
The Effect of Crossover on the Behavior of the GA in
Dynamic Environments

A Case Study using the Shaky Ladder Hyperplane-Defined Functions

William Rand
Northwestern Institute on Complex Systems

220 Annenberg Hall
2120 N Campus Dr.

Evanston, IL, USA, 60208

wrand@northwestern.edu

Rick Riolo and John H. Holland
Center for the Study of Complex Systems

University of Michigan
4485 Randall Lab

Ann Arbor, MI, USA, 48109-1120

rlriolo@umich.edu, jholland@umich.edu

ABSTRACT
One argument as to why the hyperplane-defined functions
(hdf’s) are a good testbed for the genetic algorithm (GA) is
that the hdf’s are built in the same way that the GA works.
In this paper we test that hypothesis in a new setting by ex-
ploring the GA on a subset of the hdf’s which are dynamic—
the shaky ladder hyperplane-defined functions (sl-hdf’s). In
doing so we gain insight into how the GA makes use of
crossover during its traversal of the sl-hdf search space. We
begin this paper by explaining the sl-hdf’s. We then conduct
a series of experiments with various crossover rates and var-
ious rates of environmental change. Our results show that
the GA performs better with than without crossover in dy-
namic environments. Though these results have been shown
on some static functions in the past, they are re-confirmed
and expanded here for a new type of function (the hdf) and
a new type of environment (dynamic environments). More-
over we show that crossover is even more beneficial in dy-
namic environments than it is in static environments. We
discuss how these results can be used to develop a richer
knowledge about the use of building blocks by the GA.

Categories and Subject Descriptors: F.2.m [Analysis
of Algorithms] Misc. I.2.8 [Artificial Intelligence] Search

General Terms: Algorithms

Keywords: Crossover, Dynamic Environments,
Hyperplane-Defined Functions, Genetic Algorithms

1. INTRODUCTION
Investigations into the use of crossover within the genetic

algorithm (GA) have been carried out in the past [10]. Some
of these investigations have been purely theoretical and some

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, WA USA,
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

have been more empirical [12, 2]. However, most of this pre-
vious work examined the use of different crossover operators
and did not investigate the effect of the crossover operator
itself. This paper investigates the effect of the crossover op-
erator and presents results on a new type of landscape (the
shaky-ladder hyperplane-defined functions) in a new type of
environment (dynamic environments). In addition, recent
advances in the speed and power of computers allow us to
now conduct a set of experiments located between theory
and application. By treating the GA operating on a hy-
pothetical and specially designed landscape as an empirical
system upon which we are making observations, we can con-
tribute to theory by collecting a set of regularities that need
to be explained, and we can help practitioners by making
recommendations to them.

In order to conduct controlled observations on the GA in
dynamic environments, a test suite of problems is necessary,
so that we can control the inputs to the system and define
metrics for the outputs. Moreover, the more parameters
of the system (e.g. time and severity of shakes, difficulty of
the problem) that are controllable, the easier it is to develop
explanations for the observed behavior.

Other test suites for EAs in dynamic environments ex-
ist, such as the dynamic knapsack problem, the moving
peaks problem and more [1]. The test suite presented here
is similar to the dynamic bit matching functions utilized
by Stanhope and Daida [11] among others. The test func-
tions that we have developed to explore the GA in dynamic
environments—the shaky ladder hyperplane-defined func-
tions (sl-hdf’s)—are a subset of the hdf’s [4]. Holland cre-
ated the hdf’s in part to meet criteria developed by Whitley
[13]. The hdf’s are designed to represent the way the GA
searches by combining building blocks, hence they are ap-
propriate for understanding the operation of the GA.

The sl-hdf’s have been explored in previous work [8, 7, 6,
5, 9]. In this paper we explore three variations on the basic
sl-hdf’s and examine the effect of crossover on these variants.
We begin by describing the sl-hdf’s and the three variants
utilized in this paper. We then describe the experiments that
we carried out utilizing these functions, and examine the
behavior of the GA with various rates of one-point crossover.
Finally we discuss these results and draw some conclusions.

