
How an Optimal Observer can Collapse the Search Space

Christophe Philemotte
cphilemo@iridia.ulb.ac.be

Hugues Bersini
bersini@ulb.ac.be

IRIDIA, CoDE, Université Libre de Bruxelles
Université Libre de Bruxelles CP 194/6

50 Avenue F.D. Roosevelt
B-1050 Brussels

Belgium

ABSTRACT
Many metaheuristics have difficulty exploring their search
space comprehensively. Exploration time and efficiency are
highly dependent on the size and the ruggedness of the
search space. For instance, the Simple Genetic Algorithm
(SGA) is not totally suited to traverse very large landscapes,
especially deceptive ones. The approach introduced here
aims at improving the exploration process of the SGA by
adding a second search process through the way the solu-
tions are coded. An “observer” is defined as each possible
encoding that aims at reducing the search space. Adequacy
of one observer is computed by applying this specific en-
coding and evaluating how this observer is beneficial for the
SGA run. The observers are trained for a specific time by a
second evolutionary stage. During the evolution of the ob-
servers, the most suitable observer helps the SGA to find a
solution to the tackled problem faster. These observers aim
at collapsing the search space and smoothing its rugged-
ness through a simplification of the genotype. A first imple-
mentation of this general approach is proposed, tested on
the Shuffled Hierarchical IF-and-only-iF (SHIFF) problem.
Very good results are obtained and some explanations are
provided about why our approach tackles SHIFF so easily.

Categories and Subject Descriptors: I.2.8 Problem Solv-
ing, Control Methods, and Search: Heuristic methods

General Terms: Algorithms, Design, Experimentation,
Performance

Keywords: Landscape, Observer, Representation, Simple
Genetic Algorithm, Speedup Technique

1. INTRODUCTION
A key element of research dedicated to evolutionary al-

gorithms and optimisation in general is the discovery of
mechanisms to improve the search. Many metaheuristics
and their hybridisations are invented and compared on their
capacity and efficiency to traverse the search space. Most

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

metaheuristics try to find a good balance between exploita-
tion and exploration to travel the search space in the most
efficient way [2]. The exploration efficiency is highly de-
pendent on the size and ruggedness of the search space. A
metaheuristic like the Simple Genetic Algorithm (SGA) is
not totally suited for traversing very large landscapes, espe-
cially deceptive ones [12, 18]. Each metaheuristic proposes
its own compromise between exploration and exploitation.
For wide search space, the SGA spends most of the time
trying to discover a promising area in which to refine the
search.

Any clever way to reduce the time needed to discover in-
teresting areas of the search space is beneficial for any opti-
misation method. The notion of Intrinsic Emergence (IE),
which was originally inspired by the developments of Crutch-
field and Mitchell, appears to be very helpful here [16, 3, 4,
1, 15, 14, 8, 7]. According to these authors, there are me-
chanical ways to observe a complex system so as to provide
this mechanical observer with added and profitable func-
tionalities. Here an observer, by modifying the coding of
the solutions, helps the optimisation process by simplifying
and reducing the search space. Another level at which ob-
servers are optimised is then added. From a cognitive point
of view, a human does not take into consideration all de-
tails when performing a searching process, such as finding
the shortest driving path for a trip. He first concentrates
on the global map and adopts a coarse level of observation.
Only then, he focuses on the details to refine the path. In the
same vein, our algorithm improves the SGA through the use
of high-level observers modifying and simplifying the whole
process.

An observer is defined as a mechanism which, by imposing
a different view on the problem (a simpler encoding), alters
the way the SGA traverses the landscape. The observers
compete among each other since some of them provide a
better view for the problem under investigation. This com-
petition allows us to rank the observers according to their
quality and select the best one. The new approach proposed
here selects the observers for a specific time and decides
which of them is the most suitable to solve the complete
problem. This training can be done sequentially or in par-
allel, i.e. in a co-evolutionary fashion. In a same vein, other
algorithms, such as the Delta Coding algorithm [22], adapt
the encoding of the problem.

