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ABSTRACT
This paper extends previous work showing how fluctuat-
ing crosstalk in a deterministic fitness function introduces
noise into genetic algorithms. In that work, we modeled
fluctuating crosstalk or nonlinear interactions among build-
ing blocks via higher-order Walsh coefficients. The fluctu-
ating crosstalk behaved like exogenous noise and could be
handled by increasing the population size and run duration.
This behavior held until the strength of the crosstalk far
exceeded the underlying fitness variance by a certain fac-
tor empirically observed. This paper extends that work
by considering fluctuating crosstalk effects on genetic al-
gorithm scalability using smaller-ordered Walsh coefficients
on two extremes of building block scaling: uniformly-scaled
and exponentially-scaled building blocks. Uniformly-scaled
building blocks prove to be more sensitive to fluctuating
crosstalk than do exponentially-scaled building blocks in
terms of function evaluations and run duration but less sen-
sitive to population sizing for large building-block interac-
tions. Our results also have implications for the relative per-
formance of building-block-wise mutation over crossover.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms, Performance

Keywords
Genetic algorithm, fluctuating crosstalk, deterministic noise,
scalability, problem difficulty
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1. INTRODUCTION
Recent work [1] presented an unbiased comparison be-

tween the required computational costs of mutation and
crossover on a class of deterministic and stochastic, addi-
tively separable problems. Both operators were assumed to
possess knowledge of the building blocks (BBs) to operate
most efficiently. For noisy problems, the genetic algorithm
(GA) using only selection and crossover (a selectorecombi-

native GA) came out on top but the situation flipped for
deterministic problems. This dependence on the presence
or absence of exogenous noise prompted the question as to
how these operators would perform in the presence or ab-
sence of fluctuating crosstalk.

Goldberg [2] conjectured that crosstalk or nonlinear in-
teractions of BBs creates similar effects on GA scalability
as external noise. This comparison suggested that crosstalk
could be handled in the same ways we handle external noise:
increase the population size and lengthen the run duration.
A validation of this claim was shown in [3] in which fluctuat-
ing crosstalk was added to a deterministic fitness function.
Required population sizes and convergence times were accu-
rately modeled by known facetwise models of GA scalabil-
ity in the presence of external noise. Fluctuating crosstalk
was modeled using a highest-order Walsh coefficient so that
the parity of a solution, represented as a binary chromo-
some, determined whether a positive or negative constant
was added to its fitness already received from the underly-
ing deterministic fitness function. Taking the parity of the
entire chromosome represented the case where every build-
ing block interacted with every other building block. Results
indicated that the noisy scalability models accurately pre-
dicted fluctuating crosstalk effects on scalability as long as
the strength of the crosstalk was less than the underlying fit-
ness function variance by a certain factor. This factor was
empirically observed and a brief intuition behind its deriva-
tion was given.

The existence of deterministic noise, and our ability to
model its effects on GA scalability, leads us now to con-
sider how sensitive various fitness functions are to varying
orders of fluctuating crosstalk. The purpose of this paper
is to consider the effects of smaller orders of fluctuating
crosstalk on two bounding test cases of problem substruc-
ture: uniformly-scaled building blocks and exponentially-
scaled building blocks.
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The rest of the paper is organized as follows. We first
review the literature on epistasis, or nonlinear interactions
among bits. We then briefly explain the notion of BBs and
depict fluctuating crosstalk in functional form. This view
answers the question as to how fluctuating crosstalk effects
can be compared to external noise effects. We then present
the use of Walsh coefficients to model the crosstalk. Section
4 begins with a review of earlier results showing how fluc-
tuating crosstalk effects on GA scalability can be modeled
by facetwise models of exogenous noise. It then continues
with uniformly-scaled and exponentialy scaled BBs in the
presence of fluctuating crosstalk. This paper concludes with
a discussion of future work and some implications of our
results.

2. LITERATURE REVIEW
Crosstalk, also called inter-BB epistasis, refers to those

nonlinear interactions of BBs in a deterministic fitness func-
tion. Crosstalk is a specific form of epistasis, or nonlin-
ear interactions of bits or sets of bits. Epistasis has long
been known to be a source of difficulty for GAs. Several
approaches have tried to either quantitatively measure it,
identify it and handle it directly, or to sidestep the problem
using another problem representation.