1289

2. SHAKY LADDER HDF’S AND THE
VARIANTS

In this section we briefly describe the sl-hdf’s and the three
variants we will be exploring. Due to space constraints it is
impossible to fully describe the sl-hdf’s within this paper;
for a more detailed description the reader is referred to pre-
vious explanations [5]. To make the hdf’s [4] usable as a
test platform for the GA in dynamic environments we place
three restrictions on the hdf’s. The first restriction is the
Unique Position Condition (UPC). It requires that all ele-
mentary schemata contain no conflicting bits. The second
restriction we call the Unified Solution Condition (USC).
This condition guarantees that all of the specified bits in the
positive-valued elementary level schemata must be present in
the highest level schema, and that all intermediate schemata
are a composition of lower level schemata. The third condi-
tion is the Limited Pothole Cost Condition (LPCC), which
states that the fitness contribution of any pothole plus the
sum of the fitness contributions of all the building blocks in
conflict with that pothole must be greater than zero.

These three conditions guarantee that any string that
matches the highest level schema must be optimally valued.
Moreover it gives us an easy way to create a similar but dif-
ferent sl-hdf by changing the intermediate building blocks.
This process is referred to as “shaking the ladder”, i.e. the
intermediate schemata are changed which alters the reward
structure that describes the fitness landscape. It is through
shaking the ladder that dynamism is introduced into the
sl-hdf landscape; by controlling how many generations are
allowed to occur between shakes of the ladder, the frequency
of change in the sl-hdf’s can be controlled. Thus in summary
these restrictions allow us to transform the full class of hdf’s
into a class that can be used for exploring the behavior of
the GA on dynamic environments.

In addition the sl-hdf’s are representative of many real
world problems in which there is a hierarchical reward struc-
ture with highly epistatic interactions, and where the dy-
namism in the environment contains regularities. For in-
stance, job scheduling might be such a problem. The reward
structure consists of assembling smaller tasks to solve larger
and larger tasks, but these sub-tasks are highly interdepen-
dent. In addition in a dynamic job scheduling problem there
may well be regular sub-tasks that need to be solved on a
constant basis. The sl-hdf’s feature these same qualities.

There are many parameters that control the construction
of the sl-hdf’s. A more detailed explanation of these variants
can be found in other work [9]. Below we will explore three
variants that we are utilizing in this paper and explain the
parameter choices associated with them.

2.1 Variations on the sl-hdf
Though we explored many combinations of the basic pa-

rameters of the sl-hdf in order to examine the behavior of
the GA in dynamic environments, here we concentrate our
efforts on understanding three specific variations of the sl-
hdf’s which span the space of the parameters. These are
usually referred to as variants (short for “variants of the sl-
hdf’s”) but are occasionally also referred to as landscapes in
reference to Wright’s notion of a fitness landscape (as in the
“Cliffs landscape”) [14]. We will describe three variants in
turn in the following sections. The differences between these
variants are summarized in Table 1.

2.1.1 Cliffs Variant: Intermediate Schemata are cliffs
The base case for our experiments is the Cliffs variant,

which derives its name from the fact that there are sharp
“cliffs” in the landscape and the landscape shakes cause fit-
ness values to change dramatically. This variant alone uti-
lizes the unrestricted construction method of the sl-hdf’s.
When creating a new intermediate schema using the unre-
stricted method, all of the previous level schemata, plus the
potholes, and the highest level schema can be used to gener-
ate the new schema. This is opposed to the restricted con-
struction method, where the only material that is available
to construct the next level of schemata is the previous level,
and not the potholes or highest level schema. The unre-
stricted construction method has the property of introducing
“cliffs” into the landscape, because the combination of any
schemata and the highest level schema is the highest level
schema. Thus many intermediate schemata are replaced by
copies of the highest level schema. An effect of this is that
any string which matches the highest level schema will have
a much higher value relative to the other strings than it
would in the restricted construction method. Moreover, the
effect of having some intermediate schemata combining with
potholes or potholes combining with potholes to create in-
termediate schemata is complicated. Essentially, this has
the effect of smoothing transitions since some of the pot-
holes will not be as detrimental as they could be. On the
other hand, if there is one of these “bridges” in place and the
ladder shakes removing the bridge, an individual who was
on that bridge will suffer a sharp decline in fitness because
it loses an intermediate schema and gains a pothole. In gen-
eral the result of these effects is that the fitness landscape
and its changes are more sharply defined.

