
A Crossover for Complex Building Blocks Overlapping

Miwako Tsuji
Hokkaido University, JSPS

Research Fellow
N11W5, Sapporo
060–0811,Japan

m tsuji@cims.hokudai.ac.jp

Masaharu Munetomo
Hokkaido University

N11W5, Sapporo
060–0811,Japan

munetomo@
iic.hokudai.ac.jp

Kiyoshi Akama
Hokkaido University

N11W5, Sapporo
060–0811,Japan

akama@iic.hokudai.ac.jp

ABSTRACT
We propose a crossover method to combine complexly over-
lapping building blocks (BBs). Although there have been
several techniques to identify linkage sets of loci o form a
BB [4, 6, 7, 10, 11], the way to to realize effective crossover
from the linkage information from such techniques has not
been studied enough. Especially for problems with overlap-
ping BBs, a crossover method proposed by Yu et al. [13] is
the first and only known research, however it cannot per-
form well for problems with complexly overlapping BBs due
to insufficient variety of crossover sites. In this paper, we
propose a crossover method which examines values of given
parental strings minutely and defines which variables are
exchanged to produce new and different strings without in-
creasing BB disruptions as much as possible. The method
is combined with a scalable linkage identification technique
to construct an efficient algorithm for problems with over-
lapping BBs. We design test functions with controllable
complexity of overlap and test the method with the func-
tions.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search

General Terms
Algorithms

Keywords
Crossover, Linkage, Building Blocks

1. INTRODUCTION
In order to design efficient crossovers, there have been sev-

eral techniques to identify loci that are tightly linked to con-
struct a building block (BB) [4, 6, 7, 10, 11]. However, the
method to exploit the information they provide has not been

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

studied enough especially for the problems with overlapping
BBs. The LIMD-TD [8] and the DSMGA [12] divide all loci
into non-overlapping sets by deleting weak interactions or
detecting strong interactions. A crossover method by Yu et
al. [13] is the first and only known method that can deal with
problems with strong overlaps, however, when BBs overlap
complexly, it gives insufficient variety of crossover sites i.e.
it exchanges limited sets of loci.
In this paper, we improve the existing crossover method to

decrease BB disruptions and ensure the variety of crossover.
The proposed crossover method exchanges various combina-
tions of BBs even when they overlap intricately. We combine
the proposed crossover with the D5 [11], which is a scalable
technique to detect dependency between loci. Moreover, we
design test functions with controllable complexity of overlap
and test the proposed crossover with the functions.
In the next section, we describe our notation and problem

definition. Then, we discuss issues in the existing crossover
method. In section 4, we propose a new crossover method
for problems with overlapping BBs. In section 5, we Wde-
sign the D5-GA with the proposed crossover to optimize
problems with overlapping unknown BBs. In section 6, we
design test functions and perform experiments. The conclu-
sion is in section 7.

2. NOTATION AND
PROBLEM DEFINITION

Schema theorem says that short, low-order, and highly
fit schemata increase their share to be combined [5]. It
is considered that such combination of small parts is con-
sistent with human innovation and important for GAs [2].
These lead to a problem model called an additively decom-
posable function, which is written as a sum of low-order
sub-functions.
In real world problems, which loci belong to a sub-function

is unknown and a locus could belong to several sub-functions.
Therefore, in this paper, we define problems with overlap-
ping sub-functions as follows: A string s of length l is some-
times described as a series of loci, s = s1s2 · · · si · · · sl, where
the subscripts are identification numbers assigned to loci. In
the following discussion, we assume s = s1s2 · · · sl is a ran-
dom permutation of problem variables x = x1x2 · · ·xl to
represent random encoding. The fitness of s is defined as:

f(s) =
m∑

j=1

fj(svj), (1)

where m is the number of sub-functions, fj is a j-th sub-

1337

1 1 0 1 0 1 1 0 0 0 1 1 1 0 0

BB1

BB2

BB3

BB4
locus 1, 2, ...

