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ABSTRACT
Using a set of model landscapes we examine how different
mutation rates affect different search metrics. We show that
very universal heuristics, such as 1/N and the error thresh-
old, can generally be improved upon if one has some qual-
itative information about the landscape. In particular, we
show in the case of multiple optima (signals) how mutation
affects which signal dominates and how passing between the
dominance of one to another depends on the relative height
and size of the peaks and their relative positions in the con-
figuration space.

Categories and Subject Descriptors
I.2.m [Computing Methodologies]: Artificial Intelligence—
Miscellaneous

General Terms
Performance

Keywords
Genetic Algorithms, Selection, Mutation rate, Effective Fit-
ness, Error threshold

1. INTRODUCTION
There has always been a strong interest in Evolutionary

Computation (EC) with respect to what are “optimal” pa-
rameter settings for a given class of Evolutionary Algorithm
(EA) [1, 2]. In this paper we concentrate on the roles of mu-
tation and selection, neglecting the effect of recombination,
the resulting intuition also being applicable to simulated an-
nealing type algorithms. There have been three recurring
themes with respect to an “optimal” mutation rate: i) that
a rate ∼ 1/N is preferred [5], where N is the string length;
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ii) that a preferred rate should be dynamic [3, 4, 10, 9, 11];
and iii) that the error threshold offers guidance as to an
optimal rate [6, 7, 8].

Of course, the desire has been to derive useful heuristics
for setting mutation rates and, the more universal the bet-
ter. The well known 1/N heuristic is one such. Obviously
this is too universal in that it is independent of the fitness
landscape. The error threshold does depend on the fitness
landscape and has been argued to be associated with an op-
timal balance between exploration and exploitation. It also
often scales with string length as 1/N . Other work [9] has
argued that an optimal mutation rate depends not only on
the fitness landscape, but also on the actual population, and
hence is dynamic. To have to go to such a fine-grained level
is clearly not practically feasible. A possible solution is to
consider a self-adaptive mutation rate [3, 9, 11]. This ob-
viously sounds very attractive, especially in the context of
dynamic fitness landscapes. However, this leaves everything
in the hands of the algorithm. There is clearly still both
theoretical and practical value in trying to develop an in-
tuition for how mutation and selection interact in different
circumstances.

In this paper we will pay more attention to trying to better
understand, in a fairly generic fashion, how different fitness
landscape features impinge on what is a useful mutation
rate to use. In particular, we will show that heuristics, such
as 1/N or the error threshold, are too universal. However,
rather than conclude that it is a forlorn hope to try to find
preferred mutation rates, other than tailor them to a very
specific problem, we will show that there is much that can
be done by thinking of how preferred mutation rates can
depend on certain generic landscape features. We will make
frequent use of the concept of effective fitness [12] to inter-
pret our results, the effective fitness of a genotype I being
defined as feff

I (t) = (PI(t + 1)/PI(t))f̄(t) where PI(t) is the
proportion of genotype I present at time t and which, with
an evolution equation in order to specify the relation be-
tween PI(t + 1) and PI(t), defines the effective fitness at t
as a function of the population and genetic operators at t.
The idea behind the effective fitness is that it measures the
contribution of all genetic operators, not just selection, to
the reproductive success of an individual.

2. METRICS AND LANDSCAPES
To investigate what are the most appropriate mutation

rates we will consider the following metrics:

1. The asymptotic proportion of optimal strings as a func-
tion of the algorithm’s parameters
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2. The proportion of optimal strings as a function of time

3. The time (function evaluations) for the algorithm to
first find the optimum

4. The probability that after being found the optimum is
lost after a certain time

The first metric, 1, is a standard one associated with iden-
tifying the error threshold itself. The rest are different well-
known measures of the quality of the search. As we have
multiple criteria, it may be that an optimal mutation rate for
one metric is highly suboptimal for another. For instance,
minimizing the time to find the optimum may require a mu-
tation rate that makes it very likely that it will be lost again
very soon thereafter.

We will examine a range of different well-known “model”
landscapes, taking the point of view that a principal task
of search is to distinguish signal from noise by a suitable
balance between exploration and exploitation. It is also im-
portant to differentiate between offline and online signals,
the former being the signals of the fitness landscape itself,
and the latter those signals that exist in the current state
of the algorithm, e.g., in the current population. The land-
scapes we will consider fall into the following classes:

1. “Needle-in-a-haystack” - this is simply to make contact
with known results in the context of a model where
there is only one unique offline signal - the needle.