In addition to the unrestricted construction method, the
random construction method of the sl-hdf’s is used, i.e.,
the two schemata to be combined to form the next level
of schemata are chosen randomly from the pool of avail-
able schemata. This is opposed to the neighbor construction
method in which only schemata which have centers located
near each other can be combined to form the next level of
schemata. All of the parameters of these construction meth-
ods are explained in more detail in [9].

2.1.2 Smooth Variant: An sl-hdf without cliffs
The case that we refer to as the Smooth variant is con-

structed using the restricted method, which is the only dif-
ference between it and the Cliffs variant. It differs from the
Weight variant because the intermediate schemata weight
are never changed, and it still uses the random method of
intermediate schema construction. This variant is called the
Smooth sl-hdf because unlike the sl-hdf with Cliffs, there
are no sharp edges or transitions in the landscape. In-
stead elementary schemata are combined to form interme-
diate schemata, which then are combined to form the next
level of intermediate schemata and so forth.

2.1.3 Weight Variant: Shaking the weights not the
form

This variant most closely resembles the hdf’s described
by Holland. The first change from the previous variants is
that the schemata have a fixed length of 50 = ls

10
(where

ls is the length of the string), and an order of 8. Second,
the intermediate schemata are created using the restricted,
neighbor intermediate construction routine. This gives the

1290

Variant Construction Method Elementary Schema Length Shaking Method

Cliffs Unrestricted, Random Not Specified Form
Smooth Restricted, Random Not Specified Form
Weight Restricted, Neighbor 50 Weight

Table 1: Differences between sl-hdf variants.

sl-hdf a constant and regular form. Finally, when the ladder
is shaken, the form of the intermediate schemata remain
constant and only the weights of the schemata are changed.
This variant has limited length building blocks, and a highly
restricted intermediate building block construction routine.

3. CROSSOVER EXPERIMENTS
One of the principle arguments as to why the sl-hdf’s are a

good testbed for exploring the GA in a dynamic environment
is that the sl-hdf’s are built in the same way that the GA
itself works. In other words, the sl-hdf’s are built out of
elementary schemata which are then combined together to
create higher and higher levels of schemata. The Building
Block hypothesis [3] states that the GA works by combining
building blocks which are partial solutions to a problem in
order to create better and more complex solutions to the
problem. The way the GA does this is through the use of
crossover. Crossover allows the GA to take partial solutions
in good individuals in the population and combine them to
create even better solutions.

Thus one hypothesis is that if the sl-hdf’s are best solved
through combining schemata, then by turning off crossover
we should see a dramatic reduction in the performance of the
GA. Moreover, a second hypothesis is that since the Weight
variant uses short length, small order schemata for its ele-
mentary schemata, crossover should have the greatest effect
on a GA performing in that environment. In order to test
these two hypotheses, we carried out two sets of experiments.
In the first experiment, we manipulated the variable tδ which
is the number of generations between times when the ladder
is shaken. This experiment compared multiple tδ values (1,
100, and 1801) for runs of the GA with no crossover and runs
of the GA with the normal level of crossover (70% of the
next generation created through crossover) and compared
the results on all three variants. In the second experiment,
we compared multiple crossover rates (0.0, 0.1, 0.3, 0.5, 0.7,
0.9, and 1.0) for one tδ value (100) in all three variants. In
both of these experiments the rest of the GA parameters
were set to some standard values. Population size was 1000;
the selection method was a tournament of size 3; the muta-
tion rate was .001; the string length was 500, and the GA
was run for 1800 generations. These results are discussed by
variant below.

3.1 Crossover Results: Cliffs Variant
As mentioned in the previous section, the GA was run

on sl-hdf’s with three different tδ values (1, 100, and 1801)
with crossover turned off completely and crossover turned
on. When crossover is turned on 70% of the individuals in
each generation were created through crossover. Mutation
still occurs at the standard rate with 1 out of every 1000 bits
being flipped every generation. When crossover is turned off,
the only evolutionary operator that is being used is muta-
tion, again at a rate of 1 out of every 1000 bits. The results
of the best individual’s performance of the population (av-

eraged over 30 runs) on the Cliffs variant for every tenth
generation is presented in Figure 1.

