergence graphs of the
algorithms for N = 30. The graphs (Fig 1 to Fig 11) show
the average Error performance of the total runs.

4.3 Experimental Setup
In our experimentation we used the same sets of initial

random population for evaluating the algorithms. Though
classic DE uses three control parameters namely Population
Size P , Scaling Factor F and Crossover Rate Cr, choice
of these parameters are very critical for its performance.
F is generally related to the convergence speed. To avoid
premature convergence it is crucial that F be of sufficient
magnitude [9]. F = 0.9 is suggested as a good compromise
between convergence speed and probability of convergence
in [10]. Between Cr and F , Cr is much more sensitive to
problems property and multimodality. For searching in non-
separable and multi-modal landscapes Cr = 0.9 is a good
choice [10]. Therefore we choose F = 0.9 and Cr = 0.9 for
all the functions in every experiments with out tuning them
to their optimal values for different problems. Population
size is a critical choice for the performance of DE. Therefore
in our first set of experiments we investigate the performance
of the DE and genDE with different population sizes P =
30, 50, 100 and 200. For the proposed genDE there are
two more parameters to choose. Based on some preliminary
experiments we choose P1 = P/4 and P2 = P/2 − P1.

The experiments were performed on a computer with 4400
MHz AMD Athlon TM 64 dual core processors and 2GB of
RAM in Java 2 Runtime Environment.
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Figure 5: Convergence curves for F1
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Table 1: Best Error values at N=30, after 500,000 fitness evaluation

PopSize=30 PopSize=50
DE genDE DE genDE

Fsph 4.10E-32±6.74E-32 4.98E-46±1.04E-45 Fsph 7.63E-07±1.38E-06 7.17E-12±1.01E-11
Fack 5.36E-15±1.52E-15 4.37E-15±1.77E-15 Fack 2.16E-04±1.51E-04 7.81E-07±7.37E-07
Fgrw 2.17E-03±3.96E-03 (19) 2.17E-03±4.42E-03 (20) Fgrw 1.28E-03±3.56E-03 1.33E-10±2.86E-10
Fras 27.7948±9.373461 25.14128±7.685797 Fras 18.04426±6.257083 15.85754±6.015394
Fros 23.5816±93.39593 0.478703±1.295851 Fros 52.24671±46.02755 21.45182±23.45338
F1 2.27E-15±1.11E-14 (24) 0.0 ±0.0 (25) F1 5.52E-07±7.32E-07 9.38E-12±1.95E-11
F2 6.16E-06±1.18E-05 1.78E-11±2.77E-11 F2 29.71349±20.74556 3.14E-01±2.50E-01
F3 2.16E+06±1.68E+06 9.40E+05±6.97E+05 F3 1.17E+07±6.29E+06 4.98E+06±2.88E+06
F4 2.57E-01±3.39E-01 4.48E-04±6.72E-04 F4 514.5162±353.8749 27.84493±17.42823
F5 742.9728±391.3238 737.1592±373.3289 F5 1210.688±490.4832 671.0513±438.3644
F6 4.839094±19.23881 0.608340±1.886657 F6 108.2925±132.7632 61.17370±110.6009
F7 7.98E-03±1.06E-02 (1) 3.94E-03 ±5.95E-03 (13) F7 8.83E-03±1.00E-02 1.58E-03±3.68E-03
F8 20.91188±0.12258 20.89110±0.143423 F8 20.92413±0.039713 20.91692±0.044140
F9 27.07304±6.92113 25.35556±9.517137 F9 18.63529±5.051625 17.34090±4.218965
F10 43.42575±31.45708 41.93541±34.10729 F10 201.1525±33.59441 154.3591±78.47720