While previous works aims at a conceptual introduction
of the approach and a rough illustration by an evolution-
ary optimisation of a Cellular Automaton [15, 14], this pa-

1273

per attempts a generalisation to all metaheuristics with spe-
cial focus on evolutionary ones. To test this generalisation,
the problem to be tackled is one instance of Shuffled HIFF
(SHIFF) [20, 21, 19, 5]. The choice of this problem is justi-
fied by its well-known deceptive characteristics and by the
fact that it poses many problems for basic GA-like algo-
rithms [21, 6, 17]. Our main goal here is to convince readers
that this added optimised observer can lead to a possible im-
provement of the behaviour of these basic algorithms. We
do not aim at an exhaustive experimental comparison with
all metaheuristics and all possible improvements or hybrids
for many problem instances but just to illustrate the poten-
tiality of this idea on a classical and popular optimisation
problem known in the community to be hard for GA. The
plan of the paper goes as follows. Section 2 introduces the
different ways to add the observers and their selection on the
classical sequence of steps of the SGA. Section 3 explains
the nature of the observers and the way they considerably
reduce the search space of the problem. Sections 4 and 5
present the SHIFF problem and the results we obtained by
the addition and the selection of the observers in comparison
with the direct SGA.

2. OBSERVER ALGORITHM
Our algorithm offers a way to assist the exploration pro-

cess of a given metaheuristic. An observer defines how the
metaheuristic can look at the search space: it is like a clever
lens used by the metaheuristic to explore the landscape.
This additional help includes two main steps (see Algorithm
1): the efficiency evaluation EvaluateMetaheuristicRun-

WithObserver(...) and the building BuildAnotherObser-

ver(...).

Algorithm 1 Canonical Skeleton of the proposed approach

O(0)← BuildAnotherObserver()
t← 0
while termination conditions not met do

SO ← EvaluateMetaheuristicRunWithObserver(O(t))
{SO temporarily stores the fitness of the Observer
O(t)}
O(t + 1)← BuildAnotherObserver(O(t), SO)
t← t + 1

end while
return best solution found by observed metaheuristic
{i.e. a solution of the treated problem, not an observer}

The first step evaluates the quality of an observer: ac-
cording to the solutions found, the observer is rewarded as a
function of the performance that it helps the metaheuristics
to obtain (EvaluateMetaheuristicRunWithObserver(...))
and the reward is stored in a temporary variable SO. This
evaluation is a function of the quality of the solutions ob-
tained when such an observer is applied. The way this qual-
ity is defined in the SGA case is discussed below.

The second step builds a new lens i.e. a new observer
O(t + 1) with respect to the previous one O(t). The next
observer construction is directed by the fitness SO (Build-
AnotherObserver(...)) and depends on the encoding and
its effect in the problem search space.

3. THE ADDITION OF COMPETITIVE
OBSERVERS ON SGA

A second search process is engaged here but, this time,
in the space of the observers. Again, any search algorithm
could be used for improving the observer solutions. In a
preliminary attempt to evolve Cellular Automata, the ob-
servers were generated in a random and unguided way [1]. In
a successive attempt, an evolutionary search was proposed
and tested [15, 14]. Here we follow this second evolutionary
search in the space of the observers. It is an iterated process
to optimise the way the solutions are coded and therefore
to improve the progression of the SGA [11, 12, 18] in this
“observed” space (see Algorithm 3). The termination cri-
terion depends on the chosen search algorithm in the space
of the observers. The current implementation of this search
is again based on a SGA (see Algorithm 2) transforming
the whole algorithm as an intertwining of two evolutionary
stages (through Evaluate(...)). The Evaluate(...) func-
tion corresponds to the EvaluateMetaheuristicRunWith-

Observer(...) and the observer evaluation function is then
defined by [14]:

fobs(O(t)) =

q
fsol ×max(fsol) , (1)

where fsol is the average of the individual fitness over the
population and max(fsol) is the maximum of these fitness
values. An observer should be as good as it allows a popula-
tion of average good quality and an excellent best individual.
And the Select(...), ApplyReproductionOperators(...)
and Replace(...) functions of the Algorithm 2 compose
the BuildAnotherObserver(...) from the Algorithm 1.

