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ABSTRACT 
In this paper, a new method for assigning credit to search 
operators is presented. Starting with the principle of optimizing 
search bias, search operators are selected based on an ability to 
create solutions that are historically linked to future generations.  
Using a novel framework for defining performance 
measurements, distributing credit for performance, and the 
statistical interpretation of this credit, a new adaptive method is 
developed and shown to outperform a variety of adaptive and 
non-adaptive competitors.   

Categories and Subject Descriptors 
G.1.6 Optimization: Stochastic programming.  

General Terms 
Algorithms, Measurement, Performance. 

Keywords 
Evolutionary Algorithm, Genetic Algorithm, Adaptation, 
Historical Credit Assignment, Search Bias.  

1. INTRODUCTION 
Adaptation is defined as the ability to maintain competitiveness in 
a changing environment.  Natural adaptive systems have 
ingrained within them an ability to advantageously change 
internal components when exposed to changing external forces.  
This knowledge of what to change and how to change must be 
engineered when adaptation is considered in artificial contexts 
(e.g. computer experiments). 
Our first step is to choose a measure (e.g. objective function 
value) for the effect of the changing environment.  The second 
step is to assign the measured effect to the responsible adaptable 
parties.  Finally, we must determine how to process this 
information so that the overall system can remain competitive. 

In this work the adaptable components are search operator 
probabilities in an Evolutionary Algorithm (EA).  In the following 
discussion, our measure of the effect of the environment is 
referred to as a performance measurement, determining the 
responsible adaptable parties is referred to as credit assignment, 
and the processing of information for maintaining 
competitiveness is referred to as measurement interpretation. 
How we define our performance measurement and interpret the 
performance measurements will play important roles in the 
behavior of an adaptive system.  A detailed discussion of these 
aspects and how they pertain to an adaptive EA can be found in 
[12] and will be briefly discussed in Section 2.2 and Section 3.  
However the focus of this work will be on how to assign credit to 
the appropriate search operators so that favorable adaptation 
occurs.   
In this research, search operators will be adapted based on their 
contribution to the dynamic behavior of an EA, namely their role 
in the creation of offspring solutions.  The performance 
measurement of offspring solutions will be some measure of 
solution fitness. 

1.1 Credit Assignment 
Since search operators act to create new offspring solutions, it 
seems obvious that the assessment of search operator performance 
will be deduced directly from the fitness of the offspring they 
create.  This is referred to here as Direct Credit Assignment.  
However, this seemingly obvious answer to the credit assignment 
problem relies on an underlying premise that is challenged in this 
work.  The challenged premise is referred to here as the Standard 
Assumption and it is outlined below within the familiar context 
of optimization.   

1.1.1 The Standard Assumption   
In order to search for an optimal solution to a problem, we must 
make assumptions about the fitness landscape of the problem 
being solved.  One of the most common and successfully applied 
assumptions is that a solution’s objective function value (Fitness) 
can approximate a solution’s usefulness in searching for more fit 
solutions.  Following this to its logical conclusion, this implies 
highly fit solutions will ultimately be useful in finding the optimal 
solution.1  This also implies that a solution’s reproductive worth 
                                                                 
1 similar arguments also apply for use of 1st and 2nd derivatives of 

objective function 
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and the solution objective function value are roughly equivalent 
measures.  For unimodal landscapes, this assumption is usually 
sufficient for guaranteeing an optimal solution will be found 
consistently and in a reasonable amount of time.  However, for 
multimodal landscapes, this standard assumption fails to produce 
reliable or acceptable results.2   

1.1.1.1 Direct Credit Assignment 
Applying the Standard Assumption to the adaptation of search 
operators suggests that an operator’s ability to create highly fit 
solutions will provide a measure for the worth of that operator.  In 
other words, the credit for a solution is assigned directly to the 
operator that creates it (Direct Credit Assignment). 