The goal in quantitatively measuring epistasis is to use a
metric that directly corresponds to the problem hardness.
Davidor [4] reasoned that the amount of epistasis deter-
mines problem hardness, but Naudts [5] later observed that
the distribution and structure of epistasis also contribute to
problem hardness. Davidor’s a priori measurements of prob-
lem difficulty and random sampling were shown by Naudts
to be sensitive to nonlinear scalings, and Naudts’ own site-
wise optimization measure fails to reliably identify problem
difficulty. Heckendorn [6] derived local bitwise epistasis mea-
sures that correlate well to problem difficulty but only for
certain polynomial functions.

Ideally, epistasis could be pinpointed and directly han-
dled. Heckendorn [6] proposes techniques of argument cen-
tering and parity truncation to reduce the epistasis for his
class of polynomial functions on which his bitwise measures
identify. Mühlenbein [7] created a a probabilistic model
building GA (PMBGA) [8] with multivariate interactions he
calls the Factorized Distribution Algorithm. However, this
method guarantees optimal solutions for particular gene in-
teractions [9] and requires prior information generally not
available.

Finally, sidestepping the epistasis has been sought by chang-
ing the problem representation. Both direct approaches[10]
and indirect approaches [11] have drawbacks. Direct ap-
proaches require clever manipulation, and indirect approaches
like Barbulescu’s Gray Code “shifting” technique, require
further clarifying of the link between shifting and how it
helps reduce to epistasis.

Goldberg [2] proposed an approach that treats crosstalk or
inter-BB epistasis like deception, scaling, or external noise
depending on the type of the crosstalk. For fluctuating
crosstalk, he suggested using facetwise models of population
sizing and run duration in the presence of external noise.
This approach was validated by [3], upon which this paper
extends by considering the effects of varying orders of de-
terministic noise over various fitness problems. But first, a
few preliminaries will be helpful.

3. PRELIMINARIES
Before delving into how fluctuating crosstalk is one facet

of problem difficulty and how we model it, we first consider
in more detail what GAs are actually processing. We’ve
already alluded to the notion of building blocks (BBs) but
it would be good to define them more concretely. After
that, we discuss how nonlinear interactions of BBs map to
problem difficulty.

3.1 GAs Process Minimal Sequentially
Superior BBs of a Global Solution

We assume that the GA is optimizing some decomposable
or nearly-decomposable fitness function. In other words,
there are sets of decision variables that are related to one
another. Finding the global solution requires the GA to find
which variables are related to another and what values those
encoded variables should take on. As the GA processes en-
tire chromosomes, certain bit patterns emerge because cer-
tain bits begin to converge as they become more abundant
in the most promising solutions found so far. These patterns
might change over time depending on the nature of the prob-
lem. It is these patterns that we call building blocks because
they are substrings of the optimal solution. Since these BBs
correspond to the encoded bits of related decision variables,
they prove superior to other permutations over the same bit
positions in each generation. They are minimal because the
competent GA will first find the shorter set of bits common
to superior individuals. Over time, longer bit patterns will
be found if they contribute more to fitness than any subset
did. The goal of the GA then is to find these BBs, and their
correct target bits, that when concatenated with bits from
other BBs, form an optimal solution. Hence, GAs process
what Goldberg [2] calls minimal sequentially superior BBs

of a global solution, and the interested reader should consult
that work for more detail. It is this longer description we
refer to when we simply say BBs.

3.2 Crosstalk: Nonlinear Interactions of BBs
Let us suppose that we have a problem as described previ-

ously, that is, an additively separable, deterministic, fitness
function we call f and define as:

f(x) = f1(x1x2x3) + f2(x4x5) + f3(x6x7)

For our discussion here, we use Goldberg’s approach [2] as a
foundation. Assume that x is a binary encoding of all deci-
sion variables in some specified order and mapping, and that
each xi represents the ith bit of the encoding. This example
presupposes that bits x1, x2, and x3 are the encoded bits of
one or more decision variables that are related to each other
and to no other decision variables. The optimal set of bit
values to this subfunction, as well as for f2 and f3, must
be found to produce a global solution. Hence, this set of
bits define one of three BBs. In general, BBs need not have
bits directly adjacent to one another, and are not known
in advance. However, several Probabilistic Model Building
GAs [12] are known to identify BBs and find their target
bits values for bounded lengths and structure.