Algorithm 2 Evolutionary Implementation of our meta-
(metaheuristic)

Generate initial observer population O(0)
Generate initial solution population P (0)
t1 ← 0
while termination conditions not met do
Evaluate(O(t1), P (0)) {Defined in Algorithm 3}
O′(t1)← Select(O(t1))
O′′(t1)← ApplyReproductionOperators(O′(t1))
O(t1 + 1)← Replace(O(t1), O

′′(t1))
t1 ← t1 + 1

end while
return best solution found in P with best found observer
O

4. ENCODING OF THE OBSERVER
The observer aims at improving the SGA by altering the

landscape, hence the encoding of the individuals. It aims at
sampling the search space and restricting it to the most in-
formative areas. When coding each individual as a chromo-
some, the observer effect is to structurally group the genes.
All genes are linked by the relation attributed to their corre-
sponding group. Currently, all genes in a group are simply
assigned with the same value (allele) (see Algorithm 4). So,
the search space is projected onto a hyperplane.

The observer defines a function that maps a gene loca-
tion onto a group location. Each gene is assigned to a spe-
cific group. The genes are divided into groups (see Figure

1274

Algorithm 3 Evaluate(O: an Observer, P : a solution pop-
ulation) implementation for an EA

Q(0)← ObservePopulation(P, O)
t2 ← 0
while termination conditions not met do
Evaluate(Q(t2))
Q′(t2)← Select(Q(t2))
Q′′(t2)←
ApplyReproductionOpsWithObservation(Q′(t2), O)
Q(t2 + 1)← Replace(Q(t2), Q

′′(t2))
t2 ← t2 + 1

end while
return efficiency of observation and best solution, i.e.
fobs(O)

g1 g2 g3 g4 g5 g6 g7 g8 g9 g10 g11 g12 g13 g14 g15g0

G0 G1 G2 G3

G3G2G1G0

g8
g0

g6
g4

g13
g12

g2

g14g10
g1

g5g9

g3

g15

g7

g11

g15g11g7g3g14g10g6g0 g4 g8 g12 g1 g5 g9 g13 g2

Figure 1: This figure presents how genes are
grouped. First, the genes are assembled into groups
in a way defined by the oberver. The genes are
linked by the relation attributed to their corre-
sponding group.

1). This assignment and mapping functions partially recon-
struct the encoding of the treated problem. The function
works as described in Algorithm 4 and 5. The map(...)

function computed the boolean AND (noted by ∧) of a gene
locus i and a given observer O, both encoded as binary num-
ber. The BuildGroup(...) computes the genes group, i.e.
the observer effect on problem encoding. Theses functions
compose the ObservePopulation(...) from Algorithm 3.
Therefore, an observer is encoded in a bits string of length
lO = �log2(lC)� and defines the number of groups as 2N1 ,
where N1 is the number of 1 bit in the observer chromosome.
In the case of an observer of N1 of 1 bits, the reduction in

size of the search space is from 2lC to 22N1
. Since N1 goes

from 0 to lO, depending on the observer, the size of the
search space goes from 1 to lC . The greater the number of 1
in the observer coding the less this observer reduces the pre-
cision of the coding and consequently the size of the search
space.

Algorithm 4 l = map(i, O)

i {a given binary number for a gene locus}
O {a given binary number for a given observer}
l ← i ∧O {l is a binary number for the group locus}
return l

Algorithm 5 BuildGroup(C: a chromosome of length lC ,
O: an observer)

for all i such that 0 ≤ i ≤ lC do
l← map(i, O)
C(i) ∈ G(l)

end for

For sake of clarity, let’s explain what happens in the sim-
plest case of individuals coded on four binary genes and
an observer coded on two binary genes. Four observers are
possible which all correspond to a different way to group the
four genes. The four genes have locus: 00, 01, 10 and 11.
For instance, the 11 observer means that all genes belong
to four different groups. Indeed, by performing the logi-
cal AND between the respective locus and the observer, the
locus remains unchanged. Again, as a result of the AND
operation, the 01 observer now distributes the four genes in
two groups: a first group contains the gene located in 00
and 10, and the second group contains the genes located
in 01 and 11. Finally the observer 00 makes all genes to
belong in one only group.