1.1.2 Search Bias Assumption  
An alternative approach is to look at solving the inverse problem 
which is that of optimizing search bias.  For clarity, we will call 
this optimization based on the Search Bias Assumption.  Here our 
goal is to find solutions and search mechanisms that are most 
likely to reach the optimal solution in a small number of steps.  
Instead of assigning credit to a highly fit solution, we look to 
assign credit to solutions that participate in finding high fitness 
solutions.  The underlying assumption made here is that a solution 
that was helpful in finding good solutions has a chance of being 
helpful in finding even better solutions.  Furthermore, we treat 
this assumption as if it can be successfully applied throughout the 
fitness landscape all the way up to the globally optimal solution.3  
One obvious result of this approach is that a distinction is drawn 
between the reproductive value and the objective function value 
of a solution which makes this markedly distinct from 
optimization under the Standard Assumption.   

1.1.2.1 Credit Assignment by Search Bias 
Adhering to the Search Bias Assumption for credit assignment 
purposes means that credit for the performance of a current 
solution should be given to adaptable aspects (e.g. search 
operators) associated with the creation of the solution’s ancestors.  
However, this means that little or no credit is given to the current 
solutions (or for that matter the most recent usage of search 
operators).  Our inability to assign credit to “current conditions” 
means we have no information for adaptation purposes in the 
present context.  
In order to obtain currently informative performance measures we 
must either obtain more information about the current solutions 
(and their future offspring) or we must make additional 
assumptions.  Three possibilities are described below. 

1. Carry out tests 
One obvious way to assess the worth of current solutions would 
be to simply execute the EA in a test trial over several generations 
and then see which solutions were actually beneficial in future 
generations.  Since we are dealing with a stochastic system, it is 
not known whether a single test trial will be indicative of the 
solution’s expected worth and so multiple trials would be needed 

                                                                 
2 In EA, most selection schemes involve relaxation of the 

Standard Assumption.  This involves treating the Standard 
Assumption as being true in the average sense but not strictly 
true (ie a probability of it being true). 

3 Like the Standard Assumption, this also has its limitations.  

to ensure a solution’s future worth is properly evaluated.  Clearly 
this approach is severely limited in that we will need many 
function evaluations to assess a solution instead of a single 
evaluation as is commonly used for assessing performance.  For 
problems where function evaluations are expensive, the costs of 
this approach will probably outweigh any benefits. 

2. Tests on a Simulated Model 
We might be able to get around all of the expensive function 
evaluations if estimates of the objective function could be used.  
For instance, the use of a meta-model would allow for extensive 
simulations which in turn might make for a more efficient 
approach.  This alternative approach would of course be limited 
by the cost and accuracy of the simulations. 

3. Credit Assignment by Historical Linkage 
If we don’t want to use simulations or deal with the computational 
burden of “multiple trials”, we could simply try to work around 
our inability to measure the current worth of search operators.  By 
assuming that past performance of search operators can inform us 
about current performance, it is possible to ignore the problem of 
assigning credit to current solutions while still providing measures 
for adaptive purposes.  This is referred to as Credit Assignment 
by Historical Linkage and is investigated in detail in this research. 

1.1.3 Outline of Research 
This research looks at how one might assign credit to adaptable 
EA operators using the Search Bias assumption.  In particular, we 
propose a method for assigning credit based on historical linkage 
of solutions for the purposes of adaptation of search operator 
probabilities.   
In Section 2 a description of historical linkage is provided using a 
new label Event and a basic measurement concept, the Event 
Takeover Value.  Several important credit assignment difficulties 
are also presented in this Section.  With the credit assignment tool 
defined, Section 3 discusses the importance of performance 
interpretation in defining a competitive adaptive process.  The 
Experimental Setup is given in Section 4 and Experimental results 
from several different adaptive and non-adaptive methods are 
presented in Section 5.  Discussion and Conclusions finish off the 
paper in Sections 6 and 7.   

2. CREDIT ASSIGNMENT BY 
HISTORICAL LINKAGE 
2.1 Events Defined   
The term Event simply refers to an instance of reproduction.  That 
is, an Event is a specific instance of using a single search operator 
to generate an offspring solution.  It is in essence no different than 
a solution except that it retains information about solutions that it 
is historically connected to (parents, grandparents, etc).  When a 
new Event occurs, genealogical information is passed from parent 
Events to the offspring.  Once a solution dies, its existence only 
consists of the historical information contained in its offspring. 
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Figure 1:  Event X is shown here with the past Events which 
helped create X and future Events that X will help create.  
Events are shown as circles, arrows going into circles indicate 
parent Events and arrows coming out of circles indicate 
offspring Events. 
 