Figure 1: An example of the overlapping sub-
functions

function and svj is its sub-solution. The vj is a vector of
id numbers of loci and defines svj . For example, if vj =
(1, 3, 7, 5), svj = s1s3s7s5. Two vectors specify identical
sub-strings if and only if all of their corresponding compo-
nents are equal. Let Vj is a set of loci which consist vj .
The Vj specifies a set of loci which interdepend to construct
a sub-solution. Note the following: if Vj = {1, 2, 3, 4} and
Vj′ = {4, 3, 2, 1} then Vj = Vj′ , while if vj = (1, 2, 3, 4)
and vj′ = (4, 3, 2, 1) then vj �= vj′ and svj �= svj′ . This

equation can express any function by using (1, 2, · · · , l) as
s1.
In this paper, we call a set Vj a linkage set and interac-

tion between loci in a same linkage set linkage. Candidate
solutions for sub-functions are called building blocks (BBs).
If two different sub-functions are defined over sets of loci
which share a locus (or loci), i.e. Vj ∩ Vj′ �= ∅, (j �= j′)
then, it is said that these sub-functions overlap.

V j (j = 1, 2, · · ·) denote sets of loci which are estimated
to be linked. The aim of the linkage identification tech-
niques such as [4, 6, 7, 10, 11] is to construct {V 1, V 2, · · · } ≈
{V1, V2, · · · }.
General crossover operators divide all loci into two sets

and exchange one of them. For example, the one-point
crossover divides {1, 2, · · · , l} into {1, · · · , i}, {i + 1, · · · , l}.
In following, we call the set of loci to be exchanged crossover
set, V.

3. BACKGROUND

3.1 Linkage identification and crossover
techniques

As mentioned in the earlier section, there have been sev-
eral efforts to identify linkage sets. In contrast, how to use
the information of the mutual dependency relations between
loci has not been studied enough. Most of linkage identifi-
cation techniques assume that sub-functions do not overlap.
For problems with non-overlapping sub-functions, it should
be easy to estimate sub-functions and mix BBs using the
information of relationships.
To combine BBs effectively for problems with complex in-

teractions is more difficult and less studied. For such prob-
lems, the tightness detection [8] removes weak interactions
and the dependency structure matrix [12] extracts strong in-
teractions. These methods aim to construct non-overlapping
linkage sets when resulted linkages between loci are not triv-
ial.
However, sub-functions sometimes overlap innately and a

single locus belongs to two or more linkage sets. For prob-
lems with overlapping sub-functions, it is not enough to di-
vide loci into non-overlapping clusters. An example of such
problem is shown in Figure 1. In the figure, loci 4 and 5
belong to BB1 and BB2. If one of them is exchanged, the
other one is disrupted. If both of them are exchanged, no

1. Construct a graph G = (N, E), where the nodes
are linkage sets V j and the edges are overlapping
relations between two nodes.

2. For each crossover operator: Choose two nodes
n1, n2 randomly. Then partition the graph G into
two sub-graphs G1 = (N1, E1) and G2 = (N2, E2)
which satisfy conditions: n1 ∈ N1, n2 ∈ N2 and
|E| − |E1| − |E2| is minimal.

3. Let V =
⋃

V j∈N1
V j and exchange loci in V.

Figure 2: The existing crossover algorithm

V1

V2 V3

V4

Figure 3: A graph in
the existing method.
This represents the
string in figure 1.

V1

V2

V3

V4

V5

V6

Figure 4: An example
of simple overlap (The
ring structure)

information is exchanged. For such problems, only a few
researches such as a crossover method by Yu et al. [13] are
known. In the next sub-section, we show their crossover
method and its issues.