5. SHUFFLED HIFF
Our algorithm is tested on the Shuffled Hierarchical IF-

and-only-iF (SHIFF) problem which is a maximisation prob-
lem [20, 21]. HIFF is the canonical version of a specific class
of problems modelling the interdependency between build-
ing blocks [10, 21, 5]. This kind of problems turns out to be
very interesting for different reasons. They are tools to bet-
ter understand the compositional and accretive mechanism
of a SGA [21, 19]. They are also representative of hierarchies
that we could identify in natural systems. Above all, HIFF
is very difficult for the SGA, especially the shuffled version
(SHIFF). SGA does not efficiently explore the search space
and looses itself in the fractal landscape of HIFF (see Fig-
ure 2): SGA does not succeed in traversing through multiple
local optima [21]. Different specific algorithms have been de-
signed to tackle HIFF problem and its shuffled version like
SEAM [21, 19], Hierarchical-GA [5, 6] or Compact Genetic
Codes [17]. We use the fitness function fhiff of HIFF to
compute the fitness of a given binary string [21]:

fhiff (B) =

8>><
>>:

1 if |B| = 1
|B|+ fhiff (BL) + fhiff (BR) if |B| > 1

and ∀i bi = 0 or bi = 1
fhiff (BL) + fhiff (BR) otherwise

,

(2)
where B is a block of bits {b1, . . . , bn}, |B| is the size of the
block B i.e. n, bi is the ith element of B, BL = {b1, . . . , bn/2}
and BR = {b1+n/2, . . . , bn} are the left and right halves of
B and n = lC is the size of the binary string and must be an
integer power of 2. The HIFF problem and its shuffled ver-
sion can be summarised as the maximisation of this fitness
function fhiff .

The tackled SHIFF is n = lC = 128 bits long and gen-
erated according to the Watson’s implementation1. This
problem size gives a maximum fitness of 1024 for both op-
tima, i.e. binary strings of only 1 or 0. As explained

1The watson’s source code is available on
http://www.cs.brandeis.edu/ richardw/hiff.html.

1275

 0

 20

 40

 60

 80

 100

 0 10000 20000 30000 40000 50000 60000

fit
ne

ss

16-bits chromosome ordered by gray coding

16-bits Shuffled HIFF

 35
 40
 45
 50
 55
 60
 65

 140 160 180 200 220 240

Figure 2: The fitness landscape is fractal. This re-
sults from the recursive definition of modules and
sub-modules. It is clearly visible on this. The fig-
ure shows the landscape for the 16-bits one. They
give a good idea of the landscape ruggedness and
the number of local maxima [21].

above, the observers are encoded by a bits string of length
lO = �log2(128)� = 7. We compare our approach with two
other algorithms: a single SGA and a SGA with randomly
generated observers. The comparison is made through the
following performance evaluation, i.e. what best solution
can be found following a given number of fitness function
evaluations. This is the most logical way to compare SGA
without and with the addition of observers, both random
and evolved.

6. RESULTS
In this section, we experimentally answer to the following

questions:

1. Does the addition of observers improve the perfor-
mance of SGA?

2. Can we use macroscopical observation2 to collect use-
ful information?

3. Which level of details is needed to observe efficiently?

4. How can we find good observers?

5. Does this generic method help SGA to tackle harder
problems and classical combinatorial problems?

We compare the basic SGA with RO-SGA (in this case
the observers are randomly generated) and EO-SGA (in this
case the observers are being evolved by a second SGA). The
main criterion of interest when comparing algorithms is their
scalability, i.e. the impact of the problem size on the compu-
tation time. For difficult problems, the cost in computation
time is mainly determined by the evaluation of fitness val-
ues. This is why progresses in the GA community often aim
at reducing this number. We therefore measure the best so-
lution fitness s∗, which is computed by fhiff (see Equation

2By macro observation, we mean a measure of a global prop-
erty.

(2)), as a function of the number of evaluations nf . The
fitness of the best observer o∗, which is evaluated by fobs

(see Equation (1)), is also measured in order to investigate
the second question above. For each parameters set (to be
described below), the obtained results are summarised by
drawing two statistics as a function of the number of evalu-
ations:

• a measure of central tendency, i.e. the center or mid-
dle of a frequency distribution, by the calculation of
the median which is marked by a small dark and bold
horizontal bar,

• and a measure of statistical dispersion3 by the calcu-
lation of the range and of the interquartile range. The
range is represented by a box. The interquartile range
is represented by two vertical lines. The first line is
plotted between the maximum and the third quartile
and the second one between the minimum and the first
quartile.