Given a particular Event X such as the center point in Figure 1, 
there will be past Events which are to some extent responsible for 
X’s properties and there will be future Events that X will 
influence.  In this work, the value of an Event will be propagated 
backward to historically linked Events.   

2.2 Event Takeover Value   
Event Takeover is a term used to define how the value of a past 
Event is derived from current solutions in the population.  To 
start, the Event Takeover Value or ETV for an Event is simply 
defined as the total value of current solutions that are historically 
linked to the Event.   
The value of each current solution will be some type of 
performance measurement.  This is the performance measurement 
discussed in the Introduction and is one of the key components for 
enabling adaptation to occur.  In this work, the performance 
measurement is simply a binary variable indicating whether or not 
a solution has survived the last selection cycle.  Other 
measurement options are listed in [12].  Here we will define all 
“current” solutions to have already survived the most recent 
selection cycle so that each has a credit value of 1.  As an 
example of our basic ETV measurement, if the Events on the far 
right of Figure 1 were members of the current population then X 
would be assigned an ETV of 4 (a credit of 1 for each current 
solution that X is connected to).   
The rationale for using ETV is that the larger number of surviving 
Events historically connected to X, the more important the search 
bias associated with X.  This exemplifies credit assignment by 
historical linkage and follows our principles laid out in the Search 
Bias Assumption.  Starting with our basic ETV measurement, 
several important considerations and particular challenges for 
implementation are described below. 

2.3 Information Loss from Historical Bias   
To iterate from above, an Event’s value is derived solely from its 
connection to currently surviving solutions.  This means that as 
the current set of Events/Offspring are selectively retained or 
removed from the next generation, substantial information loss 
will take place.  This is because each destroyed Event holds the 
historical data on linkages to past Events.  If we allow the system 

to evolve without observing it, large amounts of information will 
be lost because winner’s of the most recent selection processes 
will write the history books so to speak.  This type of information 
loss will be referred to as Historical Bias.   Historical Bias is a 
critical impediment for learning genetic linkage (gene 
genealogies) in the field of Population Genetics.  This 
impediment exists in nature because we are unable to observe 
biological evolution as it occurs and instead can only observe the 
end result of evolution. 
Our ability to continually monitor evolution in our computer 
experiments will allow us to reduce noise from Historical Bias.  
Evaluation of historical Events will occur after every selection 
process (ie every generation) and only the most favorable 
evaluation of a historical Event will be remembered as its ETV 
value.  This is graphically demonstrated in Figure 2. 
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Figure 2:  This graph shows the changing ETV value of an 
Event from its creation to its partial takeover of the 
population and finally its demise.  The maximum value 8 is 
remembered as the ETV of the Event.  As an example of 
Historical Bias, imagine if we only observed the ETV of this 
Event at generation 7.  Measuring at only this generation 
would result in this Event being highly undervalued. 
 

2.4 Genetic Dominance   
In the case where an operator uses two parents, the historical 
information held by each new Event is double the size of the 
information held by the parents.4  This doubling is 
computationally burdensome and makes data manipulation more 
difficult.  It is also possible that an offspring is more similar to 
one of the two parents so that information might only need to be 
retained from a single parent.  For these reasons, we looked for 
ways in which the historical information of only one of the 
parents might be retained.   
Several methods for selecting the dominant parent were attempted 
including random selection, phenotypic similarity, and genotypic 
similarity between parents and offspring.  In preliminary studies 
(results not shown), random selection resulted in mediocre EA 
performance as well as poor differentiation between operator 
probabilities.  Selecting the parent that was most genetically 
similar (by Normalized Euclidean Distance) worked well while 

                                                                 
4 If one considers the arrows in Figure 1 to indicate transfer of 

historical information then it is easy to see how the information 
volume doubles with every generation. 