2. Degenerate needle-in-a-haystack - where for the nee-
dle phenotype there correspond more than one needle
genotype. The motivation here is to see how such de-
generacy affects the error threshold and “robustness”,
and to understand how degeneracy can enhance both
online and offline signals.

3. “Competing” needles - here we consider a non-degenerate
optimal needle and a second degenerate suboptimal
needle in order to see under what circumstances an-
other suboptimal signal can help or hinder search as
a function of the relative signal strengths and their
relative location in the fitness landscape.

4. Multiple uncorrelated needles - The goal here is to see
how the existence of many competing unrelated signals
makes search more difficult. By generating the land-
scape by adding noise to the fitness function one can
also investigate the universality of phenomena, such as
the error threshold, that exist in the case of the single
needle, to see if they are robust to (random) changes
in the landscape.

5. Multiple correlated needles - landscapes where there
are many needles that are strongly related. We will
take as a concrete example a counting ones landscape.

3. LANDSCAPES WITH ONE UNIQUE
SIGNAL - THE ERROR THRESHOLD

An interesting phenomena, seen in the NIAH landscape, is
the existence of a critical mutation rate - the error threshold
- beyond which selection is effectively “absent” [13]. This is
obviously important for search, as it means that, effectively,
the optimum in the landscape no longer provides a reliable

Proportions of each class in steady state
Needle in a haystack, N =20, G =2
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Figure 1: Graph of string proportions for NIAH for
different Hamming classes versus pN for N = 20.

signal for the population to follow. To investigate this phe-
nomena analytically we may integrate the infinite popula-
tion dynamical equations without recombination, until an
asymptotic steady state is reached. We may then graph the
proportions of the different Hamming classes as a function
of Np, a Hamming class being that set of genotypes that
are a fixed Hamming distance from the optimal one. As an
example, we take the fitness landscape to be such that the
“needle” is the string of all zeros and has fitness 2, while the
rest, the “hay”, have fitness 1. In Figure 1 we see such a
graph for N = 20. With pure selection one would expect to
see a preference for the needle versus the rest, but no rela-
tive preference for any non-needle versus another. As we can
clearly see however, those strings which are closer in Ham-
ming distance to the needle are favoured. This is because an
optimal string more easily mutates into another string that
is close by rather than one much further away. Thus, the
strings that are closer in Hamming distance to the needle
have a higher Effective fitness. The other notable feature
of Figure 1 is the existence of a well defined mutation rate,
p∗, at which the derivative of the string proportion curves
appears to change “discontinuously”. Often it is said that a
(second order) phase transition takes place. At this point -
the error threshold - the string proportions are close to what
they would be in a random population.

A theoretical value for the error threshold is posited by
considering the value of p that leads to a fixed point for the
needle proportion neglecting back mutations, i.e., that other
strings can mutate into the optimal string. The correspond-
ing expression is

p∗ = 1− exp(− lnG/N) → lnG/N (1)

where G = f1/f0 is the fitness gain, f1 being the needle
fitness and f0 that of the hay. A more phenomenological
definition is that point where the second derivative of the
curve of the needle proportion is a maximum, as this repre-
sents the point around which there is a “maximal” change
in behaviour. In Figure 2 we see how this point changes as
a function of N , for 3 ≤ N ≤ 30, by plotting Np∗ against
N . The straight line represents the approximation given by
taking the large N limit, while the (pink) line with squares
represents the first equality in equation (1). Even for quite
short string lengths the phenomenological (triangles/yellow)
and theoretical results are quite close. The deviations for
N < 7 arise principally from the breakdown of the linear ap-
proximation to the exponential in (1), though one can also
see the effect of back mutations as the “experimental” curve
for N > 7 lies above both theoretical approximations as
back mutations make the master sequence somewhat more
robust. This definition of the error threshold is valid for
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Np * as a function of N
Exact, Theoretic Aproximation and Asymptotic Value
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Figure 2: Graph of p∗N vs N comparing phe-
nomenological and theoretical definitions of the er-
ror threshold.
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Figure 3: Graph of Effective fitness versus time
for the different Hamming classes below the error
threshold

both finite and infinite population models, although, due to
sampling errors, in order to be able identify the point for
a small population it would be necessary to have a large
number of runs in order to obtain better statistics.

