
Combining Genetic Algorithms with Squeaky-Wheel
Optimization

Justin Terada
Computer Science and

Mathematics Depts.
Seattle University
Seattle, WA 98122

teradaj@seattleu.edu

Hoa Vo
Computer Science Dept.

Seattle University
Seattle, WA 98122

voh@seattleu.edu

David Joslin
Computer Science Dept.

Seattle University
Seattle, WA 98122

joslind@seattleu.edu

ABSTRACT
The AI optimization algorithm called “Squeaky-Wheel Op-
timization” (SWO) has proven very effective in a variety of
real-world applications. Although the ideas behind SWO
are more closely tied to those of local search such as hill-
climbing, in some ways SWO can be thought of as an evo-
lutionary algorithm. From that point of view SWO makes a
number of design decisions that are at odds with the conven-
tional wisdom of evolutionary algorithms, but not for any
clear reasons. This suggests the possibility of improving on
SWO by incorporating aspects of Genetic Algorithms that
are known to be effective. We compare several algorithm
variants on a set of constrained optimization benchmarks,
and present some preliminary results suggesting that com-
bining ideas from SWO with a more standard GA approach
yields some significant improvements over both.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and
Search]: Heuristic methods, Scheduling

General Terms
Algorithms

Keywords
Genetic Algorithms, scheduling, optimization, hybrid algo-
rithms

1. INTRODUCTION
The field of evolutionary algorithms encompasses a very

wide variety of algorithms. Our starting point for this re-
search is an algorithm called “Squeaky-Wheel Optimiza-
tion” (SWO) [8]. SWO has historically been described as a
variant of local search algorithms such as hill-climbing rather
than as an evolutionary algorithm. This is partly reflective

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

of the history of how SWO was developed, but also simply
because the SWO algorithm does not readily fit into any of
the usual paradigms of evolutionary algorithms.

It is possible, however, to think about what the SWO al-
gorithm looks like from a Genetic Algorithms (GA) point of
view, and we argue that doing so turns out to be instructive.
In some respects design decisions made in the development
of SWO start to appear arbitrarily and unnecessarily restric-
tive. For example, in describing SWO as a GA, we see it
as a GA with a pool size of a single chromosome, obviously
not what we would usually expect to see in a GA. The idea
of adapting SWO to use a larger pool size then naturally
arises. We similarly consider other aspects in which SWO
can be viewed as a “crippled” GA, and apply a number of
ideas from the GA literature to address those issues. At the
same time we preserve the essential characteristics of SWO
that are not commonly found in genetic algorithms, with
the goal of exploring how hybrids of these algorithms might
benefit from both bodies of work.

We define several algorithms representing “pure” SWO
and GA implementations, as well as hybrid algorithms that
combine elements of each. We evaluate these algorithms on
a resource-constrained “car sequencing” benchmark problem
from the CSP Library, a collection of constraint satisfaction
problem domains [9]. With only one domain our results
are obviously preliminary. We describe this as suggestive of
some directions of future research.

The next section describes SWO and shows how it can
be viewed as a sort of GA. We then describe the hybrid al-
gorithms and the intuitions and motivations behind them,
followed by a summary of the car sequencing problem. Our
experimental results are presented next, showing that the
hybrid algorithms can be significantly more effective. Fi-
nally we look at some related work, and discuss some direc-
tions for continuing this research.

2. SQUEAKY-WHEEL OPTIMIZATION
The SWO algorithm is driven by a sequence of problem

elements (such as the tasks in a factory scheduling prob-
lem) that can be thought of as representing a prioritization
of those tasks. A greedy polynomial-time “constructor” is
used to map a sequence to a solution. In the case of fac-
tory scheduling, the constructor might schedule each task
in the sequence to the earliest possible start time, the best
production line for the task, etc., depending on the problem.

Once a solution has been produced, SWO applies an “an-
alyzer,” or what might in other contexts be called “critics,”

1329

to identify flaws in the solution. Flaws in the solution are
translated into “blame” attached to problem elements. The
priority sequence is then adjusted so that the greater the
blame associated with a problem element, the more that el-
ement is moved toward the front of the sequence. Moving an
element closer to the front of the sequence is in effect giving
it a higher priority for the constructor. For example, if a task
is found to be late in a schedule and is given a higher prior-
ity in this fashion, then on the next iteration it has a better
chance of allocating whatever resources it might need be-
cause the greedy constructor handles that task sooner than
before.