For each experiment, we run the algorithms 30 times on
50 different instances of SHIFF: the data set contains 1500
samples. These measures provide a fair comparison between
the algorithms performances and give answers to most of the
questions raised above except the third one. This question
will be investigated later through the study of the average
number of 1 bits in the best observer chromosome. The
more 1s we have, the more detailed is the observation. This
number provides some indications on the capacity of the al-
gorithm to autonomously tune the observation level, i.e. the
information compression of the search space still sufficient
to efficiently travel it.

SGA uses non-overlapping populations, roulette wheel se-
lection, one point crossover, flip mutation and the elitist
heuristic. Both populations of the solutions and the ob-
servers are initialised in an uniformly distributed way. The
probabilities of crossover and mutation are 0.7 and 1/128 re-
spectively. The SGA needs two parameters: the size of the
solutions population psol and the maximum number of gen-
erations gsol. The EO-SGA is composed of two intertwined
evolutionary stages and needs two additional parameters:
the size of the observers population pobs and the maximum
number of observer generations gobs. However, in the case of
the RO-SGA, only one more parameter is needed: the max-
imum number of random generation of observer gobs. The
used parameters sets are listed in Table 1.

As shown in [21], the SGA can not exceed a fitness around
400, even for higher evaluation numbers. By adding some
heuristics like “deterministic crowding diversity maintenan-
ce”, Watson has experimentally shown that SGA is unable
to escape from local optima and hardly reaches a fitness
around 700. We obtain similar results for the basic SGA
(see Figure 3). The small results dispersion indicates how
hard it is to travel through the SHIFF fractal landscape for
a basic SGA.

The RO-SGA provides a wide fitness range (see Figure
4.b). The observers are randomly generated and they do
not adapt their zoom properly. Due to the uniform distri-
bution, each observer resolution is generated with the same
frequency. The observer fitness o∗ provides information on

3Statistical dispersion is quantifiable variation of measure-
ments of differing members of a population within the scale
on which they are measured.

1276

SGA RO-SGA EO-SGA
psol {20, 200, 2000} {20, 50, 200} {1, 5, 10, 20, 200, 2000}
gsol {5, 10} {1, 10, 100} {1, 2, 5, 10}
pobs - {1} {1, 2, 5, 10}
gobs - {1, 2, 5} {1, 2, 5, 10}
max(nf) psolgsol psolgsolgobs psolgsolpobsgobs

nf PcrossPmut max(nf) ∼ max(nf) P 2
crossP

2
mut max(nf)

s∗ Fig. 3 Fig. 4.b Fig. 5.b
o∗ — Fig. 4.a Fig. 5.a

1 — Fig. 7 Fig. 6

Table 1: Parameters sets for each algorithm (SGA, EO-SGA and RO-SGA): solution population psol, solution
generations gsol, observer population pobs and observer generations gobs. With respect to these parameters,
we also calculate the maximum number of evaluations max(n) and its probabilistically weighted estimation n.
The crossover probability is Pcross = 0.7 and the mutation probability is Pmut = 1/128. Both are used for each
SGA. The bottom rows summarised the content of the figure.

 240

 250

 260

 270

 280

 290

 300

 310

 320

 100 1000

fit
ne

ss
 o

f t
he

 b
es

t f
ou

nd
 c

an
di

da
te

 s
ol

ut
io

n

number of function evaluations

Figure 3: Results for basic SGA. The statistical
measurements of best obtained solution fitness s∗
are plotted with respect to the number nf of fit-
ness evaluations. The SGA cannot exceed a fit-
ness of around 300 to 400 even for higher evalua-
tion numbers. By adding some heuristics like “di-
versity maintenance”, Watson has experimentally
shown that the SGA is unable to escape from lo-
cal optima and hardly reaches a fitness of around
700 [21].

how good the observed population is with respect to fobs

definition (see Figure 4.a). For higher evaluation numbers,
the median is bigger: SGA spends more time to explore the
observer search space and increases the chance to find a good
one.