It is natural to ask: What are the appropriate effective
degrees of freedom of this model? In the absence of muta-
tion, the two phenotypes that correspond to the needle and
the hay give the most appropriate description. However,
when mutation is present then the appropriate description
appears to be in terms of the N Hamming classes. However,
as shown by Eigen [13], the most natural description is in
terms of a “quasi-species”, which is a “cloud” of genotypes
centered around the needle.

In Figures 3 and 4 we see graphs of Effective fitness as a
function of time for the different Hamming classes, i.e., the
Effective fitness landscape, for N = 20 with p = 0.01 (below
the error threshold) in Figure 3, and p = 0.04 (above the
threshold) in Figure 4. The error threshold in this case is
at p∗ = ln 2/20 ∼ 0.0347. Below the error threshold we can
see that the Effective fitness of the needle decreases in time,
while that of the hay increases. Notice that the Effective
fitness of the closest Hamming neighbours of the needle in-
creases faster than that of the farther neighbours. In this
sense the “wave” that ripples out from the needle is de-
scribing the evolution of the quasi-species. Asymptotically,
of course, the Effective fitness landscape becomes flat, in-
dicating that an asymptotic steady state has been reached.
Above the threshold, we see that the Effective fitness land-
scape is essentially flat throughout the entire evolution, with
only an initial transient wherein the Effective fitness of the
needle decreases rapidly to that of the hay. This is a sure
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Figure 4: Graph of Effective fitness versus time
for the different Hamming classes above the error
threshold

indicator of the absence of selective evolution, in spite of the
fact that the fitness landscape itself is certainly not flat.

So, what are the implications for search? Firstly, at the
error threshold search is essentially random. Hence, due to
the continuity of the problem as a function of p, this implies
that, close to p∗, the search will also be almost random. For
instance, for p = 0.03, which corresponds to a 13% differ-
ence relative to p∗, the Effective fitness of the needle quickly
reduces to a value of 1.1, which is small compared to its fit-
ness value of 2. Thus, we see that the competitive advantage
of the needle is small in the vicinity of the error threshold.

Our conclusions above came from the infinite population
model. In Figure 5 we see the same graph as in Figure 1, but
now for a finite population and considering only the needle
frequency. A 1000 runs of a plain vanilla GA were consid-
ered for each combination of population size and mutation
rate. For each run, after a certain time, chosen to be in the
asymptotic regime, the proportion of needles present in the
population was measured. The curves rapidly asymptote to

NIAH. Proportions of the needle for different population sizes
N =30, G =2, average over 1000 repetitions
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Figure 5: Graph of needle frequency as a function
of Np for different population sizes.

a universal curve as a function of population size. As can be
appreciated, the chief effect of a finite population is to ef-
fectively lower the error threshold, so that the system looks
even more “noisy” and it is even more difficult to assure
the existence of a fixed proportion of needles. Considering
now our other performance metrics: we first consider the
computational effort in terms of the number of fitness eval-
uations needed to find the needle. In Figure 6 we see how
this effort varies as a function of population size and Np,
for N = 8 and G = 2 in a NIAH landscape. Note that
the computational effort is a minimum when Np = 4 which,
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given that N = 8, shows that the optimal mutation rate is
p = 0.5, i.e. random search. This is due to the fact that,
without having the needle in the initial population, there is
absolutely no online signal to direct the search in a partic-
ular direction. Note also that this optimal mutation rate
is independent of population size. Thus, there is no differ-
ence between a population size of 100 over 10 generations
and a population size of 1 over 1000 generations. In fact,
population size plays effectively no role until low mutation
rates, < 1/N are reached. For Np > 1, essentially, there is
no preservation of any string (at Np = 1, on average one
bit changes per string), hence there is no exploitation and
only exploration. This is not the case however, for muta-
tion rates that are < 1/N , where a larger population size
is preferable, at least if the population is chosen randomly.
Such a random choice means that the corresponding popula-
tion was generated in the same way as if a p = 0.5 mutation
rate had been used. As random search is more efficient in
this landscape, then the larger the population the more the
search is in exploration rather than exploitation mode.
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Figure 6: Graph of computational effort to find the
needle versus mutation rate and population size.