As can be observed in the graph, crossover always im-
proves the performance of the system. This is true even
when comparing the results of the tδ = 1801 environment,
where the GA performed the worst in the runs with crossover,
to the no crossover results of the tδ = 100 environment,
which is the environment that the GA with crossover per-
formed best in. The dramatic effect of crossover supports
the idea that the GA’s primary method of search is through
crossover, and thus supports the first hypothesis that the
sl-hdf’s are indeed a good test suite to examine the GA’s
performance.

In addition, the GA with crossover improves more rapidly
early on in the run than the GA without crossover. This in-
dicates that crossover is mostly used for combining multiple
elementary schemata into one string, whereas later on in the
runs it does not have as great an effect. This result will be
more clear in the next two variants.

Also note that the changes in performance between dif-
ferent tδ values is different for GAs with versus without
crossover. As is illustrated by Figure 1, the GA with crossover
performs better in the tδ = 1 environment than in the
tδ = 1801 environment in the long run. This is not the
case in the GA without crossover. Without crossover the
GA is not able to adapt to the constant shaking as well, but
the mutation operator alone is enough to continually make
improvements in the static environment.

Moreover, in the GA without crossover, though the per-
formance in the tδ = 100 environment does eventually sur-
pass the performance in the tδ = 1801 environment, it does
not do this until much later in the run of the GA than it
does in the GA with crossover. The argument was made in
previous work [8] that in the tδ = 100 environment, prema-
ture convergence is prevented from occurring because of the
shaking of the ladder. However, with mutation being the
only operator, it is difficult for the GA to move past local
optima.

These results indicate that crossover is even more im-
portant for the functioning of the GA in dynamic environ-
ments than it is in static environments. The relative per-
formance increase when going from the no crossover GA to
the crossover GA is much larger for the dynamic environ-
ments than it is for the static environments. One hypothe-
sis is that when a shake of the ladder dramatically changes
the landscape the new elementary schemata that need to
be recombined are already present in the population but are
located in different individuals. Crossover provides a mecha-
nism for the GA to recombine those elementary schemata to
discover which combinations are now being rewarded. With-
out crossover, the GA must rely on mutation which has no
ability to recombine existing material and must rediscover
elementary schemata in other strings.

In the second experiment of this section, we examined the
effect of various rates of crossover on the Best Performance

1291

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

noCross tδ = 1
noCross tδ = 100

noCross tδ = 1801
Cross tδ = 1

Cross tδ = 100
Cross tδ = 1801

Figure 1: Cliffs Variant: Crossover vs. No Crossover

(averaged over 30 runs) of the population on the Cliffs vari-
ant. tδ was held at 100 throughout these runs. We set the
rates of crossover to the following values: 0.0, 0.1, 0.3, 0.5,
0.7, 0.9, and 1.0. The results of this experiment for every
tenth generation are presented in Figure 2.

These results support the hypothesis mentioned above
that crossover has a dramatic effect on the performance
of the GA in the sl-hdf environment. They illustrate that
as crossover increases so does the performance of the GA,
though the results with crossover rates between 0.7 and 1.0
are roughly equivalent.

These results also illustrate that crossover is most impor-
tant early on in the run as the GA is assembling elementary
building blocks together. Later, as the GA is attempting
to discover the last few building blocks that it needs, the
performance of the system is roughly parallel for all levels
of crossover since, at that point, mutation is the primary
mechanism for exploration.

Moreover, these results support a common conception in
GA practice that a crossover rate of 0.7 allows for good
performance. On the other hand, these results indicate that
even a crossover rate of 1.0, which would usually destroy too
many schemata to be useful, can still have a positive effect
in this environment. This is probably due to the fact that
since so much of the landscape is dominated by zero fitness
spaces, the positive fitness individuals who will be selected
to proceed into the next generation share at least enough
bits in common that crossover does not always destroy the
schemata they contain.