Beyond around 500 evaluations, the EO-SGA efficiently
computes the maximum solution fitness (see Figure 5.b).
Around 1000 evaluations, no more dispersion is observed
(see Figure 5.b). By examining the Figures 5.a and 5.b,
we notice that the EO-SGA is capable of finding the max-
ima following 10 evaluations. The way the observers evolve
depends on their quality evaluated by the evaluation func-
tion fobs given above (see Equation (1)). After 1000 eval-
uations, the EO-SGA finds an adequate observer and the
resulting observed population which contains the two op-
tima. The convergence of the dispersion of s∗ and o∗ seems
to support the original intuition that observer could really
help the SGA to efficiently travel through the SHIFF rugged
landscape. Compared to the random version, we also show
the utility of evolving the observers as a function of how well
they progress and how well they adapt to the search space
of the problem. So, we have answered the questions above,
apart from the third one:

• Our EO-SGA drastically improves the basic SGA.

• The observer provides an adapted way to “observe”
the landscape so as to better traverse it. With ob-
server, only useful information is retained to explore
the SHIFF search space.

• Our evaluation function fobs rightly determines the
quality of an observer. The evolution of the observers
by means of this second SGA is an adequate and faster
way to find them.

• The whole algorithm seems indeed to be well adapted
to hard combinatorial problems.

Several specific algorithms have been implemented to tackle
hierarchical problems such as de Jong’s HGA [5, 6] or Wat-
son’s SEAM [21, 19]. Is our algorithm a competitive ap-
proach? We compared our algorithm performances with the
HGA performance. Considering a 256-bits SHIFF, our EO-
SGA is about ten times faster than HGA (see Table 2).
Over 1000 different instances (and only one run), the EO-
SGA finds the two optima in at most 5000 iterations and

1277

(a)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 100 1000

fit
ne

ss
 o

f t
he

 b
es

t f
ou

nd
 c

an
di

da
te

 s
ol

ut
io

n

number of function evaluations

observer

(b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 10 100 1000

fit
ne

ss
 o

f t
he

 b
es

t f
ou

nd
 c

an
di

da
te

 s
ol

ut
io

n

number of function evaluations

solution

Figure 4: Results for RO-SGA. The statistical measurements of the best obtained observer fitness o∗ (a) and
of the best obtained solution fitness s∗ (b) are plotted in function of the number nf of fitness evaluations.

(a)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 10 100 1000

fit
ne

ss
 o

f t
he

 b
es

t f
ou

nd
 c

an
di

da
te

 s
ol

ut
io

n

number of function evaluations

observer

(b)

 200

 300

 400

 500

 600

 700

 800

 900

 1000

 1100

 1 10 100 1000

fit
ne

ss
 o

f t
he

 b
es

t f
ou

nd
 c

an
di

da
te

 s
ol

ut
io

n

number of function evaluations

solution

Figure 5: Results of EO-SGA. The statistical measurements of the best obtained observer fitness o∗ (a) and
of the best obtained solution fitness s∗ (b) are plotted in function of the number nf of fitness evaluations.
Beyond nf ∼ 500, the EO-SGA found the maximum solution fitness with a very small dispersion, which is
reduced to zero at nf ∼ 103.

1278

HGA EO-SGA
evaluations number nf ∼ 105 ∼ 5.103

whole processing time ∼ 60s ∼ 5s

Table 2: Our EO-SGA is compared with SEAM and
HGA performances on the 256-bits SHIFF problem.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1 10 100 1000 10000 100000 1e+06

av
er

ag
e

1’
s

in
 o

bs
er

ve
r

ch
ro

m
os

om
e

number of function evaluations

Figure 6: Average of 1s in the best observer chro-
mosome. For both parameter sets of EO-SGA.

run in 5s on average4. Why is SHIFF such an easy problem
for EO-SGA?

We propose an first explanation through the study of the
mean of 1s of the best found observer chromosome. If the
observer is encoded by only 0s, the 128 bits which represent
the solution chromosome, compose one single group. Only
two solutions are possible and the search space falls from
2128 down to 21. With one 1, the bits are distributed in two
genes groups and only four candidate solutions are possible.
Examining the Figures 6, the best observers contain around
0.5 bit on average. Because of the genes are assigned to
the same value of the group they belong, and because of
the simple mapping function (see Algorithm 4), our first
simple implementation of the Observer Algorithm is very
adequate to tackle the SHIFF problem. We have to improve
its design to make more general the way how the groups are
bought and the genes are linked in a group. The more time
the EO-SGA has, the better and coarser the observers are.
Figure 7 shows that by randomly generating the observers,
the number of 1s i.e. the precision of the observer is equal to
the mean over all uniformly distributed 7-bits string, 3.5 =
7/2. These results explain why and how the SHIFF problem
turns out to be such an easy one for our approach. We also
better understand the role of the precision of the observer,
the third question raised above.