The modified sequence is fed back into the constructor,
and this cycle of construction, analysis and re-prioritization
continues until some stopping condition is reached. Unlike
hill-climbing, in the original form of SWO the modified se-
quence is used even if the solution quality was worse than
the previous iteration. Of course, the best solution found is
remembered and returned at the end. Although SWO has
usually been described in comparison to local search algo-
rithms, the moves made on each iteration of SWO are gen-
erally not very “local” because small priority changes can
result in very different solutions from the constructor.

3. COMPARING SWO AND GA
On two points we can find some common ground between

SWO and GAs, although in both cases the connection is to
aspects that are outside the mainstream of GAs:

Chromosome. The priority sequence in SWO is anal-
ogous to a chromosome for a GA. The mapping from the
genotype (priority sequence) to the phenotype (a solution) is
more complex than is typically the case in GAs because the
constructor algorithm is non-trivial, but this alone doesn’t
take us outside the realm of Genetic Algorithms. It does
mean that search in the space of chromosomes is at a more
abstract level than is typically the case for GAs.

Mutation. It is unusual but not unheard of for GAs
to use directed mutation or “genetic engineering” in which
analysis of the phenotype is used to modify the genotype in
ways that are intended to help steer the search toward better
solutions. SWO introduces some noise into the calculation
of the distance to move an element in the sequence during
prioritization, so there is some degree of random mutation
as well. But SWO does not use pure random mutation as
would most commonly be the case with a GA.

In several other ways SWO differs substantially from GA
approaches, although not in ways that seem well motivated:

Fitness. SWO doesn’t pay attention to solution qual-
ity directly except in remembering the best solution found
on any iteration. From a GA point of view it is natural to
define the fitness of a chromosome to be the fitness of the so-
lution generated by the constructor given that chromosome
as input.

Elitism. As mentioned above, on each iteration the mod-
ified sequence is used to generate a new solution regardless of
the change in solution quality. Elitism is important to GAs,
and a preference for improvement is important in most other
optimization algorithms. The rationale for ignoring this con-
ventional wisdom in SWO is not clear. In comparison to
hill-climbing and GAs, SWO avoids the common problems
of local optima and premature convergence, but even so it
seems counter-intuitive that it should be desirable to always
avoid elitism.

Options
Class A (1/3) B (2/3) C (1/2)
1 Yes Yes Yes
2 No Yes No
3 No No Yes
2 No Yes No
1 Yes Yes Yes

Figure 1: Simple example solution

Population. SWO effectively has a pool size of one, be-
cause the algorithm repeatedly modifies a single priority se-
quence. When we look at SWO from a GA point of view an
obvious idea is to allow a pool of sequences (chromosomes)
to persist, and combining this with the important idea of
elitism, to use competitive selection based on fitness.

Crossover. With a pool size of one, SWO had no op-
portunity to take advantage of crossover operators. This is
another obvious idea for possibly improving the performance
of GA/SWO hybrid algorithms.

4. THE CAR SEQUENCING PROBLEM
The car sequencing problem is a resource-constrained

scheduling problem based on a simple model for automo-
bile production line scheduling [9]. The problem is known
to be NP-complete [3]. The cars in this problem are dis-
tinguished by the options they require, with cars grouped
into classes that share the same set of options. For each
option, there is a corresponding station on the production
line, constrained to handle at most m cars with that option
in any subsequence of n cars, where m and n depend on the
option. A valid solution is one that has no violations of this
constraint.

As a very simple example, suppose we have three op-
tions, air conditioning (option A), a deluxe sound system
(option B), and a CD changer (option C). The assembly
station for option A can handle at most one car in every
three, i.e, for any “window” of three consecutive cars in a
schedule, at most one is allowed to have option A. For exam-
ple, if the first car in the sequence requires that option, then
the next two cars cannot require that option. The assembly
station for option B can handle two cars out of any three
with that option. And finally, at most one car in every two
may have option C.