So far, each BB is independent of the other BBs. We now
modify f to account for crosstalk, or inter-BB epistasis by
introducing a nonlinear BB interaction through f4:

f(x) = f1(x1x2x3) + f2(x4x5) + f3(x6x7) + f4(x1x2x3x4x5)
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f4 adds some marginal fitness to the overall fitness based
on the the first and second BBs. We should be careful to
point out that crosstalk doesn’t require interactions of entire
BBs as in this example but does permit any number of bits
from two or more BBs to interact. We also assume that
inclusion of f4 does not change the BB target bits. Goldberg
presented a three-way categorization of crosstalk depending
on the behavior of the crosstalk function. If f4 produces a
positive value only when bits x1 to x5 have reached their
target bits, and zero for all other inputs, then it is called
reinforcing crosstalk. If f4 produces a negative value only
when bits x1 to x5 have reached their target bits, and zero
for all other inputs, then it is called punishing crosstalk.
Finally, if f4 gives a positive value for one parity over any
input bits and a negative value for the other parity, it is
called fluctuating crosstalk. We note that crosstalk can be
more general than we describe here if we permit interactions
of partial BBs, but the effects on BB processing we will
discuss will still hold true. Also, the choice to use parity
will become more clear in section 3.4 when we discuss how
we principally model fluctuating crosstalk. In that section,
it will also be apparent why fluctuating crosstalk can be
quite common in fitness functions.

3.3 Crosstalk Maps to Problem Difficulty
Now that we have defined both BBs and crosstalk, we

can understand what makes a problem hard for a GA and
how each form of crosstalk relates to one facet of problem
difficulty. As before, this discussion follows the arguments
given by Goldberg [2].

Since the GA processes BBs, intuitively, there are only
three sources of problem difficulty: intra-BB difficulty, inter-
BB difficulty, and extra-BB difficulty. Goldberg showed that
intra-BB difficulty corresponds to deceptive problems where
the GA is led to a sub-optimal configuration of bits over the
BB. One such example is the trap function, which we use in
our experiments and present at a later point. Inter-BB dif-
ficulty corresponds to nonuniform scaling of the BBs which
requires enough diversity of bits to be present when the GA
gets around to solving the least fitness-contributing BBs.
We will see an example of this when discussing exponen-
tially scaled BBs. Finally, extra-BB difficulty corresponds
to exogenous noise where we treat the noise coming as a
single packet and add it to the entire chromosome and not
any particular BB.

Perhaps even more interesting than this intuitive division
is where crosstalk comes into the picture. Goldberg showed
that reinforcing crosstalk can be compared to inter-BB dif-
ficulty or scaling, and that punishing crosstalk compares
to scaling or deception depending on the strength of the
crosstalk. The interested reader may consult the aforemen-
tioned work for more detail. We now offer a reasonable
explanation of how fluctuating crosstalk maps to extra-BB
difficulty or exogenous noise.

It seems unlikely that if a single bit change can bring
about such a drastic fitness change (since a parity change
results in a sign change of the constant that is added), the
GA will converge at all. Yet, if the GA starts with a ran-
domized population, most BBs will not have converged to
their target bits in the early generations. Roughly half of
the individuals in the population will have even parity and
the other half will take on odd parity. Half the individuals
will be penalized by some constant w while the other half

will be rewarded by w. This results in a net effect of zero on
overall fitness due to the crosstalk. The other key to note
is that the population must begin to converge eventually,
and once that happens, the fluctuating crosstalk behaves as
either reinforcing crosstalk or punishing crosstalk. At this
point, we require a GA that can reliably solve problems with
punishing or reinforcing crosstalk.