Past  Current  Future

X
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selecting the parent that was genetically dissimilar performed 
even more poorly than random selection.  As a result, only 
historical data from the genetically most similar parent is retained 
when an offspring is created.5  Phenotypic similarity appeared to 
provide similar results to genetic similarity however this wasn’t 
explored in great detail.     

2.5 Genetic Hitchhiking 
In Figure 3, Events A, B and C will be given the same ETV due to 
the historical connection of these Events.  However, it is not clear 
whether the success of the current population should be attributed 
to Events A or B since they are connected to the current 
population by only a single offspring (B and C, resp.).  Obtaining 
credit based on historical linkage through a single offspring is 
referred to as Genetic Hitchhiking. 

 
Figure 3:  Hitchhiking is shown here where credit will be 
passed back to Events A and B because they are historically 
linked to C.   
 
This phenomenon actually happens quite often.  If an important 
Event occurs, it will likely spread throughout most of the 
population.  However, all Events prior to the important Event will 
also spread since they are historically linked.  Care must be taken 
then to make sure an Event has spread due to its own importance 
and not the importance of some later Event.  To account for this, 
all credit is removed from an Event if it is linked to the current 
population by only a single future Event.     

2.6 Credit Assignment Uncertainty   
The ability to predict future states of a stochastic system is 
severely limited when predicting over even small time spans.  
Given that each discrete state change in a stochastic system is 
controlled by a random variable that can take several possible 
values, predictability decreases exponentially by the number of 
random variable instantiations that link two states (e.g. Events).   
So far in our credit assignment description, we have assumed that 
the current performance of a solution can be completely and 
equally attributed to all historically linked events.  However, 
since each Event is separated from the next Event by at least one 
random process, the confidence in our assignment of credit should 
quickly degrade as we look to assign credit to more distantly 
connected Events.6 

                                                                 
5 The very fact that genetic similarity was important indicates that 

including historical information from both parents is not 
necessarily the best approach.  Including both parents might 
introduce random error due to the disproportionate importance 
of one parent over another in the creation of a new Offspring.   

6 The number of possible states available to the random variable 
will affect how quickly predictability is lost with time.  
Therefore it is not necessarily valid to assume that all operators 

In this work, a decay schedule was used so that the proportion of 
credit assigned from a current solution to a historically linked 
Event is calculated as β x where x is the number of search steps (or 
Events) separating the current solution from the historical Event.  
β is referred to as the Decay Parameter and in this work, β = 0.5.  
This is a simple attempt to account for our growing uncertainty of 
the importance of historical linkage as that linkage becomes more 
distant.  This schedule quickly reduces credit assigned across 
large distances so that a distance of x = 6 means that less than 
0.02 of the credit of a solution will be assigned to that Event.  For 
this reason (and to limit the amount of information stored in each 
Event), information passed from parent to offspring only included 
the last six generations (x < 6) of genealogical information. 

2.7 Summary  
The final ETV calculation is actually the result of many different 
calculation steps as just described.  The following is a recap of 
these steps which provided us with our final ETV value that is 
used for adaptation purposes in this research. 
The current population assigns credit back to historically linked 
events (credit assignment by historical linkage).  Credit is only 
assigned back to dominant parent Events as defined by genotypic 
similarity (ie Genetic Dominance).  The credit itself becomes 
exponentially smaller as it passes back to older historical events 
(ie Credit Assignment Uncertainty).  After all credit has been 
passed back, any events with only a single link tying it to the 
current population are removed from consideration (ie Genetic 
Hitchhiking).   Finally, the dynamic value of Event credit is 
continually observed and only the most favorable assessment of 
an Event is retained as the final measurement of the Event’s value 
(ie Historical Bias).   The application of these steps is highlighted 
in the Pseudo Code below. 
Pseudo Code for Credit Assignment by Historical Linkage (for 
running a single generation of the adaptive EA) 

• Reproduction (ie Event Creation) of all offspring 
o A unique Event ID is assigned to each offspring. 
o Offspring takes information on historical linkage (Event ID info) 

from genetically dominant parent (and only information from 
the last six historical Events is kept). 