4The computer is a 1GHz AMD processor. The SGA im-
plementation is not especially optimised. For instance, dy-
namic libraries are used.

 1.5

 2

 2.5

 3

 3.5

 4

 4.5

 5

 5.5

 10 100 1000

av
er

ag
e

1’
s

in
 o

bs
er

ve
r

ch
ro

m
os

om
e

number of function evaluations

Figure 7: Average of 1s in the best observer chro-
mosome for RO-SGA.

7. CONCLUSION
Starting from original works discussed in [16, 3, 4, 1, 15,

14], we propose a new approach called EO-SGA. Its main
goal consists in improving the basic SGA exploration pro-
cess. The principle is based on the evolution of observers
which alter the way the SGA looks at the landscape and
travels through it [15, 14]. This alteration changes the en-
coding by reducing and smoothing the search space to more
informative subsets. We have shown the benefits gained
by using our algorithm on the SHIFF problem experimen-
tally [20]. The results confirm the improvement of the SGA
and EO-SGA outperforms specific algorithm such as the de
Jong’s HGA [6]. The addition of these adapted observers
allows us to find the best hierarchical level, i.e. the toppest
hierarchical level is the best level which “solves” the strong
genetic interdependency. So, using these observers, the SGA
restricts its search at this level and quickly finds the best so-
lutions due to the collapse of the search space size.

There are still many studies to complete the proposed
approach that could be summarised in three main axes of
research: experiments, new designs, and theoretical study.
New experiments should tackle more realistic problems such
as the Travelling Salesman Problem or other kinds of hier-
archical problems such as the HXOR problem. These ex-
periments will provide the necessary information to gain a
deeper understanding of our approach and improve its de-
sign (i.e. the building of group, the relation between genes in
a same group, the collaboration between each observed pop-
ulation, . . .). For instance, new design should incorporate
the coevolution of observers by allowing interaction among
the population of solutions obtained by each observer. Fi-
nally, the observers can be treated as genetic operators just
like crossover and mutation in Vose’s theory [18] since it re-
duces the set of accessible candidate solutions. We would
try to provide a theoretical treatment of our Observer Al-
gorithm. Some issues are remain largely opened such as the
generalisation of the approach and how well it extends to
the machine learning framework in general as well as to the
whole family of metaheuristics.

1279

Acknowledgments
The authors would like to thank Tom Lenaerts for his ad-
vices and Iridians for their help.

8. REFERENCES
[1] H. Bersini. Whatever emerges should be intrinsically

useful. In Artificial life 9, pages 226–231. The MIT
Press, 2004.

[2] C. Blum and A. Roli. Metaheuristics in combinatorial
optimization: Overview and conceptual comparison.
ACM Computing Survey, 35(3):268–308, 2003.

[3] J. Crutchfield. Is anything ever new? considering
emergence. In D. P. G. Cowan and D. Melzner,
editors, Integrative Themes, volume XIX of Santa Fe
Institute Studies in the Sciences of Complexity.
Addison-Wesley Publishing Company, Reading,
Massachusetts, 1994.

[4] J. Crutchfield and M. Mitchell. The evolution of
emergent computation. In Proceedings of the National
Academy of Science, volume 23, page 103, 1995.

[5] E. D. de Jong, D. Thierens, and R. A. Watson.
Hierarchical genetic algorithms. In X. Yao, E. Burke,
J. A. Lozano, J. Smith, J. J. Merelo-Guervós, J. A.
Bullinaria, J. Rowe, P. T. A. Kabán, and H.-P.
Schwefel, editors, Parallel Problem Solving from
Nature - PPSN VIII, volume 3242 of LNCS, pages
232–241, Birmingham, UK, 2004. Springer-Verlag.