Of course, this result is intuitively obvious. We start with
a landscape that has one single isolated signal and an initial
population where that signal is not present. The population
evolves therefore, as if it were in a completely flat landscape
until it finds the optimum. In this circumstance, the optimal
mutation rate is 0.5. Note that the error threshold at Np∗ =
0.69, as well as the familiar Np = 1, require a computational
effort which is very similar to that for p = 0.5. Once again,
the reason is clear, because with these mutation rates there
are few individuals that remain unmutated. Note that the
computational effort is independent of the population size
for p = 0.5, and quite insensitive for pN > 1, while for
pN < 1 the computational effort is smaller as a function of
population size. This is because the random generation of
the initial population is equivalent to using a mutation rate
p = 0.5 and therefore leads to more diversity.

Turning now to the robustness of the search, in Figure 7
we see how robust the optimum is once it has been found
for G = 2, N = 30. The plot shows in what percentage
of runs, as a function of population size and mutation rate
(taken over 1000 repeats) the needle is present for 50 gen-
erations after being found for the first time, where here we
start with one needle and “random” string proportions for
the other strings. Note that, above the error threshold at
p∗ = 0.69/30 = 0.023, there is little chance of the needle
surviving. More than 97% of runs show a loss of the op-

N =30, G =2, Np *=ln(2)=0.69, average over 1000 repetitions
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Figure 7: Graph of survival rate of the needle, mu-
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timum irrespective of the population size, at least up to a
population size of 60. Note also that, for p < p∗/2, even rel-
atively small population sizes lead to high survival rates for
the optimum. One can also think in terms of what popula-
tion size is needed to maintain a survival rate of 80-90% for
instance. In this case, a 20% increase in the mutation rate
from Np = 0.45 to Np = 0.53 requires twice the population
size in order to maintain the same survival rate.

The graphs certainly show how sensitive the “survival of
the fittest” is to the population size and mutation rate. Note
particularly, that a mutation rate of 1/N = 0.033 would cor-
respond to a point above the error threshold, and therefore
to a very, very small survival rate for the optimum. We
see then the antagonistic nature of the two requirements
of minimising the time to find the optimum and maximis-
ing its survival rate, the two optimal mutation rates in this
landscape being p = 0.5 (exploration) and p = 0 (exploita-
tion) respectively. These results can also be understood
qualitatively, if not quantitatively, from the infinite popula-
tion model: Starting with random proportions, but without
the needle, the proportion of needles in the next generation
would be maximised by p = 0.5. Similarly, after finding the
needle the survival rate is maximised by taking p = 0.

So what is an optimal mutation rate? There are clearly
several notions of “optimal” if one decides to have a multi-
objective criterion that includes, for example, both compu-
tational effort and survival rate. This of course relates back
to the fundamental dichotomy of all search - exploration ver-
sus exploitation. We also see that heuristics, such as 1/N or
the error threshold, can lead to a reasonably efficient search
but are very suboptimal in terms of other criteria, such as
robustness or online population fitness.

4. LANDSCAPES WITH ONE UNIQUE
DEGENERATE SIGNAL

Having considered a landscape signal that consists of only
one genotype, we now consider signals that consist of sev-
eral degenerate genotypes. One motivation for this comes
from requiring a better understanding of “robustness” and
the role of neutral networks. For a given value of needle
fitness one would expect the signal to be stronger the more
needles that were involved. We will therefore first consider
what happens on a landscape with several adjacent needles
of equal height, where by adjacent we mean in terms of
Hamming distance. This is achieved by choosing a needle
position, and then placing the rest as close as possible in
Hamming distance to that needle so as to form a neutral
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network. In Figure 8 we show a graph of how p∗N varies as
a function of the percentage of the landscape that consists
of needles, i.e. the relative size of the neutral network, for
G = 2 and the cases N = 20 and N = 30. As would be ex-
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a “degenerate” NIAH landscape

pected, increasing the number of optima increases the error
threshold as the optimum is now more robust. Interestingly,
we see that the relationship in terms of p∗ is “universal”, in
that the two curves essentially coincide, the offset between
them being due to the presence of N . Thus, no matter the
string length the same change of “robustness”, as proxied
by the percentage of needles, gives rise to the same change
in the error threshold. In this sense one can think of the
percentage of needles as a good measure of signal strength.
Note that above about 5% redundancy the error threshold
disappears, in that there is no longer a peak in the deriva-
tive. In Figure 9 we consider the case of N = 20, G = 2,
where any string with either 20 or 19 zeros is optimal. We
can see that the Effective fitness of the peak associated with
20 zeros is higher than those peaks associated with 19 ze-
ros. This is due to the fact that one-bit mutations of the
all zeros string leaves it as an optimal string with 19 zeros
without any decrease in fitness. For optimal strings with
19 zeros though, due to the fact that one-bit mutations can
take them to non-optimal strings with 18 zeros, their Effec-
tive fitness is reduced as they are less robust.