• Selection (Select next generation from Parents + Offspring) 

• Credit Assignment Method 
o Assign Credit from each current solution back to historically 

linked Events. 
 Credit exponentially decays based on historical separation 
of Event from current solution. 

 Each time credit is added to an Event, remember the 
offspring Event that provided a link to the current solution. 

o If all the credit assigned to an Event came via a single 
offspring Event then Event credit = 0. 

o Check each Event for its existence in the Event Archive 
 If Event is new then add to Archive (Add Event ID# and 
value).  Otherwise, determine if the new Event value is 
larger than the Archived value and retain the larger value.  

                                                                                                           
will lose predictability at equal rates.  For simplicity, this was 
neglected in this work. 

A B C 
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2.8 Similar Research 
Although all aspects of ETV were derived independently, the use 
of historical linkage for assigning credit and credit assignment 
uncertainty were proposed (using different labels) by Davis [2] 
and also used by [1], [7].  In the next section, the process by 
which ETV is used for adaptation is discussed. 

3. STATISTICAL INTERPRETATION OF 
PERFORMANCE  
Before we use our ETV measurement for adaptive purposes, it is 
helpful to consider how we want to interpret the ETV 
measurements.  In this work, statistical methods are used to 
determine the extent that measurements are outliers which in turn 
is used as a final measure for adaptation.  The purpose of focusing 
on outliers is to assess an operator’s potential to create solutions 
of extraordinary reproductive value instead of looking at the 
average reproductive value.   
Figure 4 is provided below to illustrate how the use of outliers can 
influence the interpretation of an operator’s performance.  
Probability distribution functions for data from two hypothetical 
search operators is given with one intending to represent an 
explorative operator (▲) and one an exploitive operator (●).  
Explorative search is expected to overwhelmingly produce Events 
with low ETV values yet have the potential to occasionally create 
Events that eventually lead to highly competitive offspring (ie 
high ETV value) in new portions of the solution space.  
Exploitive search on the other hand is expected to create Events 
that consistently are able to spread to some limited degree but 
rarely lead to “groundbreaking” Events. 

0

0.2

0.4

0.6

0.8

-4 -2 0 2 4

 
Figure 4: Hypothetical probability distribution functions for 
offspring (ie Event) ETV values from an explorative search 

operator (▲) and an exploitative search operator (●). 
 
If adaptation is based on mean ETV measurements, we expect an 
adaptive method to prefer searches characterized by the (●) 
distribution in the Figure above.  However, an operator’s potential 
to lead to high fitness offspring in future generations 
(Optimization by Search Bias) is unlikely to be indicated by its 
average ETV.  Instead we should promote those search operators 
that are capable of occasionally making greater leaps forward 
such as the (▲) distribution.  We believe that the selection of 
outliers for adaptation can at the very least allow search 
mechanisms characterized by the (▲) distribution to compete 
with search mechanisms characterized by the (●) distribution. 

In this work, the interpretation of performance by statistical 
outlier detection is labeled as I:3 (see Table 3) while using the 
average of performance measures is labeled as I:1.   
For more details on statistical outlier determination and the 
associated calculation steps, see [12].  In the next section, the 
primary attributes of the EA design used for experimentation 
purposes is described.  Other aspects of the experimental 
conditions are also discussed.  

3.1 Adaptation Cycle Implementation 
Each adaptive method involves the adaptation of all search 
operator probabilities with probability values updated every 20 
generations.  Also, a minimum probability of 0.02 is imposed to 
ensure a small number of measurements continue to be taken for 
the worst operators.  Probability values are updated so that the 
new value is 50% from the previous value and 50% is from the 
most current adaptive cycle.  All probability values are initialized 
at equal values unless otherwise stated.   
Pseudo Code for Adaptation 

• Every 20 generations, evaluate stored values (e.g. ETV) in 
Archive based on statistical outlier detection (I:3) or average 
value (I:1) for final performance measure of search operators.   

• Normalize search operator performance measures so that they 
sum to one.  Search operator probability is modified so that half of 
it is taken from previous probability value and half from the 
normalized performance measure.  