3.2 The existing crossover method for over-
lapping problems

Yu et al. [13] investigated the relationship between an in-
accurate linkage and the convergence time of GA to devel-
oped a graphical crossover method for problems with over-
lapping sub-functions. The crossover algorithm in Figure
2 is designed from the observation that the prevention of
the detection failure error (the linkage model does not link
those genes which are linked in reality) is critical to suc-
cessful recombination. It constructs a graph G = (N, E),
where the nodes are linkage sets and the edges are overlap-
ping relations between two nodes. Figure 3 shows the graph
of the problem shown in Figure 1. Then it divides G into
two graphs at random to disrupt minimal number of BBs.
It works well if BBs overlap simply. For example, let us

consider a ring structure shown in Figure 4. This is em-
ployed as a test function for the existing method. In the
function, each sub-function overlaps with only its neigh-
bor sub-functions. Figure 5 shows crossovers which mini-
mize BB disruptions when double circles (V1, V3) are cho-
sen as (n1, n2). Either white nodes or black nodes are ex-
changed. The divisions which result in equivalent strings by
the crossovers are removed. When BBs overlap simply, there
are several crossover sets even for a same pair of (n1, n2).
Moreover, the pair (n1, n2) can be chosen at random.
However, when overlap becomes more complex, graph par-

tition with minimum BB disruptions is restricted and the
partition tends to divide graphs into a small graph and the
remaining large one.

1338

V1

V2

V3

V4

V5

V6

Figure 6: An ex-
ample of com-
plex overlaps

Figure 7: All possible crossovers for the problem in Figure 6. The divisions which
show equivalent crossover for a (n1, n2) pair is removed. The graph partitions for
V1, V3 are highlighted.

Figure 5: Resulted crossover from the existing
method. The divisions which show equivalent
crossover are removed.

As an extreme case, we consider a graph where each node
has e random edges. Let |N | the number of nodes in the

graph G = (N, E). A node in G1 should have e |N2|
|N|−1

edges

to nodes in G2. Then, the expected number of edges from
G1 to G2 is

∑
i s.t. Vi∈N1

e|N2|
|N | − 1

= e
∑

i s.t. Vi∈N1

|N | − |N1|
|N | − 1

= −e
|N1|(|N1| − |N |)

|N | − 1
. (2)

This function is convex upward for |N1|. Of |N1| = 1, 2, · · · ,
|N | − 1, only 1 and |N | − 1 give the minimum number of
edges between two sub-graphs.
Let us consider a problem with complex overlaps shown in

Figure 6. There are 6C2 = 15 choices for (n1, n2). For most
pairs of nodes, the number of minimum disruption crossovers

is small. All possible crossovers for the problem in Figure
6 are shown in Figure 7. Again, the double circles show
(n1, n2) and the divisions which show equivalent crossover
are removed. In the figure, there are a few crossover sets for
each (n1, n2) pair and all except the one example exchange
only one BB. For example, for a pair (V1, V3), although the
five graph partitions shown in Figure 5 are available for the
simple problem, only the two graph partitions highlighted
in the figure 7 divide the pair with minimum disruptions for
the complex problem.
In this paper, we modify the existing method to enrich va-

riety of crossovers without increasing BB disruptions. More-
over, the proposed method sometimes disrupts less BBs than
the existing method.

4. CROSSOVER FOR COMPLEX
INTERACTIONS AND OVERLAPS

In order to hold BB disruptions to a minimum and pre-
serve diversity of crossover, we propose a crossover method
shown in Figure 8. While the existing method searches the
best division over a single graph G for all pairs of parents,
the proposed method reconstructs the graph for each pair
of parent strings s = s1s2 · · · si · · · sl and t = t1t2 · · · ti · · · tl.
Figure 10 shows an example of the proposed crossover for

parent strings shown in Figure 9. First, the nodes on which
sub-solutions (BBs) are identical are removed (Figure 10,
left), because whether such BBs are exchanged or not has no
effect on the offspring. This operator ensures the obtained
offsprings always differ from their parent strings. In our
example, because BBs on the V1 are same, the node for V1

is removed.
Then, the edges where no BB disruption occurs practi-

cally are removed (Figure 10, middle). In our example, the
edge between V3 and V4 are removed because for parent sub-

1339

V1

V2

V4

V3

10010

10010

10101

10110

10011

00011

11001

11101
V1

V2

10010

10010

10101

10110

V4

V3
10011

00011

11001

11101
V1

V2
10101

10110

V4

V3
10011

00011

11001

11101

Figure 10: Example of the proposed crossover method. left : remove same BBs, middle : remove edges where
BB disruption does not occur, right : resulted graph

1. Construct a graph G = (N, E), where the nodes
are linkage sets V j and the edges are overlapping
relations between two nodes.