PopSize=100 PopSize=200
DE genDE DE genDE

Fsph 466.3771±200.9077 48.03943±23.01009 Fsph 24493.47±5661.917 15214.46±2473.895
Fack 7.019878±1.528160 3.673443±0.516853 Fack 19.56072±0.484112 18.19396±0.889659
Fgrw 4.966620±2.005038 1.406541±0.306817 Fgrw 221.3048±41.25594 146.1406±36.73740
Fras 204.2888±27.80162 160.2033±25.06192 Fras 332.8443±24.98655 314.6762±24.64466
Fros 2.60E+07±6.25E+07 4.34E+05±4.21E+05 Fros 7.44E+09±2.99E+09 2.64E+09±9.47E+08
F1 7.44E+02±3.63E+02 7.16E+01±4.66E+01 F1 3.51E+04±7.87E+03 2.38E+04±6.57E+03
F2 2.95E+04±1.19E+04 1.16E+04±5.53E+03 F2 1.09E+05±1.45E+04 9.36E+04±1.68E+04
F3 6.97E+08±1.83E+08 3.89E+08±1.48E+08 F3 1.17E+09±1.88E+08 1.02E+09±1.97E+08
F4 4.70E+04±1.43E+04 2.92E+04±1.46E+04 F4 1.33E+05±2.41E+04 1.25E+05±2.34E+04
F5 1.56E+04±3.18E+03 1.03E+04±2.80E+03 F5 3.13E+04±3.44E+03 2.97E+04±2.46E+03
F6 2.27E+07±1.44E+07 6.64E+05±5.21E+05 F6 1.33E+10±3.92E+09 5.58E+09±2.24E+09
F7 102.8455±51.465923 18.99315±9.887694 F7 2574.956±496.2930 1901.613±418.5901
F8 20.93837±0.044455 20.91569±0.042073 F8 20.93323±0.044967 20.91348±0.057117
F9 217.3055±24.98303 180.5073±23.84669 F9 368.6602±19.03951 343.0230±24.16168
F10 275.8617±16.73121 258.4102±19.43306 F10 537.6126±49.20362 445.4743±36.35172

Table 2: Fitness evaluations required to achieve accuracy level less than 10−6

N=10 N=30
DE genDE DE genDE

Fsph 32049.08±1214.10 (25) 20172.24±1035.06 (25) Fsph 152329.2±8353.68 (25) 105109.2±3837.74 (25)
Fack 49959.72±1400.72 (25) 31680.76±1325.05 (25) Fack 228786±56347.93 (24) 155647.8±6581.22 (25)
Fgrw - - Fgrw 251914.8±154855.63 (18) 189975±155110.02 (20)
Fras 431417.28±157221.79 (4) 410938.56±178170.23 (5) Fras - -
Fros 132677.28±136841.88 (22) 48155.64±9530.32 (25) Fros - 470057.4±35906.69 (15)
F1 32943.36±1379.18 (25) 20230 ±913.05 (25) F1 152683.2±7336.47 (25) 107032.2±5147.29 (25)
F2 51636±3117.18 (25) 33984.4±1935.71 (25) F2 496692±8988.22 (3) 344943±28723.85 (25)
F3 97590.56±7871.40 (25) 66092.64±5777.24 (25) F3 - -
F4 57634.4±3810.59 (25) 40508.16±2207.83 (25) F4 - -
F5 134144.24±6581.86 (25) 95426.16±3956.56 (25) F5 - -
F6 95408±84923.25 (24) 65470.28±89047.60 (24) F6 498927.6±5302.65 (1) 473542.8±44190.38 (11)
F7 - - F7 359076±125612.33 (14) 293336.4±155508.94 (16)
F8 - - F8 - -
F9 448548.04±139365.88 (3) 428327.12±164319.31 (4) F9 - -
F10 - - F10 - -
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4.4 Comparison with EA
In this set of experiments we compared the performance

off the proposed algorithm with two EAs. Both of these EAs
were designed using same recombination operators namely
arithmetic crossover and Gaussian mutation, but different
selection strategies. The arithmetic crossover operator, a
two parent crossover operator, was applied with probabil-
ity pc. Two parent individuals xG

i and xG
j are mated to

generate offspring yG
i such that yG

i,t = wtx
G
i,t + (1 − wt)x

G
j,t

where t is the index of each dimension of different solution
vectors and wt are uniform random numbers in [0, 1]. More-
over, we applied Gaussian mutation to each offspring yG

i

with a fixed mutation rate and probability pm such that
yG

i,t = yG
i,t + N(0, 1)σm(xmax

t − xmin
t ). Where σm is the

mutation variance. The only difference between these two
EAs, denoted as EA1 and EA2, is the selection model used.

EA1: This algorithm uses ordinary selection strategy
commonly found in literature. We used the model in [6].
This implementation preserves Pe elite individuals (deter-
mined by fitness) which are promoted to next generation
without applying any recombination operator. And a tour-
nament selection of size 2 is used for selecting parents. For
each individual xG

i another random individual xG
j is chosen

from the population and the better one (if it does not belong
to elite population) goes through crossover and mutation op-
eration before placing in the next generation. For crossover
the other parent is randomly picked from the population.

EA2: This model uses the same selection strategy that
we have proposed for DE. That is, Pp parents are selected
for reproduction in the same manner as described in section
(3). Then each of them produces an offspring using crossover
and mutation operation. The other parent for crossover is
randomly selected. Then a (µ + λ) selection mechanism is
used to choose the survivors.