• If Operator probability < 0.02 then probability = 0.02 

• Purge Archive of ETV measurements 

4. EXPERIMENTAL SETUP 
4.1 Search Operators 

Table 1: The 10 search operators used are listed here 
including name, reference for description, and parameter 
settings if different from reference.  Operators 7 and 8 are 

defined below instead of referenced. 
ID Name Parameter Settings Ref. 

1 Wright’s Heuristic Crossover r = 0.57 [4] 

2 Simple Crossover  — [4] 

3 Extended Line Crossover α=0.38 [4] 

4 Uniform Crossover — [4] 

5 BLX- α α=0.2 [4] 

6 Differential Operator  [11] 

7 Swap — — 

8 Raise A = 0.01 — 

9 Creep A = 0.0019 [9] 

10 Single Point Random Mutation — [4] 

                                                                 
7 r is set to a static value instead of being a random variable as in 

the original description 
8 α is set to a static value instead of being a random variable as in 

the original description 
9 Only a single gene is randomly selected instead of performing 

operation on all genes.   
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Ten search operators were used in all adaptive EA designs as 
listed in Table 1.  Two of the operators were original creations 
and are described below. 

Swap: Select the most dissimilar gene between two parents.  
Transfer all genes from the better fit parent to the offspring except 
for the previously selected gene which is taken from the less fit 
parent.   

Raise:  This is similar to Creep except all genes are shifted 
instead of a single gene.   The size of the shift is proportional to 
the size of each gene’s range with A = 0.01. 

4.2 Core EA Design 
A real coded EA was used with population size of 30, population 
solution uniqueness enforced, and binary tournament selection 
with replacement for both mating (parent) and culling (parent + 
offspring).  Reproduction consisted of the probabilistic use of a 
single search operator with search operator probabilities 
normalized to one.  Populations were randomly initialized and the 
stopping criteria was set as a maximum number of generations.  
All test functions were transformed (if necessary) to be 
maximization problems with optima at 0.  The global optima was 
assumed to be reached for objective function values > -1E-15. 

4.3 Test Problems 
Experiments were conducted on 10 test problems which are listed 
in Table 2. All of the test problems used are defined over 
continuous variable domains with simple bounded constraints on 
the variables (ie convex search space).  The test problems are also 
characterized as being static with a single objective function.   

Table 2:  Test Problems are listed with identification number, 
common name, and number of dimensions (variables).  More 

information on each test problem can also be found in the 
stated reference.   

ID Name Variables Referenc
e 

F1 Shekel 's Foxholes 2 [3] 
F2 Rastrigin 20 [8] 
F3 Schwefel 10 [8] 
F4 Griewank 10 [8] 
F5 Bohachevsky 2 [5] 
F6 Watson's 5 [5] 
F7 Colville's 4 [5] 
F8 System of linear equations 10 [5] 
F9 Ackley's  25 [5] 
F10 Neumaier's #2 4 [6] 

4.4 Diversity Control 
Single point Mutation (Operator 10) was used for maintaining 
population diversity.  The probability of using operator 10 was set 
using a deterministic approach proposed by Pham [10] where the 
probability is exponentially related to the distance d  between 
parents A and B.  δ  is a parameter that can be tuned and in this 
work, δ = 0.001 for all test problems.   

δ
d

o
MutMut PP 5.0+=  (1) 
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In Equation 2, a solution is represented as a vector of search 
variables x with the ith variable having upper and lower bounds, 
xi,max and xi,min.  

4.5 Suite of Algorithms Tested 
Table 3:  Names and adaptive characteristics of EA designs. 
Name Measurement 

Interpretation 
Section 3 

Diversity 
Control Section 
4.4 

Credit 
Assignment 
(direct/ETV) 