2. For each crossover operator for parent strings
s = s1s2 · · · si · · · sl and t = t1t2 · · · ti · · · tl

(a) Remove nodes V j where svj = tvj .

(b) Remove edges between V j and V j′ if the
following conditions are hold :

• The exchange between BBs svj and tvj

does not disrupt BBs svj′ and tvj′ .

• The exchange between BBs svj′ and
tvj′ does not disrupt BBs svj and tvj .

(c) Choose two nodes n1, n2 randomly. Then
partition the graph G into two sub-graphs
G1 = (N1, E1) and G2 = (N2, E2) which
satisfy conditions: n1 ∈ N1, n2 ∈ N2 and
|E| − |E1| − |E2| is minimal.

(d) Let V =
⋃

V j∈N1
V j and exchange loci

in V.

Figure 8: The proposed crossover algorithm

strings
10011001 with BBs 10011 and 11001

00011101 with BBs 00011 and 11101,
obtained sub-strings are

00011001 with BBs 00011 and 11011

10011101 with BBs 10011 and 11101,
or

10011101 with BBs 10011 and 11101

00011001 with BBs 00011 and 11001,
when V3 or V4 is exchanged respectively.
After that, the resulted graph (Figure 10, right) is di-

vided into two sub-graphs to minimize the number of cut
edges. The right graph of Figure 10 obtained by the pro-
posed method suggests that there is a graph partitioning
without BB disruption. On the other hand, the existing
method simply chooses a partitioning from

{V1, V2, V3|V4},
{V1, V2|V3, V4} which cuts one edge, and
{V1|V2, V3, V4} which creates no new string.

1 0 0 1 0 1 0 1 0 0 1 1 0 0 1

1 0 0 1 0 1 1 0 0 0 1 1 1 0 1

BB1 BB2 BB3 BB4

Figure 9: Parents

Moreover, the proposed method can give various crossover
sets even for the complex problems like the one shown in
Figure 6. The reason is as follows: For every crossover,
the proposed method removes nodes and edges to simplify
the graph G. The reconstruction of the G depends on the
values of parental strings. Therefore, different pairs should
give different graphs. The different graphs result in various
sub-graphs.
The reduced surrogates crossover proposed by Booker [1]

examines non-matching alleles in parental strings to make
reduced strings and selects crossover points for the reduced
strings. It always produces variants and maintains popula-
tion diversity to avoid premature convergence. While the
proposed method ignores BBs which are identical like the
reduced surrogates crossover, it does not perform crossover
in allele-wise but in BB-wise.
To sum up the characteristics of the proposed crossover,

• It can reduce BB disruptions.

• It can make various variations of crossover even for
problems with complex overlaps and interactions.

Because the diversity of offsprings can be held by making
several crossover sets with the least BB disruptions, we can
reduce the innovation time, which is the number of genera-
tions required to find a new and better solution than all the
strings in a population.

5. D5-GA FOR PROBLEMS WITH
OVERLAPPING SUB-FUNCTIONS

In order to work the proposed and existing crossover meth-
ods well, linkage sets must be known in advance. There are
several techniques to identify the linkage sets and the pro-
posed and existing crossover methods are independent of
the way to identify linkage. In this paper, we employ the
D5 (Dependency Detection for Distribution Derived from
df) [11], which is a scalable technique to detect dependency

1340

1. Initialize population. Let the number of linkage sets
j = 0.

2. For each locus i:

(a) Perturb si (0 → 1 or 1 → 0) and calculate
fitness difference dfi(s) for all strings.

(b) Classify strings according to fitness differences
dfi(s) into sub-populations.

(c) For each sub-population:

i. Find V j which minimizes entropy E(V j)
in the sub-population.

ii. Let j = j + 1.

Figure 11: Algorithm of the D5 for problems with
overlapping sub-functions

between loci to identify the linkage sets, and modify it for
problems with overlapping sub-functions.