Suppose we have three classes of cars. Class 1 has all
three options. Class 2 has just option B, and Class 3 has
just option C. We must schedule two cars from each of the
first two classes, and one from the third.

Figure 1 shows a valid solution. Each row represents one
car in the scheduled sequence, with the class number for
that car indicated followed by a column for each option.
By inspection we can see that the frequency constraints are
satisfied for each option. For example, we are allowed to
have two cars in every three with option B. The first two
cars in the sequence have that option, so the third must not
have it, and by putting a car from Class 3 in that slot we
avoid a constraint violation. For any three consecutive cars
we can also see that this constraint is satisfied.

Problems can be generated with varying degrees of diffi-
culty by adjusting the utilization percentage. A set of bench-
marks constructed in this fashion are provided as part of the

1330

CSP Library, with seven sets of ten problems each and uti-
lization percentages ranging from 60 to 90 [9]. We use these
benchmarks in the experiments described below.

5. HYBRID ALGORITHMS
To explore ways that ideas from SWO and GAs can be

combined, we implemented several algorithms that combine
elements of each. For all algorithms, the chromosome (or
priority sequence for SWO) was a vector of floating point
values used to define a permutation. Each position in the
vector corresponds to one of the cars to be scheduled, and
when we want the permutation we sort the cars by the cor-
responding values. The SWO-like algorithms kept a single
chromosome (pool size of one), and the GA-like algorithms
had a pool size of fifty and were steady-state GAs using
tournament selection.

All of the algorithms used the same greedy, polynomial-
time constructor. After the chromosome is used to generate
a permutation of the cars to be scheduled, the construc-
tor adds them to the schedule one at a time at the earliest
possible time that violates none of the constraints on the
frequency of the options. When the constructor finishes,
the resulting schedule may have unfilled slots; if so the so-
lution is invalid. A valid solution has been found when the
constructor returns a schedule that has no empty slots.

SWO depends on “genetic engineering” operators. We can
think of these as implementing a sort of “intelligent” muta-
tion, although calling them “intelligent” may be misleading.
With SWO, and therefore in our implementation, these op-
erators only need to make changes to the priority sequence
that may tend to improve a particular constraint violation,
ignoring interactions with other constraints. But of course
ignoring interactions and making such priority changes my-
opically will very often mean that the change does not have
the desired effect. The hope of course is that in spite of the
imperfect nature of these genetic engineering operators, an
algorithm such as SWO or a GA can use them to search for
good solutions.

We defined three genetic engineering operators:

Overflow. As described above, the constructor may gener-
ate a plan that has empty slots. The schedule is then
also longer than a valid schedule by that number of
slots, and we call the excess slots beyond that valid
length the “overflow” for a schedule. The car classes
found in that overflow may have a better chance of be-
ing scheduled successfully if they are considered ear-
lier by the constructor. We adjust the corresponding
weights in the chromosome for the overflow cars.

Unfillable Slots. Not every empty slot in a completed
schedule is constrained by the nearby cars so that no
class of cars could be scheduled in that slot, but intu-
itively such slots identify the worst sort of constraint
conflicts that can occur. Once such a conflict has oc-
curred no reordering of the rest of the permutation can
yield a legal schedule. The conflict must be the result
of only the cars within the maximum “window” size,
for the windows that define the scheduling constraints
for each option. This operator adjusts the weights of
the cars within that window size of an unfillable slot.

Option Utilization. This operator examines an empty
slot and determines the options that could prevent

cars from being scheduled there. The corresponding
weights for cars with those options are adjusted to give
them an earlier chance of filling such slots.

The original implementations of SWO all applied what-
ever genetic engineering operators were defined on every it-
eration. Intuitively this seemed unlikely to be preferable to
allowing each operator to be applied individually. However,
as discussed below, that intuition turned out to be wrong
for these experiments. Except where otherwise noted the
three above operators were applied consecutively as a single
compound operator.

We also defined a crossover operator, implementing a stan-
dard single-point crossover. In the experiments presented
here we did not incorporate random mutation, even though
random mutation would normally be included in a GA and
could be added to any of the other algorithms. In experi-
ments with various rates of mutation we did not find ran-
dom mutation to be helpful. For the two best algorithms
described below adding a 1% mutation rate caused perfor-
mance to deteriorate slightly, eventually catching up but not
exceeding the non-mutation performance. For this reason we
report on the algorithms with random mutation omitted.