3.4 Principled Modeling of Fluctuating
Crosstalk through Walsh Coefficients

The work of Bethke [13] permits us to model any conceiv-
able function, and in our case a fluctuating crosstalk sub-
function, over a finite domain of input bits using the Walsh
basis. This introduction will be concise and gloss over many
details and implications. The goal here is to show how we
model fluctuating crosstalk precisely.

For our discussion, we take the intuitive approach intro-
duced by Goldberg [14]. Let x = xlxl−1 . . . x2x1 be the l-bit
string representing the coding of the decision variables for an
arbitrary individual. We now introduce the auxiliary string
positions yi that are mapped to from the bitwise string po-
sitions xi for i = 1, . . . , l by:

yi =



1, if xi = 0
−1, if xi = 1 .

This definition allows the following multiplication to act
as an exclusive or operator (XOR). The jth Walsh function
ψj(y) where 0 ≤ j ≤ 2l − 1 is calculated as:

ψj(y) =

l
Y

i=1

yji

i , yi ∈ {−1, 1}

where ji is the ith bit of the binary representation of j and
y is understood to be the transformed x using the auxiliary
mapping.

For example, for j = 25 = 11001 in binary, ψ25(-1 -1 1
1 -1)= y1y2y5 = (−1)(−1)(−1) = −1. Said another way,
ψj(x) is a partial-parity function that returns a −1 or a
+1 as the number of ones in the argument that match the
corresponding bits in j is odd or even. Hence, ψ31(01101) =
ψ31(00001) = −1 since 31 in binary is 11111 and the parity
of all bits in the argument are considered.

In the canonical basis, fitness values are obtained by refer-
encing a table of bit strings and their objective fitness values.
Bethke [13] showed that any fitness function f(x) over a fi-
nite domain can be rewritten as a partial signed sum of the
Walsh coefficients, given by

f(x) =
2

l
−1
X

j=0

wjψj(x) .

Each Walsh coefficient wj is real-valued but its exact value is
not derived here. Note that each subfunction of the overall
fitness function can have multiple, nonzero, Walsh coeffi-
cients associated with it. The possible set of Walsh coeffi-
cients are dictated by which bit positions correspond to re-
lated variables. In our running example, f(x) = f1(x1x2x3)+
f2(x4x5) + f3(x6x7) + f4(x1x2x3x4x5), the subfunction f1
may use any coefficients with index j where 0 <= j <= 7,
since this range corresponds to all binary combinations of
bits 1 to 3.

For an arbitrary fitness function, we can imagine that
some portion of the partial signed sum of the Walsh coeffi-
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Figure 1: The deceptive 5-bit trap function gives a
higher fitness to strings with more zeros then ones
unless the optimum at 11111 is found.

cients has direction — meaning that this portion is acyclic
in the limit and represents what the GA seeks to solve. The
remaining portion fluctuates with possibly irregular peri-
ods and shapes - but not contributing to the overall direc-
tion of the function. This latter portion will likely involve
higher-order Walsh coefficients since a higher order indicates
that more bits interact with another. Smaller orders means
fewer bits interacting with one another and likely contribute
to the direction of the function. Consider the inclusion of
the Walsh coefficient w2l−1 for example. This means taking
the parity of the entire string. It provides no direction but
merely acts as a source of deterministic noise. Other coeffi-
cients could be included as part of this fluctuating crosstalk
but for this paper we assume only one Walsh coefficient is
used. We will vary the order of this coefficient, however, to
test GA scalability over different scalings of the underlying
fitness function BBs.

4. DETERMINISTIC NOISE EFFECTS ON
GA SCALABILITY

Having explained how fluctuating crosstalk maps to ex-
ogenous noise and how we principally model it, we now
explore its effects on population sizing, run duration, and
function evaluations. We start by briefly summarizing our
methodology and findings of our earlier work on the subject
[3].

4.1 Methodology
Both our current and previous experimentation made use

of a selectorecombinative GA or a GA using only selection
and crossover. Hence, we eliminate any scalability factors
due to mutation. We provide a boundedly difficult test func-
tion — the concatenated trap function. This function is the
sum of multiple subfunctions where each subfunction is a
5-bit trap with a max fitness of 1 at 11111 and other fitness
values linearly interpolated from 1 − d to 0 as the number
of 1’s range from 0 to 4. The variable d is called the signal

and represents the fitness difference between the best and
second-best solution. The 5-bit trap is shown in Fig. 1.