5.1 D5 for overlapping functions
The D5 constructs sets of loci which depend on each locus

i by estimating sub-populations classified according to fit-
ness differences by perturbations (change gene value 0 → 1
or 1 → 0) at locus i. The algorithm of the D5 for problems
with overlapping sub-functions is shown in Figure 11. The
entropy E(V j) in the figure is calculated as follows:

E(V j) = −
∑

x

px log px, (3)

where x is possible sub-strings svj and px is the appearance
ratio of each sub-string x in a sub-population.
The item 2–(c)–i in the figure searches the set of loci

whose values distribute unequally measuring entropy. When
a problem is decomposable like the equation (1), fitness dif-
ference by the perturbation at locus i is as follows:

dfi(s) = f(s1 · · · si · · · sl)− f(s1 · · · si · · · sl) (4)

=
∑

j s.t. i∈Vj

(
fj(s1 · · · si · · · slvj

)− fj(s1 · · · si · · · slvj
)
)
(5)

where si is 0 if si = 1 or 1 if si = 0. The equation (5) shows
that dfi(s) is defined by the sub-functions fj such that i ∈
Vj . If i /∈ Vj , substrings s1 · · · si · · · slvj

and s1 · · · si · · · slvj

are identical and their fitness difference is zero. Therefore,
in each sub-population of strings with same dfi(s), loci in Vj

such that i ∈ Vj should distribute unequally and the entropy
of them in the strings should be small. The other loci should
distribute randomly and the entropy of them in the strings
should be large.
In the above process, assuming non-overlapping problems,

the original D5 defines the size of a linkage set in advance.
For problems with overlapping sub-functions, it is required
to define the size adaptively because the number of loci
which interdepend on a locus depends on the number of
sub-functions which the locus belongs to. In most imple-
mentations, each linkage set is constructed incrementally i.e.
a locus which gives the smallest E(V j ∪{i}) is added one by
one starting with V j = {i′}, where i′ is the perturbed locus.

We set a threshold Et (0 < Et < 1) to decide whether a
new locus should be added to the linkage set or not. When
a locus i is added to a set V j , if Es(V j ∪ {i}) = 0 or(
Eo(V j ∪ {i}) − Es(V j ∪ {i})) − (

Eo(V j)− Es(V j)
)

> Et

then let V j = V j ∪ {i} and search a next locus. Otherwise,
return V j . In the above inequality, Eo(V) is entropy of V in
the original population and Es(V) is entropy of V in the sub-
population. The inequality means that if the relative bias
of V j ∩ {i} in the sub-population to the original population
is larger than that of V j , then the locus i is rejected. If i
is irrelevant to the perturbed loci, the distributions in the
sub-population and original population are not different and
Eo(V j ∪ {i}) − Es(V j ∪ {i}) should be small.
Moreover, because the original D5 assumes that a locus

construct one sub-function, it chooses a single V j for a sin-
gle locus from estimations in several sub-populations. We
modify this to hold all linkage sets constructed in the all sub-
populations, because the source of each dfi(s) could some-
times come from different sub-functions where the locus i
exists redundantly.

5.2 Constructing linkage sets from dependency
information

The D5 gives sets V j (j = 1, 2, · · ·) of loci which depend
on each locus. Some of them should include one or more
linkage sets because perturbed loci sometimes belong to sev-
eral linkage sets Vx, Vy , · · · . In this sub-section, we show a
simple method to infer linkage sets from the sets.
First, we should estimate sub-problem order k. This pa-

rameter is not algorithm specific but required by general
genetic algorithms to decide adaptive population size etc..
Then,

1. Remove duplications of linkage sets.

2. Extract linkage sets from unions.

3. Remove unions of other sets.

4. Remove proper subset of other sets.

Some of V j are unions of Vj s which overlap each other.
A linkage set is extracted from the unions in the item 2.
Product sets V j ∩ V i which satisfy the following conditions
are extracted.

• |V j ∩ V i| ≥ k

In the item 3, sets V j which satisfy the following condi-
tions are removed as unions.