The choice of parameters for EA1 and EA2 were as fol-
lows, pc = 1.0, pm = 0.3, σm = 0.01, Pe = 30, P1 = P/4
and P2 = P/2 − P1. We experimented with Popsize P =
50, 100, 200 and 300 and the best average results, found with
P = 100, are reported here for comparison in Table 3.
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Figure 7: Convergence curves for F3

5. DISCUSSION OF RESULTS
As shown in Table 1 for most of the functions the aver-

age Error values achieved by the proposed genDE is lower
than that achieved by classic DE. In every case where DE
was going towards the optimum genDE also succeeded to
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Figure 8: Convergence curves for F4
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Table 3: Comparison of best Error values at N=30, after 500,000 fitness evaluation

genDE EA1 EA2
Fsph 4.98E-46±1.04E-45 4.24E-07±2.17E-07 0.732647±0.297487
Fack 4.37E-15±1.77E-15 1.96E-04±7.03E-05 0.281236±0.065895
Fgrw 2.17E-03±4.42E-03 (20) 4.63E-03±5.50E-03 0.446236±0.118072
Fras 25.14128±7.685797 9.352615±2.742911 10.75672±3.0997483
Fros 0.478703±1.295851 74.18848±90.18786 363.9337±220.53187
F1 0.0 ±0.0 (25) 5.42E-07±3.51E-07 0.7227136±0.2284896
F2 1.78E-11±2.77E-11 0.48569±0.099001 31.48045±6.655541
F3 9.40E+05±6.97E+05 1.26E+06±2.39E+05 3.04E+06±5.53E+05
F4 4.48E-04±6.72E-04 2170.915±698.89357 9.33E+03±2.17E+03
F5 737.1592±373.3289 6661.574±982.26638 6728.375±995.6071
F6 0.608340±1.886657 590.7449±307.04394 724.2358±390.1111
F7 3.94E-03 ±5.95E-03 (13) 0.160041±0.017901 1.095835±0.013463
F8 20.89110±0.143423 20.52869±0.084398 20.95351±0.053194
F9 25.35556±9.517137 123.8919±11.03680 114.7719±12.07329
F10 41.93541±34.10729 249.016±26.925252 225.3852±30.0104

do so; moreover it reached closer to the global optimum us-
ing equal number of fitness evaluation. Again, since genDE
requires fewer fitness evaluations it reached the Error value
zero in more trials than that of classic DE (e.g. in Fgrw,
F1, in F7). For some functions such as F8, F9, F10 the
performance difference was not significant. We believe that
the learning strategy (i.e. DE/rand/1/bin of Eq. (1)) was
not good enough to locate the global optimum therefore the
classic DE failed. As well as genDE, using the same learning
strategy, failed because the selection method alone can not
be sufficient to guide a search algorithm towards the global
optimum. In some cases, the parameter settings of DE or
genDE was not also good enough to locate the global op-
timum, e.g. none of the algorithm could find a respectable
error value for function Fras. But in [7], using a different
parameter setting it was shown DE can successfully reach
the global optimum for Fras function at higher dimensions
using fitness evaluations lower than the limit specified here.

Population size has always substantially influenced DE’s
performance. DE is especially sensitive to population size
because it produces an offspring for each individual in the
population. Therefore, if a too large population size is se-
lected then DE exhausts the fitness evaluations very quickly
with being able to locate the optimum. To investigate the
effect of population size we varied P using 30, 50, 100 and
200. And a quick look at Table 1 will reveal how drastically
the performance of DE changes with the change of this pa-
rameter. A similar effect on the performance of genDE was
also observed. But since it used a selection model that is par-
simonious on fitness evaluation, genDE could achieve better
Error values for each function than the original model.

A further illustration on how the proposed model can im-
prove the convergence characteristics of DE, can be obtained
looking at the convergence curves (Fig 1 to Fig 11). Because,
for some functions the performance difference between the
algorithms will not be clear looking at the results of Table
1 ( e.g. Fack, Fgrw or F9 ). Inspection of the convergence
curves will reveal the fact that though at the end of equal
number of fitness evaluation both algorithms got similar er-
ror values, genDE reached that error values using fewer fit-
ness evaluation.

To have an direct focus on how the proposed method im-

Table 4: p values of t-Distribution calculated from
Table 2

F p-val F p-val
Fsph(N = 10) 1.19E-36 Fack(N = 10) 1.49E-41
Fros(N = 10) 4.06E-03 F1(N = 10) 2.69E-37
F2(N = 10) 4.91E-28 F3(N = 10) 1.18E-20
F4(N = 10) 5.06E-24 F5(N = 10) 6.11E-29

Fsph(N = 30) 2.66E-29 Fack(N = 30) 8.24E-08
F1(N = 30) 3.87E-29 F2(N = 30) 6.10E-29

prove the convergence speed of the original algorithm we
presented the results of Table 2 that shows the average fit-
ness evaluation required to reach accuracy level less than
10−6. We experimented in N = 10 and N = 30 dimensional
search space. In every case (except in which none could
reach the required accuracy), the number of trails in which
genDE got the accuracy was higher than that for DE and/or
the number of evaluations required for genDE to reach that
accuracy level was significantly lower that that needed for
DE. For Fros function at N = 30 dimension genDE reached
the target accuracy in 15 trials whereas DE failed in each.