EA1 I:1 No direct 

EA2 I:3 No direct 

EA3 I:1 Yes direct  

EA4 I:3 Yes direct 

EA5 I:1 No ETV 

EA6 I:3 No ETV 

EA7 I:1 Yes ETV 

EA8 I:3 Yes ETV 

SGA N/A Yes N/A 

 
The nine EA designs tested in this work are listed in Table 3.  In 
addition to the adaptive EA designs considered (EA1 through 
EA8) we also included a simple GA (SGA) which uses only two 
operators: Operator 4 with probability of 0.98 and Operator 10 
with probability set by Diversity Control (P0 = 0.02).   
Also, an important point must be mentioned regarding the use of 
I:3.  When attempting to apply an outlier detection method such 
as I:3, it is important to recognize that not all measurements are 
capable of producing outliers.  For instance, the binary 
performance measurement used throughout this work will not 
produce outlier values when coupled with direct credit 
assignment.  As a result, adaptation won’t occur for each of the 
adaptive methods using I:3 with direct credit assignment.  This 
applies to EA designs EA2 and EA4. 

5. EXPERIMENTAL RESULTS 
5.1 Assessing EA performance 
The performance of a single run of an EA is typically given as the 
best solution fitness found.  Since an EA is a stochastic search 
process, we must conduct several runs and then extract useful 
information from the resulting sample of performance data.  It is 
common practice to compare different EA designs based on the 
sample’s average performance and also based on the overall best 
solution found in a sample.  In our results, we decided instead to 
use a statistical test which measures our confidence that a given 
EA design is superior to its competitors. 
With each EA design being executed 10 times on a test problem, 
the data set (of EA performances) can be treated as being sampled 
from a distribution which in turn can be compared with other EA 
design data sets.  Most of the data sets did not fit standard 
parametric (e.g. z test) distributions as indicated by probability 
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plots and so the Mann-Whitney U Test10 was used, which doesn’t 
assume a particular distribution.   

 
Figure 5:  Boxplot of Mean performance measures for each 

EA design over all 10 test functions.   

 
Figure 6:  Boxplot of Final performance measures for each 

EA design over all 10 test functions.   
 
Using a one-sided Mann-Whitney U Test, confidence levels (1 - p 
value) are calculated to indicate whether one sample is greater 
than another sample.  The average confidence level is then used 
as our measure of EA performance and indicates our expectation 
that a particular EA design is better than the other competing 
designs.   

5.1.1 Stopping Criteria 
It is also common for experimental results to state performance 
for a single stopping criteria.  If we want to make general 
statements about the usefulness of an EA then the selection of a 
single stopping point will clearly introduce bias into the 
experimental results as well as the associated conclusions.  In an 
attempt to minimize this bias, stopping points were considered at 
every 100 generations with a final stopping point at 2000 
generations.  From the 20 stopping points, two important pieces of 
information have been extracted and are presented in this section. 

First, the average performance over all stopping points (Mean) 
for each EA design is presented in Figure 5.  This allows us to see 
if the EA performed well consistently throughout execution.  Our 

                                                                 
10 Other non-parametric tests are available and would have also 

been valid. 

second measure is simply the performance measure at the final 
stopping point (Final) and is presented in Figure 6.  This provides 
us with some indication of long-term performance.   

5.2 Factorial Analysis of Adaptive 
Components 
A factorial analysis was conducted to determine the main effects 
and first level interactions between several design components 
associated with the adaptive systems studied. The parameters 
Credit Assignment (I:1/I:3), Diversity Control (inactive/active), 
and Measurement Interpretation (Direct Credit 
Assignment/Historical Linkage by ETV) were coded using the 
standard convention (-1/1).  The output measures used for this 
analysis were the Mean (Table 4) and Final (Table 5) 
performance measures.  The experimental design was blocked for 
test problem.   