• linkage sets V x, V x are exist such that

– V x ∩ V y �= ∅, V j ∩ V x �= ∅, V j ∩ V y �= ∅ for
x �= y �= j

– |V j | > |V x| and |V j | > |V y|
– V x ∪ V y ⊇ V j

5.3 Niching
If there are complex overlaps, it is difficult to find all Vj

perfectly since the number of loci which depend on a locus
becomes large. To overcome the failure in linkage identifica-
tion, population diversity must be maintained. Therefore,
we introduce niching to GAs for problems with overlapping

1341

D5: detect interaction between loci

construct linkage sets
from the resulted information by D5

evoluve population using the linkage sets
and their overlapping information

Preprocessing Phase

Evolution Phase

Figure 12: Overall algorithm of the D5-GA

sub-functions. Niching is also useful when optimal sub-
solutions for overlapping sub-functions are contradictory to
each other. We employ the restricted tournament selection
[3] which compares offsprings to similar strings. Other nich-
ing techniques can also be employed.

5.4 Overall algorithm of the D5-GA for prob-
lems with overlapping sub-functions

The overall algorithm of the D5-GA for problems with
overlapping sub-functions is shown in Figure 12. It can
be divided into preprocessing phase and evolution phase.
The preprocessing phase obtains linkage sets. The evolu-
tion phase evolves strings to find optimal solution(s). The
both phases use strings but the number of them could differ
in each phase.

6. EXPERIMENTS

6.1 Test functions
Yu et al. employ a test function whose sub-functions over-

lap circulate and each overlapping length is 2. Each sub-
function is a 5-bit trap function defined as

trap5(svj) =

{
4−u

5
, u = 0, 1, 2, 3, 4

1, u = 5
(6)

and decision variables of sub-function j are defined as:

vj = (3(j − 1) + 1 mod l, 3(j − 1) + 2 mod l,

· · ·, 3(j − 1) + 5 mod l).

Therefore, the whole function is

f(s) = trap5(s1s2s3s4s5) + trap5(s4s5s6s7s8)

+ · · · +trap5(sl−2sl−1sls1s2). (7)

We design a function with stochastic circularly overlap-
ping sub-functions based on the function with circularly
overlapping sub-functions. It enables us to control the com-
plexity of overlap from systematic (circulate) one to random
one. The loci which belong j-th sub-function are defined as
follows:

vj = (N(3j, σ2) mod l, N(3j, σ2) mod l,

· · ·, N(3j, σ2) mod l).

where N(µ, σ2) is a normal distribution with mean µ and
variance σ2. If a locus is already in vj , a new locus-id-
number should be sampled from N(3j, σ2). The overlapping

length can also be controlled to change the interval of µ.
Figure 13 and 14 show a sub-function with small σ2 and
one with large σ2 respectively. The boxes in the figure show
loci and painted boxes show the loci which belong the sub-
function. The graphs in Figure 15 show the functions with
l = 60 and σ2 = 1, 25, 1002. The function with small σ2 is
similar to the original function with circularly overlapping
sub-functions. Larger σ2 gives more complex overlaps.

6.2 Experiments with known linkage sets
In order to compare the proposed crossover with the ex-

isting crossover in terms of only crossover performance, we
perform experiments assuming that linkage sets are known.
We employ the functions with stochastic circularly overlap-
ping sub-functions with σ2 = 1, 4, 25, 100 and l = 60, 90, 120.
For each test function and each crossover method, we per-
form 30 independent runs and obtain the % of the runs which
achieve the global optimal solution and the # of generations
required to achieve the global optimal solution if it can be
achieved. Population sizes are fixed for each σ2 even when
l is changed. The maximum number of generations set to
200. If there is no optimal solution at that time, the run
is considered to be a failure. No mutation is employed to
investigate performance of crossover.
The left figure in Figure 16 shows the % of runs which

obtain optimal solutions. Even for small σ2, the proposed
method obtains the optimal solutions with higher proba-
bility than the existing method. For large σ2, the exist-
ing method cannot obtain optimal solutions while the pro-
posed method can archive them. The right figure in Fig-
ure 16 shows the average number of generations. For each
string length, the proposed method requires smaller number
of generations than the existing method. While the pro-
posed method requires larger computational cost in each
crossover, the number of crossovers is smaller than the ex-
isting method because it finds the optimal solution faster
the existing method.