5. LANDSCAPES WITH MORE THAN ONE
SIGNAL

We now consider the case when there is more than one
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Figure 9: Graph of Effective fitness as a function of
time for a degenerate NIAH landscape.

signal, in particular, a landscape where there is a peak cor-
responding to a single optimal genotype and a second sub-
optimal peak that consists of more than one degenerate
genotype. The quality of the search will depend on the
strengths of the two signals from the optimum and sub-
optimum and on the spatial relationship between them. The
strength roughly depends on the height and width of the two
signals. Here, we first consider the case where the subopti-
mal genotypes are as distant as possible from the optimal,
i.e. clustered around the antipodal point of the hypercube
to where the optimum is located. In this landscape an in-
teresting phenomenon occurs in the asymptotic behaviour
relative to the NIAH case. As can be deduced in the in-
finite population model, for low mutation rates, there is a
preference for the optimum. However, at a certain muta-
tion rate, pf , (not the error threshold) there is a sudden
change as a function of p, such that above this value the
suboptimum is preferred. Finally, at an even higher mu-
tation rate, one reaches the error threshold beyond which
there is no preference for any string. In Figure 10 we see for
N = 20 the temporal development, as found by integrating
the equations of the infinite population model for a muta-
tion rate below pf , of the different Hamming classes relative
to the optimum. The fitness of the optimum is 2, that of
the suboptimum is 1.95, while the rest have fitness 1. The
width of each colour band represents the proportion present
of the corresponding Hamming class. The wider bands in
the middle stems from the fact that we used a random ini-
tial population and therefore the proportion of Hamming
class n is determined by a binomial factor NCn. Note that

Proportions below transition p (p =0.01). High vs wide peaks.
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Figure 10: Graph of Hamming class proportions as
a function of time in two-peak landscape (p < pf).

although there is a substantial transient, wherein the sub-
optimum is represented by a much higher proportion than
the optimum, eventually the latter dominates. In Figure
11 we see the corresponding behaviour when p > pf . Now
we see that the suboptimum (Hamming class 20 and class
19) dominates the evolution. The implication for search is
clear: pf gives a threshold above which the Effective signal
strength of the suboptimum is higher than the optimum.
What is more, pf is much less than the corresponding error
threshold. In this case search in the vicinity of the error
threshold would be completely inadequate. One can think
of these graphs as representing a competition between two
quasi-species: one associated with the optimum and another
associated with the sub-optimum. Below pf , initially the
suboptimal quasi-species dominates only to lose out in the
long run to the optimal quasi-species. On the contrary, for
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Proportions above transition p (p =0.012). High vs wide peaks.
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Figure 11: Graph of Hamming class proportions as
a function of time in two-peak landscape (p > pf).

p > pf , the suboptimal dominates throughout.
Having seen what happens when there is a competing sig-

nal to the optimum that is maximally distant from it, we
now ask how the signal competition changes as a function
of where the suboptimum is placed. In Figure 12 we con-
sider a landscape where there is a needle of fitness 2 and
a suboptimal signal consisting of two adjacent genotypes of
fitness 1.9. As we can see the mutation rate above which
the suboptimal peak dominates decreases as a function of
the Hamming distance between the peaks. Thus, the fur-
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Figure 12: Graph of the transition mutation rate pf

as a function of Hamming distance (circles) and fit-
ness difference (squares) between optimal and sub-
optimal peaks for N = 8 and N = 20 respectively.

ther apart are the two signals the more “deceptive” is the
suboptimum in how it affects the search. An even more
striking effect can also be seen in Figure 12, where we plot
pf as a function of the fitness difference between the opti-
mum and suboptimum. Given that pf → 0 as the fitness
differential decreases we see clear evidence of the potential
inadequacy of the notion that search in the vicinity of the
error threshold is optimal, or even preferred.