All of the algorithms selected an operator, selected an
appropriate number of chromosomes from the pool then ap-
plied the operator to generate one new chromosome. In the
SWO-like algorithms the “pool” is a single chromosome, and
the only applicable operators take one chromosome as input
and produce one chromosome as output. The new chro-
mosome(s) are evaluated by running the constructor on the
permutation defined by the chromosome, and counting the
constraint violations in the resulting solution. A score of
zero means that a valid solution was found.

With the exception of the “pure” SWO algorithm, the new
chromosome(s) were added to the pool only if they could re-
place less-fit chromosomes. In one SWO-like algorithm, fol-
lowing the original design of SWO, the new chromosome al-
ways replaced the previous one even if the fitness decreased.
In the other, it replaced that chromosome only if it improved
the fitness.

We define our various algorithms in terms of the following
components:

SWO This indicates that the algorithm uses the genetic
algorithm operators described above. Unless other-
wise noted (the “Multi” variant) the three operators
were treated as a single compound operator and ap-
plied consecutively.

HC This stands for “hill-climbing,” although in the con-
text of genetic algorithms “elitism” might be a better
term. With a population size of one this simply means
that on each iteration the new chromosome replaces
the old only if it has equal or greater fitness. With
a larger population size it means that the new chro-
mosome survives only if it displaces a member of that
population when the population is sorted by fitness. If
not specified it means that the chromosome produced
by an operator replaces its parent (or one of its parents
in the case of crossover) whether it has better fitness
or not.

Pool This means that a pool or population of chromosomes
is maintained. In these experiments the size of that

1331

CarSchedule(SWO,Multi,HC,Pool,Xov)
If Pool

Set size of population to 50
Else

Set size of population to 1
Fill population with random chromosomes

availableOperators = {}
If SWO

If Multi
add three genetic engineering operators to availableOperators

Else
add compound genetic engineering operator to availableOperators

If Xov
add Crossover to availableOperators

While iterations < maxIterations and optimal solution not found
operator = select operator randomly from availableOperators
parentChromosomes = select chromosome(s) from population using tournament selection
childChromosome = apply operator to parentChromosome(s)

If HC
if childChromosome is better than worst in population, replace worst with childChromosome

Else
add childChromosome to population, replacing parent

Return best chromosome found

Figure 2: Pseudocode summarizing algorithm variants

population is 50. If not specified, it means that there
is only one chromosome.

Xov This indicates that a crossover operator is used. Obvi-
ously it only makes sense with a population size greater
than one.

It makes no sense to have a crossover operator if the pop-
ulation size is one, but otherwise most of the combinations
can be tested. We have the following algorithms:

SWO This is the “pure” SWO algorithm. With none of the
other components we have only the genetic-engineering
operators, a population size of one, and the new chro-
mosome always replaces the previous one whether or
not it is an improvement. This follows the design of
the original SWO described in [8].

SWO+Multi The “Multi” option indicates that the ge-
netic engineering operators were treated as three sep-
arate operators, rather than as a single compound op-
erator. We expected this to be an improvement over
SWO because the changes to the chromosome could
be more “fine tuned” to the flaws detected in the so-
lution. It turned out to be less effective than SWO,
however, and other experiments didn’t show it helping
any of the other algorithms, so it only shows up in this
one variant.

SWO+HC This algorithm differs from SWO only in that
the new chromosome is accepted only if it is at least
as good as the previous one. We can think of it as a
hill-climbing variant of SWO.

SWO+Pool This is SWO without the hill-climbing option,
but with a population size of 50. Without crossover
the members of the population do not interact. The
potential value of this change to SWO is that because
of tournament selection, the better chromosomes will
receive more attention. We could think of this as a
“time-sharing” SWO with a bias toward trying to im-
prove most fit members of the population.

SWO+Pool+HC This adds the “hill-climbing” variant to
the previous algorithm. The members of the popula-
tion all still evolve independently without interaction,
with a bias toward giving attention to the most fit
members of the population, but a child must have fit-
ness at least as good as the parent in order to replace
the parent.