6.3 Experiments with unknown linkage sets
In general, linkage sets are not known and must be identi-

fied. We perform experiments the D5-GA for problems with
overlapping sub-functions described in the section 5. We in-
vestigate the numbers of evaluations required to obtain op-
timal solutions all 30 runs in the functions with stochastic
circularly overlapping sub-functions with σ2 = 1, 4, 25, 100,
10000 and l = 60, 90, 120. No mutation is used again. For
comparison, not only the D5-GA with the existing crossover
but also the BOA [9] with niching is performed. The BOA
does not use crossover but builds a Bayesian network from
promising strings and generates new strings from the net-
work. The Bayesian network can represent overlapping re-
lations.
For each algorithm, population size is defined empirically

to obtain optimal solution using the smallest computation
cost. For the D5-GAs, the populations for the preprocessing
phase and the evolution phase are defined independently.
Figure 17 (a)–(d) show the results. Figure 17 (a) shows

the number of evaluations in the whole phase of the D5-
GA with the proposed crossover and figure 17 (b) shows the
number of evaluations in the evolution phase of the D5-GA
with the proposed crossover. From these two results, it is
shown that when BBs overlap complexly, the computation
cost for the evolution phase becomes large. Comparing the

1342

N(3j,σ2)

Figure 13: A sub-function with small σ2

N(3j,σ2)

Figure 14: A sub-function with large σ2

Figure 15: Functions with stochastic circularly overlapping sub-functions. l = 60, σ2 = 1 (left), l = 60, σ2 = 25
(middle) and l = 60, σ2 = 1002 (right). Nodes are linkage sets and edges are overlapping relations between
nodes.

(a) (c) and (d) in the figure, it is clear that the D5-GA with
the proposed crossover gives the best result for large l even
when σ2 is large. Figure 17 (c) shows that the D5-GA with
existing crossover requires enormous numbers of evaluations
for problems with large σ2 and l.

7. CONCLUSION
In this paper, we design an efficient crossover method for

problems with overlapping sub-functions. Although the ex-
isting method can work well for problems with simple over-
laps, for problems with complex overlaps, it cannot perform
well due to insufficient variety of crossover sites. The pro-
posed crossover method can ensure the variety because it ex-
amines values of given parental strings minutely and defines
which variables are exchanged to produce new and different
strings without increasing BB disruptions.
We combine the proposed crossover method and the D5

(one of linkage identification techniques) to construct a com-
prehensive algorithm for problems with complex and un-
known interactions. The test function with controllable
complexity of overlap is designed and used to verify the ef-
fectiveness of the proposed method.

8. REFERENCES
[1] L. Booker. Improving search in genetic algorithms. In

L. Davis, editor, Genetic Algorithms and Simulated
Annealing, pp. 61–73. Morgan Kaufmann, 1987.

[2] D. E. Goldberg. The Design of Innovation: Lessons
from and for Competent Genetic Algorithms. Kluwer
Academic Publishers, Norwell, MA, USA, 2002.

[3] G. R. Harik. Finding multimodal solutions using
restricted tournament selection. In L. Eshelman,
editor, Proceedings of the Sixth International

Conference on Genetic Algorithms, pp. 24–31, San
Francisco, CA, 1995. Morgan Kaufmann.

[4] R. B. Heckendorn and A. H. Wright. Efficient linkage
discovery by limited probing. In Genetic and
Evolutionary Computation - GECCO2003 Part 1,
Lecture Notes in Computer Science 2723, LNCS 2723,
pp. 1003–1014. Springer-Verlag, 2003.

[5] J. H. Holland. Adaptation in Natural and Artificial
Systems. University of Michigan Press, 1975.