3.2 Crossover Results: Smooth Variant
Figure 3 presents the results of every tenth generation for

the no crossover experiment on the Smooth variant.
In these results, many of the same phenomenon described

Section 3.1 can be seen. The performance of the GAs with
crossover is better than the performance of the GAs without
crossover. In addition, without crossover, the GA performs
statistically significantly better (outside a double standard

error bar) at the end of the run in the environment that
is constantly changing than in the other two environments.
In addition, the tδ = 100 environment is coming close to
passing the static environment at the end of the run. The
long run dynamics may in fact turn out to be similar to the
results with crossover, but in the no crossover GA it may
take more time for the dynamics to develop. This again
supports the hypothesis that crossover is most important to
“jump-start” the GA early on in the run and less important
later.

Moreover, we also see support for the hypothesis that
crossover is more important in a dynamic environment than
a static one. Again, the relative performance increase from
the no crossover GA to the crossover GA is much larger in
the dynamic environment than in the static environment.
Crossover helps the GA recover from shakes of the ladder
by recombining elementary schemata in new ways.

Again, in the second experiment on this variant, the tδ

value is held constant while the crossover rate is varied. The
results of this experiment for every tenth generation on the
Smooth variant are presented in Figure 4.

These results are similar to those presented in Figure 2.
More crossover is better, but crossover rates within the range
of 0.7 to 1.0 have roughly equivalent performance. Crossover
rates between 0.3 and 0.5 also have roughly equivalent per-
formance. Since the GA makes faster progress early on in
this variant, it may be that it gets past the point where
crossover makes as much of a difference quicker and thus
the differences between 0.3 and 0.5 disappear in the long
term performance of the system. In fact earlier on in the
run there is a difference, but this difference disappears over
time. All of these observations support the hypothesis that
crossover aids the GA working within the sl-hdf environ-
ment, allowing it to make quick progress early on and adapt
to changes rapidly.

1292

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

xoverRate = 1.0
xoverRate = 0.9
xoverRate = 0.7
xoverRate = 0.5
xoverRate = 0.3
xoverRate = 0.1
xoverRate = 0.0

Figure 2: Cliffs Variant: Various Rates of Crossover

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

noCross tδ = 1
noCross tδ = 100

noCross tδ = 1801
Cross tδ = 1

Cross tδ = 100
Cross tδ = 1801

Figure 3: Smooth Variant: Crossover vs. No Crossover

1293

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

xoverRate = 1.0
xoverRate = 0.9
xoverRate = 0.7
xoverRate = 0.5
xoverRate = 0.3
xoverRate = 0.1
xoverRate = 0.0

Figure 4: Smooth Variant: Various Rates of Crossover

3.3 Crossover Results: Weight Variant
Figure 5 presents the results of every tenth generation for

the no crossover experiment on the Weight variant.
One of our hypotheses was that the GA operating in the

Weight variant would be able to make better use of crossover
than the GA did in the Cliffs and Smooth variants, and it
does early on. Clearly the difference in performance be-
tween the crossover runs and the non-crossover runs of the
GA in the first 800 generations is substantially greater in the
Weight variant than it is in the other two variants. However,
as the population nears the optima, crossover does not make
as much of a difference. One explanation is that recombina-
tion of elementary schemata is very important early on to
make progress. However, as the GA approaches the optima,
crossover is not as successful since every crossover operation
will potentially disrupt a schema, which is explained by the
Schema Theorem [3]. Of course once the population has
genomically converged then crossover has less of a disrup-
tive effect since crossing over two similar individuals is less
likely to disrupt schema. However at this point crossover
really is not gaining anything either since all of the individ-
uals look very similar. This supports an additional claim
made by Holland that the GA is not really optimizing but
instead explores the search space for areas of high fitness.
Thus when the GA approaches the optimum it is mutation
that really drives the search toward the final global optima.
Though one factor that mitigates this effect is that if a long
schema is highly concentrated in a few areas of the string
then it is less likely to be disrupted. A long, concentrated
schema is one where most of its fixed bits are located within
a short distance of each other (the concentrated portion),
but some of its fixed bits are located far away which makes
the schema long. These type of schema are less likely to
be disrupted by crossover because even if crossover breaks
off a bit or two from the non-concentrated portion of the
schema there is a better probability that the other parent
may have that bit set anyway. However if the schema is long

and not concentrated then the probability decreases that the
other individual will have the necessary bits to prevent the
schema from being destroyed. This means that our original
hypothesis, that crossover would have the greatest effect on
the Weight variant, was not incorrect but just incomplete.
Crossover does have the greatest effect on the Weight variant
early on in the run of the GA.