Table 4: Factorial analysis for Mean performance 

Factor Effect t Stat P-value 
I:3 -5.81 -2.67 9.41E-03 

Div 1.99 0.91 3.65E-01 

ETV 15.86 7.28 3.18E-10 

I:3*Div 6.94 3.19 2.13E-03 

I:3*ETV 10.89 5.00 3.87E-06 

Div*ETV -5.65 -2.59 1.15E-02 
 

Table 5:  Factorial analysis for Final performance 

Factor Effect t Stat P-value 
I:3 -5.52 -2.66656 0.009431 

Div -0.79 -0.38373 0.702296 

ETV 17.92 8.652576 8.36E-13 

I:3*Div 6.04 2.915375 0.004715 

I:3*ETV 11.66 5.62747 3.19E-07 

Div*ETV -6.57 -3.17363 0.002204 
 

6. DISCUSSION 
6.1 ETV Measurements 
No single EA design was able to outperform all others for every 
test function and stopping criteria considered however there were 
some obvious trends in the experimental results provided in the 
last Section.  Clearly the most important effect on performance 
was the use of credit assignment by Historical Linkage which 
proved to have a strong advantage over direct credit assignment 
(Factor “ETV” in Table 4 and Table 5).  We can also see that the 
performance improvements from using Historical Linkage were 
strong and fairly consistent, as indicated by the box plots for EA5, 
EA6, EA7, and EA8 in Figure 5 and Figure 6. 

6.2 ETV + Outlier Detection 
Almost as important however is the combined use of Historical 
Linkage credit assignment with the statistical selection of outlier 
ETV values (Factor “I:3*ETV” in Table 4 and Table 5).   
The ETV measurement was designed so that it could “see” over 
several search steps, placing value on a solution based on the 
ability of its lineage to survive.  When dealing with any EA with 
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fixed, finite population size, it is expected that most lineages 
perish to make room for a select few that flourish.  In order to 
select operators that tend to produce those infrequent flourishing 
lineages, it is necessary to pay special attention to those 
infrequent occurrences instead of paying attention to averages.  
The statistical outlier detection of I:3 fulfills this need by 
interpreting measurement worth based on the degree in which it is 
an outlier.  The combination of I:3 with ETV performs very 
nicely as observed in the results of EA6 and EA8 (Figure 5 and 
Figure 6).  Without the I:3 statistical interpretation of ETV, the 
ETV credit assignment approach has significantly less impressive 
performance as seen in EA5 and EA7 (Figure 5 and Figure 6).     

6.3 Outlier Detection 
It is interesting to note that I:3 was found on average to have a 
negative impact on performance.  As previously mentioned, I:3 
essentially halts adaptation when used with direct credit 
assignment and a low resolution performance measure.  This 
occurs for both EA2 and EA4 and the poor performance of these 
two EA designs is likely to be the primary reason why a negative 
Effect is observed for I:3.  Other research using I:3 with higher 
resolution performance measurements has indicated that in 
situations where measurement outliers will occur, that I:3 actually 
improves performance of the EA [12]. 

6.4 Limits to the utility of Search Bias  
Although adaptive methods using ETV were often the best 
performing EA designs, it should be noted that very little credit is 
assigned from solutions to Events separated by more than a few 
search steps (a result of the decay parameter described in Section 
2.6).  Since we are dealing with stochastic systems, we know that 
predictability is lost after a short number of steps and so the 
degree to which the Search Bias Assumption can be exploited is 
also expected to be limited as we tried to account for by using the 
decay parameter.   
Our results suggest that use of the Search Bias Assumption (via 
Credit Assignment by Historical Linkage) can provide useful 
information for adaptation purposes however its limits need to be 
recognized.  Exploring the nature of these limitations in more 
detail seems to be a worthwhile goal both in creating more 
competitive EA and in understanding evolutionary processes.   

6.5 ETV Implementation 
Under the somewhat limited range of parameter combinations 
tested (results not shown), our preliminary testing suggested that 
Genetic Dominance and Historical Bias were the two most 
important factors in improving performance over the raw ETV 
measurement.  Hitchhiking and Credit Assignment Uncertainty 
were not as important to EA performance and yet the latter was 
hypothesized to play a very important role.  The reason for their 
marginal influence is not immediately obvious and will be looked 
at in more detail in future research. 

7. CONCLUSIONS 
The process by which we assign reproductive value to solutions 
(credit assignment) can play an important role in adaptive 
processes.  A philosophical framework for optimization based on 
search bias was proposed and shown to be effective in adaptation 
of search operator probabilities when credit for a solution’s fitness 
was assigned through historical linkage.  When combined with 
historical linkage, the statistical selection of outliers for 

interpreting performance was also shown to play an important 
positive role in adaptation.  
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