The trap misleads the GA since any 5-bit string contain-
ing fewer than 4 ones has a higher fitness than another string
with more ones, unless the other string is 11111. The ten-
dency of the GA is to increase the frequency of the false
peaks at 00000 until the GA finds the higher fitness coming
from the infrequent 11111 strings.

The GA utilizes binary tournament selection (s = 2) and
BB-wise population crossover to avoid disrupting discovered
BBs. The use of a BB-respecting operator assumes that the
BB structure is known a priori or can be learned, such as
through a Probabilistic Model Building GA (PMBGA) [12].
Results for population sizing were obtained by performing 10
to 30 bisection runs [15] of 10 to 50 independent GA trials.
In a single bisection run, the population size is adjusted
after each set of trials until the minimum population size is
obtained that yields an average of m−1 correctly discovered
BBs. We then report the average of the averages over all
bisection runs. Convergence time runs started with a large
population size (roughly 10 times the size needed with no
noise) and the average of 10 to 50 runs is reported.

4.2 Facetwise Modeling of Deterministic Noise
In this section, we briefly review findings from our previ-

ous results that will be helpful to understand current results.
For derivations and a more thorough discussion, please refer
to [3]. In testing population sizing, we tested required pop-
ulation sizing for functions ranging from 4 to 50 BBs with a
signal (the difference in fitness from the best solution to that
of the next best solution) ranging from 0.01 to 0.40. Par-
ity was taken over the entire chromosome and a positive or
negative constant, a single highest-order Walsh coefficient,
was then added to the individual. The magnitude of this
constant varied from 0 (no fluctuating crosstalk) to 10 (very
high for our problem), mostly in increments of 0.1. An ac-
curate facetwise model of population sizing with exogenous
noise, to which we compared our results, comes from Harik,
Cantú-Paz, and Goldberg [16] and is given by:

n = −
√
π

2d
2k log(α)

q

σ2

f + σ2

N (1)

where d is the signal , k is the BB size, α is the error toler-
ance, σ2

f is the fitness function variance, and σ2

N is the noise

variance. Note that fitness variance σ2

f = mσ2

BB where σ2

BB

is the BB variance and the noise variance σ2

N = w2

2l−1
. With

a little work, we derive the ratio of some fitness function with
noise to the same function without noise (n0) to be:

nr =
n

n0

=

s

1 +
w2

2l−1

mσ2

BB

. (2)

When the strength of the crosstalk was low, the above model
described the effects of the fluctuating crosstalk very well.
With very strong crosstalk, half of the initial population was
wiped out due to having the wrong parity, and we would ex-
pect roughly twice the population needed without noise to
be needed with very strong crosstalk. In fact, once that
level of crosstalk is exceeded, stronger crosstalk matters lit-
tle since the concatenated trap still needs to be solved if the
optimal solution is to be found, and any more weight to par-
ity doesn’t make parity more important since we use tourna-
ment selection. If we assume an upper bound of a doubling
in required population size, as empirically observed, we can
estimate the critical point for which the facetwise model no
longer holds as:

nr = 2 =

s

1 +
w2

2l−1

mσ2

BB

(3)

and hence

w2

2l−1
= 3mσ2

BB . (4)
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The ratio of required time convergence for a function with
noise to that without noise is derived from Miller and Gold-
berg’s [17] time convergence equation:

tc =
π
√
l

2I

s

1 +
σ2

N

σ2

f

and has the same form as equation 2. We note that we also
expect a doubling of run duration since the parity effect may
be thought of as a bump in selection pressure since with s-
tournament selection the GA now needs 2s individuals to
have the same quality of choices in selection. Individuals of
the wrong parity are immediately discarded, and can only
be chosen if all s individuals of the wrong parity are placed
into the selection pool. This gives the critical divergence
from the run duration model to be the same as equation 4.
The population sizing ratio and time convergence ratio don’t
depend on signal according to our model but empirical re-
sults show a slight dependence on the signal.