One final note on this experiment is that crossover does
not increase the performance of the GA operating in the
dynamic environment more than it does the GA operating
in the static environment. This is different from the pre-
vious two variants where the results show that crossover is
more important in the dynamic environments than it is in
the static environments. This can be explained by the fact
that since the form of the ladder remains constant in this
variant, the GA is not forced to recombine material into
new individuals to find those favored by the new environ-
ment after a change. Instead the result of the weight vari-
ant changes is to change the selection pressure on different
combinations of the schemata that are already present in
the population. Thus, though crossover does help initially
in finding the proper combination of elementary building
blocks, it is not as beneficial to adapt to changes in the
Weight variant as it is in the previous two variants.

Again in the second experiment on this variant, the tδ

value is held constant while the crossover rate is varied. The
results of this experiment for every tenth generation on the
Weight variant are presented in Figure 6.

More evidence for the explanation given above for the ef-
fect of crossover in the Weight variant can be seen in this
figure. Early on in the run, the same differences between
the various rates of crossover can be seen, with a higher rate
of crossover allowing the GA to perform better. However,
as the GA progresses and comes closer to the global optima,
the effect of different crossover rates starts to disappear. We
observe from the results of the experiments on all three of
these variants that crossover does have a dramatic effect on
the performance of the GA within the sl-hdf environment.

1294

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

noCross tδ = 1
noCross tδ = 100

noCross tδ = 1801
Cross tδ = 1

Cross tδ = 100
Cross tδ = 1801

Figure 5: Weight Variant: Crossover vs. No Crossover

Moreover, these experiments also show that when the ele-
mentary schemata are short in length and small in order,
crossover has the greatest effect. Thus problems with short
length, small order building blocks are better suited for the
GA than those with long, highly ordered building blocks.

4. CONCLUSION
This paper explores the effect of crossover on the GA oper-

ating in the sl-hdf environments. It is shown that crossover
has a dramatic effect in the sl-hdf environments, with the
GA not being able to perform nearly as well when crossover
is only used to a limited degree or turned off completely. In
addition, we have shown that crossover is even more impor-
tant to the performance of the GA in some dynamic envi-
ronments than it is in a static environment. Moreover, we
have provided evidence that a crossover rate of 0.7 allows the
GA to operate well. The experimental results support the
hypothesis that the sl-hdf is a good environment to utilize
in exploring the GA in dynamic environments. In addition,
they lend credence to the Building Block Hypothesis by illus-
trating that without a mechanism to combine small building
blocks the GA does not perform as well. Furthermore, the
Schema Theorem states that longer schema are more likely
to be disrupted by crossover; this phenomenon is illustrated
by the fact that the GA operating on an environment with
shorter schemata does better early on than the GA operating
on an environment with longer schemata. Thus these results
also provide further evidence for the Schema Theorem.

Some of these results we expected ahead of time. For in-
stance, crossover as a required mechanism in the successful
exploration of the hdf’s was one of the designing principles
of those test functions. Nonetheless the results of this paper
are novel because it is the first time that this has empirically
been shown to be true. In addition, there was no clear expla-
nation or hypothesis with regards to the effect of crossover
in a dynamic environments. A clearly novel result of this
paper is the demonstration that in at least some classes

of problems crossover improves the performance of the GA
more dramatically in dynamic environments than it does in
static environments. The current hypothesis is that this is
because dynamic environments require the GA to quickly
adapt and move large distances through the search space.
Crossover facilitates this process more efficiently by recom-
bining schemata in different individuals within the popula-
tion, whereas mutation restricts the search to a local neigh-
borhood around individuals. This new result needs to be
explored more fully in future work.

These experiments are first steps toward a larger goal of
more fully understanding the role of crossover in the GA.
For instance, one mystery that arose from these results is
that if mutation is more important near the end of the run
(even with the crossover mechanism operating) then why do
some of the variants make more progress than others toward
the goal? We feel that answering questions like these will
require studying the GA in different ways than just through
the lens of performance. Thus we plan to carry out some
of the experiments presented in this paper, but explore in
more detail the particular schemata that are contained in
the individuals during the course of the GA run. We plan to
build a system that will allow us to investigate detailed histo-
ries of particular schemata or to examine aggregate counts
of schemata across the population simultaneously. Such a
system will allow us to more fully explore the interplay of
crossover and building blocks.