In terms of our other search metrics, in Figure 13 we con-
sider the average effort to find the needle in a landscape
with a single optimum and a single suboptimum of fitness 2
situated at the antipodal point to the optimum. As N = 8,
a mutation rate of 1/2 corresponds to Np = 4. Comparing
with Figure 6 we can see that the existence of the subop-

timum makes the search more difficult for mutation rates
< 1/2. On the contrary, for very high mutation rates we see
that the search is more efficient. In fact, the best mutation
rate is about 1− 1/N . It is clear why a very high mutation
rate is useful - because the optimum and the suboptimum are
anti-correlated, once the suboptimum is located, the search
will be directed by mutation towards the optimum. The
fact that the optimal mutation rate isn’t too close to one is
because the search has to first find the suboptimum. Thus,
this mutation rate is optimal because it allows initially for a
better exploration of the suboptimum and then a better ex-
ploitation of the information provided by the suboptimum.
Also, here, unlike the single signal case, a larger population
helps. It is interesting to see such interesting effects result
from the existence of only one single deceptive suboptimum.
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Figure 13: Graph of average effort to find the needle
versus Np and population size for N = 8 in a land-
scape with one subneedle at antipode of the needle.

In the above we can see the existence of a preferred mu-
tation rate that is very far from the usual 1/N or error
threshold heuristics. This mutation rate results from there
being an anti-correlation between the optima and subop-
tima, i.e. the suboptimum is deceptive in that it leads the
search away from the region of interest, at least for small
mutation rates. If there exists a correlation rather than an
anti-correlation however, one might expect to see coopera-
tion rather than deception. To see this, consider Figure 14
which is a graph of the frequency over a thousand runs with
which the optimum is found in a system with an optimal
needle and a suboptimal one, but now located at a fixed
Hamming distance from the optimal. In this case, N = 30
and the distance between the optima is 3. The initial condi-
tion here was to have all the population at the suboptimum.
This is to mimic what happens in a lot of search problems,
where there is a form of punctuated evolution, the popula-
tion forming a type of quasi-species around a suboptimum
and searches from there. The experiments were run for a
maximum of 5000 generations. As we can see, once again,
there is a preferred mutation rate, Np = 0.375, that max-
imises the success rate of the search and that is quite differ-
ent from the usual heuristics at 0.69 (error threshold) and 1
(1/N heuristic).

Having considered two signals and shown how an optimal
mutation rate depends not only on the strengths of the two
signals, but also on their locations and the state of the pop-
ulation, we now consider a multi-peak landscape - a “noisy”
NIAH landscape, where a random number chosen from a
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Figure 14: Graph of success frequency as a function
of p and t in a two needle landscape with N = 30.

uniform distribution between [−k, k], where k is the maxi-
mum noise level, was added to the fitness of the hay. This
landscape would be very similar to that of a Kauffman NK
landscape with K = N−1, the only difference being that one
single genotype has a fitness which is not chosen randomly.
Essentially, one may think of this landscape as generically
representing the common class of very rugged landscapes.
As the noise is tunable we also chose this model to exhibit
the universality of the error threshold phenomenon. In Fig-
ure 15, we see a graph of the needle frequency as a function
of p and the amplitude of the noise distribution for N = 8.
In this case, each integration of the exact dynamical equa-
tion, for a given p is done with the same fixed, random seed.
In this case we are seeing how the needle proportion varies
according to the strength of the noise for a fixed distribution
of “deceptive” peaks, rather than seeing how it depends on
how the particular location of the peaks changes. We can
clearly see that the higher the noise level the lower the er-
ror threshold. The error threshold for zero noise, i.e., the
NIAH, is p∗ = 0.09, while for a noise level of 0.9 it is less
than half that. Thus, to have a fixed proportion of optimal
strings in the asymptotic population one requires quite dif-
ferent mutation rates in a very rugged landscape versus a
smooth one with no fitness gradient. So we see that a single

NIAH. Proportions on the needle for different noise levels
N =8, G =2
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dom seed.

error threshold exists not only for the NIAH, but also for any
model that is “similar” to it. Of course, defining “similar”
is not a simple matter. Here, we are restricting to a class
of landscapes we may term - noisy NIAH. Basically, any
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landscape where there is no correlation between the other
regions of the landscape will lead to the same phenomenon.
It is only when the fluctuations in the noise can cause the
appearance of a stronger signal that the error threshold will
disappear. This will generally occur when a new, higher
needle is generated.