4.3 Deterministic Noise Effects on
Uniformly-Scaled BBs

After reviewing results from the previous work we now
consider varying orders of large Walsh coefficients with the
same uniform scaling of BBs as before. This answers the
question of what effects does fluctuating crosstalk, or deter-
ministic noise, have on GA scalability when those nonlinear
interactions of BBs involve fewer BBs but the “noise” com-
ing from them is high. If the strength of the crosstalk is
small, we would expect previous facetwise models of GA
scalability in the presence of exogenous noise to hold here
as well.

In these experiments, there were 50 5-bit traps and par-
ity was taken over the leftmost m′ BBs as m′ varied from
0 to m = 50 in intervals of 2. The magnitude of the corre-
sponding Walsh coefficient was high enough such that if a
solution had the wrong parity, the only way it could be se-
lected is if it competed against another solution of the same
parity. In this case, a solution of even parity over those m′

BBs was rewarded. This meant that the optimal solution
of 111111111 . . . 11111 was still optimal since the number of
bits in the m′ BBs was always even.

4.3.1 Time Convergence
Results for the proportion of optimal BBs over time are

shown in Fig. 2. The first thing to note is that the bold curve
from which the others separate is the plot for m′ = m where
all BBs are used for parity and that the leftmost plot is for
m′ = 0 or no fluctuating crosstalk. This corroborates our
earlier discussion where the noisy problem progresses twice
as slowly as when noise is absent and thus requires twice the
convergence time. We note that the plot for each m′ follows
the full-parity plot until some takeoff point at which the
plot rises sharply and then slows down when convergence
is nearly reached. Closer analysis reveals that until that
takeoff point, half of the individuals have even parity over
thosem′ BBs and half have odd parity. This explains why all
plots with m′ > 0 follow the m′ = m plot for at least some
portion: they’re all undergoing the same noise. Yet, even
in these noisy conditions, BBs are beginning to converge
to 11111. As they do so, each BB tends to lean towards an
odd parity but since m′ is always even, the net effect is more
individuals with even parity over those m′ BBs.
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Figure 2: Optimal BB growth for uniformly-scaled
BBs as m′ varies from 0 to 50. Plots for functions
with fluctuating crosstalk follow m′ = m = 50 plot
until parity takeoff. After takeoff, most individu-
als have correct parity and the GA processes BBs
without noise.

We can predict this takeoff point fairly easily if we as-
sume a knowledge of optimal BB growth for the case where
m′ = 0. We justify this assumption since our goal is to in-
vestigate the effects of fluctuating crosstalk. We make one
more assumption to facilitate the math, and that is that the
BB distribution is binomial — meaning that all BBs have
converged to 00000 or 11111. This has been found to be a
reasonable assumption for m′ >= 14 where only 10 % or less
of the BBs have not converged to one of those two values.
We can estimate what percent of the individuals in the next
generation will have even parity over those m′ BBs from the
current proportion of optimal BBs. This is given by

Peven =
X

k∈E

 

m′

k

!

pk(1 − p)m′
−k

where Peven is the proportion of solutions with even parity
over the m′ BBs at time t + 1 after BB-wise population
crossover, p is the proportion of optimal BBs after selection
and reproduction at time t, and E is the set of even numbers
from 0 tom′. Since 11111 is odd, and 00000 is even, the only
way to produce even parity over m′ BBs is to have an even
number of 11111 BBs which this equation captures. When
Peven is just over 0.5, takeoff begins.

At takeoff, the proportion of optimal BBs grows rapidly
since as BB convergence leans the population towards even
parity, the GA loses less information from the individu-
als that were discarded by having the wrong parity. And
of course, this increase in proportion only results in more
even-parity individuals. Within a few generations, this cy-
cle grows the proportion of even individuals to all evens.

This means that we can predict convergence time by find-
ing the time it takes the noiseless plot to reach the p where
predicted takeoff occurs and adding to the takeoff time the
number of remaining generations to full convergence on the
noiseless plot. This simple method results in fairly accurate
predictions of time convergence, as seen in Fig. 3

.
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Figure 3: Predicted run durations versus actual run
durations. Estimated proportion of even-parity in-
dividuals for uniformly-scaled BBs is accurate for
m′ ≥ 14.