SWO+Pool+Xov Adding the Crossover operator to
SWO+Pool adds the potential for interaction between
the members of the population. The child resulting
from Crossover replaces one of the parents (the first
one that was selected) whether the child is an improve-
ment or not.

SWO+Pool+HC+Xov This is now the equivalent of the
GA algorithm with the genetic engineering operator
added.

GA The GA algorithm can be described as Pool+HC+Xov.
It differs from the previous algorithm only in that it
does not include the genetic engineering operators.

1332

0

10

20

30

40

50

60

0 200 400 600 800 1000

P
er

ce
n
ta

g
e

o
f
ru

n
s

w
it
h

o
p
ti
m

a
l
so

lu
ti
o
n
s

Iteration number

GA
Rand
SWO

SWO+HC
SWO+Multi
SWO+Pool

SWO+Pool+HC
SWO+Pool+HC+Xov

SWO+Pool+Xov

Figure 3: Solution quality

Rand Finally, to establish a base-line we ran an algorithm
with a single chromosome, and an operator that ig-
nores the previous solution and returns a random vec-
tor for the new chromosome. The idea here was to
try to identify problems that were so easy that even
random probes of the search space would find solutions
quickly. In such cases the flexibility of the polynomial-
time constructor is doing a lot of the work, and this
algorithm helps to separate that effect from the con-
tributions of the other aspects of the algorithms.

Figure 2 summarizes the algorithms. As noted above, the
GA algorithm results from selecting the Pool, HC, and Xov
options.

6. EXPERIMENTAL RESULTS
We used a benchmark set of 70 satisfiable problems, con-

sisting of ten problems each for resource utilization percent-
ages of 60, 65, 70, 75, 80, 85 and 90 [9]. Increasing the
resource utilization percentage increases the difficulty of the
problem. The “60” series of problems are very easy, while

the “90” series of problems tend to be very hard. In fact,
one of the 90 series happens to be very easy as well, both
for our algorithms and for other reported results. We began
with 24 runs of 1000 iterations each for all of the algorithms
described above. We considered a run successful only if it
found a valid solution.

Figure 3 graphs the percentage of valid solutions found
across all of the runs against the number of iterations. To
show the comparison more clearly the y-axis is truncated at
sixty percent. We truncate the y-axis at the same point for
all of the graphs that follow.

Most strikingly, the SWO and SWO+Multi algorithms
lag all of the others. They perform substantially below even
the Rand algorithm. As noted above, contrary to our intu-
itions applying all of the genetic engineering operators on
every iteration turned out to give SWO a small edge over
SWO+Multi, but not enough to make it competitive even
with Rand.

An obvious question is whether the implementation of
SWO might just be a poor implementation. It is possible,

1333

0

10

20

30

40

50

60

0 200 400 600 800 1000

P
er

ce
n
ta

g
e

o
f
ru

n
s

w
it
h

o
p
ti
m

a
l
so

lu
ti
o
n
s

Iteration number

GA
Rand
SWO

SWO+HC
SWO+Multi
SWO+Pool

SWO+Pool+HC
SWO+Pool+HC+Xov

SWO+Pool+Xov

Figure 4: Solution quality for difficult problems

of course, that a different implementation of SWO for these
problems could be highly effective, and the poor results seen
here do not prove otherwise. We note, however, that these
operators are evidently helpful in some of the other algo-
rithm variants considered here (not in this graph, but seen
in results presented below), and they were designed based
on prior experience with successful SWO implementations.

The GA algorithm is superior to all of the others in
this initial experiment, although the SWO+Pool+HC+Xov
algorithm has essentially caught up by the 1000-iteration
point. We note that in general, the greater the similarity
to the GA algorithm, the better the performance. Since
SWO+Pool+HC+Xov and GA differ only in the genetic en-
gineering operators, based on these data alone the genetic
engineering operators would appear to be slightly detrimen-
tal.