Finally, we consider what happens in the case of count-
ing ones. Due to space considerations we only consider the
analog of Figure 1 as seen in Figure 16 below. Unlike the
NIAH in this case there is no well defined point at which
the behaviour of the different curves changes simultaneously.
Rather, taking our phenomenological definition of the error
threshold, we see that each Hamming class seems to exhibit
its own threshold with the thresholds increasing the larger
the Hamming distance. This can be understood intuitively
from our previous results taking the curve for the optimum
as a baseline. So why does the curve for Hamming distance
one exhibit a higher error threshold? Think of the set of
strings at Hamming distance one as forming a degenerate
suboptimum. As their fitness is lower than that of the opti-
mum one would expect the error threshold to be less. How-
ever, as there are 19 corresponding states and not just one,
one would expect them to exhibit much more robustness,
and that is the reason why the error threshold is higher.
The same arguments apply for the other Hamming classes.

6. CONCLUSIONS
In choosing a suitable mutation rate for an EA, there are

three standard approaches: find an optimal rate experimen-
tally; use a standard heuristic; or use a self-adaptive algo-
rithm. Each has its advantages and disadvantages. Here, we
have tried to see to what extent the standard heuristics give
a good estimate of an optimal rate, and where there are lim-
itations to try to go beyond them. As has been noted before,
what is optimal depends very much on what one requires of
one’s search algorithm - find the optimum with a minimum
of effort, maintain a high proportion of optimal strings etc.
We considered several performance metrics in the context of
several model fitness landscapes, the idea behind the latter
being to model the competition between different online and
offline signals that affect the performance of any search al-
gorithm. In particular, we considered what happens in the
case of a unique signal, a degenerate signal, two competing
signals and multiple competing signals.

We first analysed the concept of the error threshold, giving
a phenomenological definition that was in good agreement
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with approximate theoretical predictions. We saw in the
context of the NIAH how the error threshold increases with
the fitness differential between the needle and the hay, and
decreases as a function of decreasing population size and/or
string length. It was seen that search in the vicinity of the
error threshold was quite close to random, as was evidenced
by the fact that the Effective fitness of the needle was very
close to that of the hay there. In this particular landscape
the separation between exploration and exploitation is total
- optimal search requiring a mutation rate of 0.5 until the
optimum is found then zero afterwards in order to preserve
the optimum in the population. Thus, the standard heuris-
tics work well in this landscape in terms of the exploration
phase, but not the exploitation phase.

We then considered a degenerate NIAH showing a univer-
sal relation between the error threshold and the fraction of
optimal configurations in the fitness landscape. We showed
that although the optimal strings were equally fit there were
differences in their Effective fitness, strings further away
from non-optimal strings being more robust. We also saw
that, beyond a redundancy of about 5%, the error threshold
disappeared completely.

Turning then to landscapes with two competing signals,
we considered first an optimal signal consisting of one unique
string and a second suboptimal one consisting of two ad-
jacent but less fit strings. We showed that there exists a
particular mutation rate, pf , above which the suboptimal
string is preferred asymptotically, leading to higher propor-
tions. This mutation rate is generally less than the error
threshold and hence is of greater relevance. Even below
it there is a substantial part of the evolution wherein the
suboptimum is preferred. We saw that pf decreases as the
Hamming distance between the optimum and suboptimum
increases. We also showed that it decreases quite strongly
as a function of the fitness differential between the optima
and suboptima. We showed then that an optimal mutation
rate for minimising computational effort was close to one
∼ (1 − 1/N). We then demonstrated that for an optimum
and suboptimum quite close together, where the initial con-
dition is to have all the population in the suboptimal state,
that there existed an optimal mutation rate for maximising
the success rate of the algorithm and that it was substan-
tially less than 1/N or the error threshold. We then turned
to a multi-signal landscape showing that when the subop-
tima are uncorrelated that the error threshold for the opti-
mum is substantially lower. Finally, taking as an example
of a strongly correlated landscape counting ones, we showed
that each Hamming class relative to the optimum exhibits
its own error threshold, there being an increase as a function
of the Hamming distance from the optimum.

So, generally, the 1/N and error threshold heuristics are
too universal. Canonically, they are too high for search in
landscapes with multiple peaks. Uncorrelated landscapes
require a higher mutation rate than correlated ones, while
landscapes with anti-correlation, i.e., with “deceptive” peaks,
require even higher rates. Of course, one can argue that a
complicated landscape can exhibit all these features. Very
often though, a punctuated evolution takes place later on in
the search process where an entire population moves quickly
from a region of one type to another. In this sense we believe
that a two signal model can tell you a lot about how selec-
tion and mutation interact in the search process. Generally,
a mutation rate well below the 1/N and error thresholds is

recommendable, especially in the case where there are peaks
that are quite close in fitness value.
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