4.3.2 Population Size
Population sizing can be explained from the simple fact

that for eachm′, the GA is processing the same magnitude of
fluctuating crosstalk where as m (and thus fitness variance)
is unchanging. This means that the ratio from equation 2 is
constant as m′ varies, which as we saw earlier gives a ratio of
2. This means that for each m′, twice the population from
that required with no noise is needed. Results are shown in
Fig. 4.

4.4 Deterministic Noise Effects on
Exponentially-Scaled BBs

This section investigates the effects of fluctuating crosstalk
or deterministic noise on exponentially-scaled BBs. The
choice to use exponentially-scaled BBs represents the other
extreme for BB scaling. A fitness function falling in the
middle of these scalings, such as with geometric scaling, will
be bounded by the results of these two extremes. Also, if we
believe that our fitness function uses one scaling type more
than other, we can use the results from the more similar
scaling to explain and plan for needed population sizing and
run duration.

In an exponentially-scaled deterministic problem with no
fluctuating crosstalk, the GA discovers the more salient BBs
first since they contribute the most to overall fitness, and
the fitness contribution from any given BB is twice the total
fitness contribution coming from all BBs of lesser salience.
This sequential nature of BB convergence has been called
domino convergence [18].

We should note that in our case, rather than using one
BB that is exponentially scaled over the next one, we use
groups of four BBs that are exponentially scaled over the
next group of four BBs. Within a group of four, each BB is
uniformly scaled. This structure ensures that the GA really
solves the target bits of the four BBs rather than a potential
luck of the draw in having the right configuration of bits for
just one BB. Using four BBs also requires a resizing of m
to a multiple of four, and in our case, we use m = 48. For
the following results, the crosstalk is over the most salient
m′ BBs.
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Figure 4: Ratio of population size required for
function with fluctuating crosstalk to same function
without noise (m′ = 0). Uniformly-scaled BBs are
more sensitive to crosstalk than exponentially-scaled
BBs until m′ ≥ 30.

4.4.1 Time Convergence
We start by looking at optimal BB growth as seen in

Fig. 5. Results for the exponentially-scaled case are simi-
lar to the uniform case at this high level. Once the parity
has converged over the m′ BBs (shortly after parity takeoff)
then the BBs converge at noiseless rates. One critical differ-
ence is the BB timing however, which can be seen in Fig. 6
for m′ = 24.

This graph shows the sequential processing of BBs for
m′ = 24 following the BB processing for m′ = m = 48
(full-parity) until the parity takeoff; after that, it follows the
noiseless model and BBs converge faster. The 12 curves rep-
resent the 12 groups of BBs (m/groupSize = 48/4) where
each curve shows BB growth for all of the four BBs since all
four were found to converge at the same rate (since those
four were uniformly scaled). Results for m′ 6= 24 appear
similar and are not shown here.

The sequential processing can be explained by the fact
that as soon as the target bits for the four BBs in a group
are found, in addition to the exponential scaling, the fluctu-
ating crosstalk only reinforces the idea that those individuals
should be chosen since m′ BBs with bits 11111 will be re-
warded for its even parity. The crosstalk is strong enough
that individuals with the wrong parity will never be selected
unless competing with another individual of the same parity.

The sequential nature suggests a different method to pre-
dicting takeoff, namely that we calculate what optimal BB
proportion, p, is needed to ensure that an optimal solution
over the m′ BBs can be found. Since BBs are converging
from left to right, this occurs when

pm′

>
c

n

where n is the population size and c is some constant number
of individuals with an optimal leftmost m′ BBs needed for
self-sustaining. Empirically, c

n
was found to be 0.005. If

we assume an understanding of BB growth rates for the
noiseless case then we can predict the point of parity takeoff,
and also predict convergence times with the same technique
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Figure 5: Optimal BB growth for exponentially-
scaled BBs as the number of BBs checked for parity,
m′, varies from 0 to 50. Plots for functions with fluc-
tuating crosstalk follow m′ = m = 50 plot until parity
takeoff. After takeoff, most individuals have correct
parity and the GA processes BBs without noise.

used with uniformly-scaled BBs. Alternatively, we could
use our time-convergence model to calculate needed time
for 4BBs, and then multiply by the m′/4 (the number of
groups in m′) as a crude estimation. Predicted versus actual
run duration ratios are shown in Fig. 3.