For the next step in our analysis we eliminated the “easy”
problems, which we defined to be those that the Rand al-
gorithm solved more than half the time in 5000 iterations.
One of the “90” series of problems was easy, and solved by

Rand. The rest of the “90” series were too difficult for any of
our algorithms, and so we eliminated them from the experi-
ments. The GA approach to the same problems reported by
[12] also failed to solve any but the one easy problem in that
subset. We had much better success on that subset when
using a domain-specific post-processor, but because it has
nothing to do with either SWO or GA approaches specif-
ically we omitted it from the results reported here. The
post-processor improved every algorithm, but the compar-
isons between the algorithms remained the same with GA
performing better than SWO.

After eliminating the “90” series, there were 30 problems
remaining that were not easy for Rand to solve. These con-
sisted of problem 70-09, and all of the problems from the
“75” through “85” sets except 85-03.

Figure 4 looks at the subset of the previous data corre-
sponding to these thirty “hard” problems. Again the y-axis
is truncated to show more detail, and the percentage shown
is the percentage of the thirty problems used. Rand shows
up because of the problems that it solved less than ten per-

1334

0

10

20

30

40

50

60

0 1000 2000 3000 4000 5000

P
er

ce
n
ta

g
e

o
f
ru

n
s

w
it
h

o
p
ti
m

a
l
so

lu
ti
o
n
s

Iteration number

GA
Rand
SWO

SWO+HC
SWO+Multi
SWO+Pool

SWO+Pool+HC
SWO+Pool+HC+Xov

SWO+Pool+Xov

Figure 5: Solution quality on difficult problems, 5000 iterations

cent of the time. SWO, SWO+Multi, and SWO+Pool do
not show up because they solved no problems that Rand
didn’t find easy. Again, the GA algorithm dominates, and
the next closest is the algorithm that is most similar to GA,
and so on.

We next took the four best algorithms (SWO+HC,
SWO+Pool+HC, SWO+Pool+HC+Xov, and GA) and
compared them with 5000 iterations on the set of thirty
“hard” problems. The results are shown in Figure 5. It
turned out that the SWO+Pool+HC+Xov algorithm (i.e.,
GA with genetic engineering operators) was more effective
in the long run. Eliminating any other component from the
algorithm, however, made it less effective than the GA.

As one reviewer suggested, this may show that the GA
has converged at 1000 iterations and that the genetic engi-
neering operators are preserving diversity. Although a GA
with restarts may have addressed this concern, SWO also
has an analogous problem where after many iterations, the
operators no longer make a difference significant enough to
allow for much progress.

7. RELATED WORK
Examples of previous work on the car sequencing problem

include the application of greedy local search [5], ant colony
optimization [5, 6], integer programming [6], CSP search [6],
heuristic repair, TABU search, and genetic algorithms with
hill-climbing to try to improve upon each offspring produced
by crossover [12].

It is hard to compare our results directly against the ge-
netic algorithms approach reported in [12]. Their approach
involves using both a genetic algorithm and hill-climbing lo-
cal search on each chromosome, and the structure of their
algorithm also makes any attempt to compare their per-
formance as a function of the number of iterations to ours
infeasible. We can however look at their results on the three
hardest benchmark sets (utility percentages of 80, 85 and
90), for a very rough comparison. They report solving 61%,
21% and 1% of 100 total runs (ten runs each for ten prob-
lems) in each category. We also solved 1% in the “90” set,
because one of those problems happens to be very easy. Even
with 5000 iterations the GA algorithm only solved 16% com-

1335

pared to their 61% for the “80” set, and 2% compared to
their 21% for the “85” set. We did, however, have a domain-
specific post-processing step that raised our performance in
those three hardest subsets to 89%, 48% and 19% respec-
tively. This was not used in any of the experiments reported
here.

The use of a non-trivial “constructor” that maps chromo-
somes to solutions is not unheard of with genetic algorithms,
although certainly it is more common that the mapping
from chromosomes to solutions be very simple and direct.
A scheduling algorithm described in a patent by Syswerda
[11] uses a “schedule builder” to construct a schedule given a
sequence of tasks. A GA searches the space of chromosomes
(task sequences), and no “genetic engineering” is used.

An algorithm for experiment planning for planetary rovers
used a GA to search a space of chromosomes that repre-
sented parameters describing a “plan strategy,” which was
then evaluated by simulating the execution of that strategy
[7]. The simulation in this case could be thought of as eval-
uating a dynamic constructor in a simulated environment.
The plan strategy was not a plan itself, but as with a task
sequence for SWO or Syswerda’s algorithm, it represents an
abstraction that a complex algorithm must map to a solu-
tion in order to evaluate the fitness of the chromosome.