Acknowledgements: We thank the University of Michi-
gan’s Center for the Study of Complex Systems (CSCS) for
providing computational resources and support for RR. We
also thank the Northwestern Institute on Complex Systems
for providing support for WR.

5. REFERENCES
[1] Branke, J. Evolutionary Optimization in Dynamic

Environments. Kluwer Academic Publishers, 2001.

1295

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 200 400 600 800 1000 1200 1400 1600 1800

B
es

t F
itn

es
s

(A
vg

. O
ve

r
30

 R
un

s)

Generations

xoverRate = 1.0
xoverRate = 0.9
xoverRate = 0.7
xoverRate = 0.5
xoverRate = 0.3
xoverRate = 0.1
xoverRate = 0.0

Figure 6: Weight Variant: Various Rates of Crossover

[2] DeJong, K. A., and Spears, W. M. An analysis of
the interatcing roles of population-size and crossover
in genetic algorithms. In Lecture Notes in Computer
Science (1991), vol. 496, p. 38.

[3] Holland, J. Adaptation in Natural and Artificial
Systems. University of Michigan Press, Ann Arbor,
MI, 1975.

[4] Holland, J. H. Building blocks, cohort genetic
algorithms, and hyperplane-defined functions.
Evolutionary Computation 8, 4 (2000), 373–391.

[5] Rand, W. Controlled Observations of the Genetic
Algorithm in a Changing Environment: Case Studies
Using the Shaky Ladder Hyperplane-Defined
Functions. PhD thesis, University of Michigan, 2005.

[6] Rand, W., and Riolo, R. Measurements for
understanding the behavior of the genetic algorithm in
dynamic environments: A case study using the shaky
ladder hyperplane-defined functions. In Proceedings of
the Genetic and Evolutionary Computation
Conference, GECCO-2005 (New York, 2005), H.-G.
Beyer et al., Eds., ACM Press.

[7] Rand, W., and Riolo, R. The problem with a
self-adaptive mutation rate in some environments: A
case study using the shaky ladder hyperplane-defined
functions. In Proceedings of the Genetic and
Evolutionary Computation Conference, GECCO-2005
(New York, 2005), H.-G. Beyer et al., Eds., ACM
Press.

[8] Rand, W., and Riolo, R. Shaky ladders,
hyperplane-defined functions and genetic algorithms:
Systematic controlled observation in dynamic
environments. In Applications of Evolutionary
Computing, Evoworkshops (2005), F. Rothlauf et al.,
Eds., vol. 3449 of Lecture Notes In Computer Science,
Springer.

[9] Rand, W., and Riolo, R. The effect of building
block construction on the behavior of the ga in
dynamic environments: A case study using the shaky
ladder hyperplane-defined functions. In Applications of
Evolutionary Computing, Evoworkshops (2006),
F. Rothlauf et al., Eds., vol. 3907 of Lecture Notes In
Computer Science, Springer, pp. 776–787.

[10] Spears, W. M., and Jong, K. A. D. On the virtues
of parameterized uniform crossover. In 4th
Internationl Conference on Genetic Algorithms (La
Jolla, CA, 1991), pp. 230–6.

[11] Stanhope, S. A., and Daida, J. M. Optimal
mutation and crossover rates for a genetic algorithm
operating in a dynamic environment. In Evolutionary
Programming VII (1998), no. 1447 in LNCS, Springer,
pp. 693–702.

[12] Sywerda, G. Uniform crossover in genetic algorithms.
In Proceedings of the third international conference on
Genetic Algorithms (George Mason University, United
States, 1989), J. D. Schaffer, Ed., pp. 2–9.

[13] Whitley, D., Rana, S. B., Dzubera, J., and
Mathias, K. E. Evaluating evolutionary algorithms.
Artificial Intelligence 85, 1-2 (1996), 245–276.

[14] Wright, S. The roles of mutation, inbreeding,
crossbreeding and selection in evolution. In
Proceedings 6th Congress on Genetics (1932), vol. 1,
p. 356.

1296