[6] E. D. de Jong, R. A. Watson, and D. Thierens. On the
complexity of hierarchical problem solving. In
GECCO ’05: Proceedings of the 2005 conference on
Genetic and evolutionary computation, pages
1201–1208, New York, NY, USA, 2005. ACM Press.

[7] A. Defaweux, T. Lenaerts, and J. I. van Hemert.
Evolutionary transitions as a metaphor for
evolutionary optimisation. In Advances in Artificial
Life, 8th European Conference, ECAL 2005,
Canterbury, UK, September 5-9, 2005, Proceedings,
volume 3630 of Lecture Notes in Computer Science,
pages 342–352. Springer, 2005.

[8] A. Defaweux, T. Lenaerts, J. I. van Hemert, and
J. Parent. Transition models as an incremental
approach for problem solving in evolutionary
algorithms. In Genetic and Evolutionary Computation
Conference, GECCO 2005, Proceedings, Washington
DC, USA, June 25-29, 2005, pages 599–606. ACM,
2005.

[9] S. Forrest and M. Mitchell. Relative building-block
fitness and the building block hypothesis. In L. D.
Whitley, editor, FOGA, pages 109–126. Morgan
Kaufmann, 1992.

[10] S. Forrest and M. Mitchell. What makes a problem
hard for a genetic algorithm? some anomalous results
and their explanation. Machine Learning, 13:285–319,
1993.

[11] D. E. Goldberg. Genetic Algorithms in Search,
Optimization, and Machine Learning. Addison-Wesley
Professional, 1989.

[12] M. Mitchell. An introduction to genetic algorithms.
MIT Press, Cambridge, MA, USA, 1996.

[13] M. Mitchell, S. Forrest, and J. H. Holland. The royal
road for genetic algorithms: Fitness landscapes and ga
performance. In F. J. Varela and P. Bourgine, editors,
Proceedings of the First European Conference on
Artificial Life, Cambridge, MA, 1992. MIT Press.

[14] C. Philemotte and H. Bersini. Coevolution of effective
observers and observed multi-agents system. In
Advances in Artificial Life, 8th European Conference,
ECAL 2005, Canterbury, UK, September 5-9, 2005,
Proceedings, volume 3630 of Lecture Notes in
Computer Science, pages 785–794. Springer, 2005.

[15] C. Philemotte and H. Bersini. Intrinsic emergence
boosts adaptive capacity. In GECCO ’05: Proceedings
of the 2005 conference on Genetic and evolutionary
computation, pages 559–560, New York, NY, USA,
2005. ACM Press.

[16] L. Steels. Towards a theory of emergent functionality.
In Proceedings of the first international conference on
simulation of adaptive behavior on From animals to
animats, pages 451–461, Cambridge, MA, USA, 1990.
MIT Press.

[17] M. Toussaint. Compact genetic codes as a search
strategy of evolutionary processes. In A. H. Wright,
M. D. Vose, K. A. D. Jong, and L. M. Schmitt,
editors, Foundations of Genetic Algorithms, 8th
International Workshop, FOGA 2005,
Aizu-Wakamatsu City, Japan, January 5-9, 2005,
Revised Selected Papers, volume 3469 of Lecture Notes
in Computer Science, pages 75–94. Springer, 2005.

[18] M. D. Vose. The Simple Genetic Algorithm:
Foundations and Theory. MIT Press, Cambridge, MA,
USA, 1998.

[19] R. A. Watson. A computational model of symbiotic
composition in evolutionary transitions. Biosystems,
69(2–3):187–209, 2003.

[20] R. A. Watson, G. Hornby, and J. B. Pollack. Modeling
building-block interdependency. In PPSN V:
Proceedings of the 5th International Conference on
Parallel Problem Solving from Nature, pages 97–108,
London, UK, 1998. Springer-Verlag.

[21] R. A. Watson and J. B. Pollack. Compositional
evolution: interdisciplinary investigations in
evolvability, modularity, and symbiosis. PhD thesis,
Brandeis University, 2002. Adviser-Jordan B. Pollack.

[22] L. Whitley, K. Mathias, and P. Fitzhorn. Delta
coding: An iterative search strategy for genetic
algorithms. In Proc. of the Fourth International
Conference on Genetic Algorithms, pages 77–84, San
Diego, CA, 1991.

1280