Our last set of experiments was conducted to investigate
whether the proposed generation model is suitable for other
evolutionary algorithms. As the results of Table 3 suggests,
because of the different generation alternation model the
algorithm EA2 performed poorly compared to EA1 the
original one. We hypothesize that the selection pressure
was too high for the applied crossover or mutation opera-
tors; therefore EA2 quickly converged without reaching the
global optimum. We further speculate, the proposed gener-
ation model pairs nicely with the recombination operator of
DE and therefore, the increased selection pressure improves
the performance of the algorithm.

Results of Table 2 are statistically assessed using Student’s
t-test. Those functions, in which at least one algorithm
reached the accuracy level in all runs, the number of evalu-
ations needed to reach the accuracy level were examined for
statistical significant difference and the p-values are shown
in Table 4. In every case t-tests indicate there are signifi-
cant differences between the means in terms of number of
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evaluations required. This indicates the proposed genDE
performed better than the classic DE and the differences
are statistically significant.

In real-world situations, fitness evaluation is the most ex-
pensive part of the search process; therefore the solution
should be located using lowest possible number of fitness
evaluation. On the other hand, sampling very few points
an algorithm may converge to a local minimum and fail to
locate global optimum. Therefore a trade of should be de-
termined that will guarantee convergence using fewer fitness
evaluations.

As discussed earlier DE does not give preference to any
individual for reproduction and can not work very reliably
with a very small population size [9]. Because of it’s one-
to-one replication strategy DE often visits many points in
the search space before locating the global optimum. Since
minimum fitness evaluation is always sought, in this work
we attempted to increase DEs convergence speed using a dif-
ferent generation alternation model common in other EAs.

While modeling this generation alternation model, we tried
to preserve some of the characteristics of classic DE’s selec-
tion strategy. For example, DE applies elitism by preserving
the best solution found in any generation. Our generational
model also conserves elite individual applying a (µ + λ) se-
lection for replacement. And none of the models accept any
solution that is worse than the worst solution in current pop-
ulation. The fitness independent parent selection model of
DE is partially retained as we randomly select P2 parents
(independent of their fitness) in the total parent pool. In
choosing the parent population we tried to take advantage
of both selection paradigms: stochastic and deterministic.
In current implementation we have chosen equal number of
deterministic parents (P1) and stochastic parents (P2) to
trigger a balance between preferring good individuals for
reproduction and preserving the population diversity. Fur-
thermore (µ+λ) selection assures that any individual better
than most of that in current population is not ignored.

In general selection tends to reduce the diversity of a pop-
ulation whereas the recombination operations increase it.
Therefore, we need a selection scheme that pairs off with
the recombination operators for designing a successful EA.
For example, a selection scheme with a very high selection
pressure can be used with highly disruptive recombination
operators [3]. From the experiment results it can be empir-
ically stated the selection pressure exerted by the proposed
generation model matches well with DE recombination op-
erator and hence genDE performs better than the original
model. The change in DE parameters (F and Cr) can be
adjusted by changing the size of the parent pool Pp. We
can also vary the selection pressure by changing the pro-
portion of elite parents P1 and random parents P2 in the
parent population. Actually, the parent selection scheme of
the proposed genDE is a more generalized version of that
in classic DE, because if the number elite individuals in the
parent pool is equal to the population size (i.e. P1 = P )
then both becomes the same.

6. CONCLUSION
In this work, we made a preliminary study on the use of

different generational model for improving the convergence
characteristics of conventional DE. Using the concepts of
existing schemes in evolutionary computation, we proposed
a new model for generation alternation in DE. We stud-

ied the performance of the proposed DE model using a test
suite consisting five well known benchmark functions and ten
newly proposed benchmarks. In our experiment we found
the proposed model exhibits an average higher convergence
speed than the conventional model. We anticipate the rea-
son of such performance improvement is better pairing of
the selection pressure, exerted by the generation alternation
model, with the DE recombination operators. However the
proposed model should be further studied varying the par-
ent population size, proportion of elite and random parents
in the parent pool. There still remains scope of trying other
selection mechanisms for reproduction and/or survival.
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