4.4.2 Population Size
The sequential nature of the problem means that there

must be enough bit diversity remaining in the population
to process the last of the m′ BBs. It is well known that
BBs with very little selection pressure, such as the rightmost
BBs, can converge to suboptimal bits due to the accumu-
lation of stochastic errors — a condition known as genetic

drift. An increase in m′ requires a proportionate increase
in run duration, which boosts the chances for the rightmost
bits to converge due to drift. To overcome this, we must in-
troduce a larger population size to permit more bit diversity
from the beginning, so that by the time the GA processes
the least salient BBs there is enough bit diversity for the
right target bits to be found. Markov chain calculations [19]
show that the time to drift td is related to population size n
by td = 1.4n. For our case, care must be taken to consider
the effects of the crosstalk, and the crucial point to observe
is that an increase in population size means a proportion-
ate increase in time before drift occurs. This explains the
linear growth of population size in terms of m′ that we see
in Fig. 4. When m′ = m, we would expect twice the popu-
lation size as that needed for no noise as seen from section
4.2.

4.4.3 Function Evaluations
When fitness evaluation time is relatively expensive the

number of required fitness evaluations is a good metric for
required time. The number of fitness evaluations is the
product of time convergence and population size. Although
deterministic problems with no fluctuating crosstalk over
uniformly-scaled BBs are easier for the GA to solve than are
exponentially-scaled BBs, we see from Fig. 7 that uniformly-
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Figure 6: The sequential processing of
exponentially-scaled BB groups starting with
the most salient 4 BBs (the leftmost curve). BB
growth rates for m′ = 24 follow the full-parity
plot (m′ = 48) until parity takeoff. After takeoff,
most individuals have correct parity and the GA
processes BBs without noise.

scaled BBs prove more sensitive to fluctuating crosstalk or
deterministic noise than do exponentially-scaled BBs. We
note that while the function evaluation ratio grows linearly
for uniformly-scaled BBs, it grows quadratically (albeit at
a very slow rate) for exponentially-scaled BBs since both
population size and convergence time grow linearly.

5. FUTURE WORK
Conjectures were made as to fluctuating crosstalk effects

on GA scalability for different BB scalings if the strength of
the crosstalk were to be reduced. We have yet to validate
these claims and hope to do this in the future. Perhaps more
interesting though is the question as to how far we can model
deterministic noise effects on GA scalability with facetwise
models dealing with exogenous noise under varying fitness
substructure. Specifically, we plan to consider the introduc-
tion of more Walsh coefficients than just one and the use of
overlapping BBs. At some point however, we’re no longer
solving the same problem and BBs that once contributed to
a global solution are no longer doing so.

6. SUMMARY & CONCLUSIONS
This study was motivated by a prior performance compar-

ison [1] of mutation to crossover in the presence and absence
of exogenous noise. We summarized previous findings of the
existence of exogenous noise-like effects on GA scalability
in a deterministic fitness function via fluctuating crosstalk.
We modeled fluctuating crosstalk with higher-order Walsh
coefficients and stated that fluctuating crosstalk behaves like
additive exogenous noise until the crosstalk variance far ex-
ceeds the underlying fitness variance by a certain threshold
we empirically observe. When the crosstalk behaves simi-
larly to external noise, its effects can be handled in a similar
manner by increasing the population size and run duration.

We then considered strong fluctuating crosstalk effects on
GA scalability for various orders of Walsh coefficients on two
extremes of BB scaling — uniformly-scaled and exponentially-
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Figure 7: Ratios for required function evaluations of
function with fluctuating crosstalk to same function
without fluctuating crosstalk.

scaled BBs. Using two extremes of scaling provides bounds
as to how an arbitrary fitness function with fluctuating crosstalk
will behave. Also, any a priori sense of which scaling is more
similar to the crosstalk can serve as a guide to adjusting
population sizing and run duration.
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