SWO has been successfully applied to a wide variety of
domains, including factory scheduling and graph coloring
[8], satellite downlink scheduling [1], satellite observation
scheduling [4], project scheduling [10], and scheduling of air-
borne astronomical observations [2].

8. CONCLUSIONS
As mentioned above, SWO has been successfully applied

to a wide variety of domains. It has been patented, used
for at least one commercially successful product, and used
successfully in several real-world applications, not just sim-
plified problems and benchmarks. In light of that, some
of the design decisions that define SWO are surprising and
counter-intuitive, at least once we start viewing it in light of
evolutionary computation techniques that are widely used
and effective.

Our experimental results suggest that the SWO approach
can benefit from incorporation of standard GA techniques
such as the use of a population larger than one, the use of a
crossover operator, and elitism. In fact in these experiments
the closer a hybrid algorithm is to GA, the better it is likely
to do. In some cases the incorporation of the genetic engi-
neering operators that characterize SWO was harmful, and
an advantage over GA emerged only with a sufficiently large
number of iterations.

Any conclusions based on a single domain have to be
viewed as very tentative, but we believe that these initial
results are significant and provocative. Given the success
of SWO in spite of what are arguably some serious design
flaws, the improvements we see with hybrid algorithms com-
bining elements of GA and SWO are very encouraging. We
look forward to further exploring this intersection of two
promising fields of research.

9. REFERENCES
[1] L. Barbulescu, D. Whitley, and A. Howe. Leap before

you look: An effective strategy in an oversubscribed
scheduling problem. In Proc. of the 19th National
Conference on Artificial Intelligence, 2004.

[2] J. Frank and E. Kürklü. Mixed discrete and
continuous algorithms for scheduling airborne
astronomy observations. In Proc. of the 2nd Intl.
Conference on Constraint Programming, Artificial
Intelligence and Operations Research, 2005.

[3] I. P. Gent. Two results on car-sequencing problems.
Technical Report APES-02-1998, Dept. of Computer
Science, University of Strathclyde, Glasgow, UK, 1998.

[4] A. Globus, J. Crawford, J. Lohn, and A. Pryor. A
comparison of techniques for scheduling earth
observing satellites. In Proc. of the 16th Conference
on the Innovative Applications of Artificial
Intelligence, 2004.

[5] J. Gottlieb, M. Puchta, and C. Solnon. A study of
greedy, local search and ant colony optimization
approaches for car sequencing problems. In G. R. R.
et.al., editor, Applications of Evolutionary Computing,
EvoWorkshops2003, volume 2611 of LNCS, pages
247–258. Springer-Verlag, 2003.

[6] M. Gravel, C. Gagné, and W. L. Price. Review and
comparison of three methods for the solution of the
car sequencing problem. Journal of the Operational
Research Society, pages 1287-1295, November 2005.

[7] D. Joslin, J. Frank, A. Jónsson, and D. Smith.
Simulation-based planning for planetary rover
experiments. In Proceedings of the Winter Simulation
Conference, 2005.

[8] D. E. Joslin and D. P. Clements. Squeaky wheel
optimization. In Proceedings of the Fifteenth National
Conference on Artificial Intelligence (AAAI-98),
Madison, WI, pages 340–346, 1998.

[9] B. Smith. Car sequencing. In I. P. Gent and T. Walsh,
editors, CSPLib: A Problem Library for Constraints.
http://www.cse.unsw.edu.au/∼tw/csplib/prob/
prob001/index.html, 2004.

[10] T. Smith and J. Pyle. An effective algorithm for
project scheduling with arbitrary temporal
constraints. In Proc. of the 19th National Conference
on Artificial Intelligence, 2004.

[11] G. P. Syswerda. Generation of schedules using a
genetic procedure, 1994. U.S. Patent number
5,319,781.

[12] T. Warwick and E. P. K. Tsang. Tackling car
sequencing problems using a generic genetic algorithm.
Evolutionary Computation, 3(3):267–298, 1996.

1336

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