[6] H. Kargupta and B.-H. Park. Gene expression and
fast construction of distributed evolutionary
representation. Evolutionary Computation, 9(1):43–69,
2001.

[7] M. Munetomo and D. E. Goldberg. Identifying linkage
groups by nonlinearity/non-monotonicity detection. In
Proceedings of the 1999 Genetic and Evolutionary
Computation Conference, pp. 433–440. Morgan
Kaufmann Publishers, 7 1999.

[8] M. Munetomo and D. E. Goldberg. Linkage
identification by non-monotonicity detection for
overlapping functions. Technical Report IlliGAL
Report No.99005, University of Illinois at
Urbana-Champaign, 1 1999.

[9] M. Pelikan, D. E. Goldberg, and E. Cantú-Paz. BOA:
The Bayesian optimization algorithm. In Proceedings
of the 1999 Genetic and Evolutionary Computation
Conference, pp. 525–532. Morgan Kaufmann
Publishers, 1999. ftp://ftp-
illigal.ge.uiuc.edu/pub/src/sBOA/C++/sBOA.tar.Z.

[10] M. J. Streeter. Upper bounds on the time and space
complexity of optimizing additively separable
functions. In Genetic and Evolutionary Computation -
GECCO2004 Part 2, Lecture Notes in Computer
Science 3103, pp. 186–197. Springer-Verlag, 2004.

1343

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130

%
 o

f o
pt

im
um

 c
on

ve
rg

en
ce

string length

σ2=12

22

52

102

σ2=12

22

52

102

proposed

existing

0

20

40

60

80

100

50 60 70 80 90 100 110 120 130

of

 g
en

er
at

io
ns

string length

σ2=12

22

52

102

σ2=12

22

52

102

proposed

existing

Figure 16: The % of runs which obtain optimal solutions (left) and the average number of generations
required to obtain the optimal solutions (right). The solid lines show the results of the proposed method
and the dotted lines show the results of the existing methods. Population sizes are 500, 600, 1200 and
2000 for σ2 = 12, 22, 55 and 102 respectively.

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

30 40 50 60 70 80 90 100 110 120

of

 e
va

lu
at

io
ns

(a) D5-GA with the proposed crossover string length

σ2 = 1
σ2 = 4

σ2 = 25
σ2 = 100

σ2 =10000

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

30 40 50 60 70 80 90 100 110 120

of

 e
va

lu
at

io
ns

(b) D5-GA with the proposed crossover string length

σ2 = 1
σ2 = 4

σ2 = 25
σ2 = 100

σ2 =10000

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

30 40 50 60 70 80 90 100 110 120

of

 e
va

lu
at

io
ns

(c) D5-GA with the existing crossover string length

σ2 = 1
σ2 = 4

σ2 = 25
σ2 = 100

σ2 =10000

0.0e+00

5.0e+05

1.0e+06

1.5e+06

2.0e+06

30 40 50 60 70 80 90 100 110 120

of

 e
va

lu
at

io
ns

(d) BOA string length

σ2 = 1
σ2 = 4

σ2 = 25
σ2 = 100

σ2 =10000

Figure 17: The numbers of evaluations required to obtain optimal solutions in all 30 runs

[11] M. Tsuji, M. Munetomo, and K. Akama. Modeling
dependencies of loci with string classification
according to fitness differences. In Genetic and
Evolutionary Computation - GECCO2004 Part 2,
Lecture Notes in Computer Science 3103, pp. 246–257.
Springer-Verlag, 2004.

[12] T.-L. Yu, D. E. Goldberg, A. Yassine, and Y.-P. Chen.
Genetic algorithm design inspired by organizational
theory: Pilot study of a dependency structure matrix
driven genetic algorithm. In Proceedings of Artificial
Neural Networks in Engineering 2003 (ANNIE 2003),
pp. 327–332, 6 2003.

[13] T.-L. Yu, K. Sastry, and D. E. Goldberg. Linkage
learning, overlapping building blocks, and systematic
strategy for scalable recombination. In Proceedings of
the 2005 conference on Genetic and evolutionary
computation, pp. 1217–1224, 6 2005.

1344

