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ABSTRACT
The no-free-lunch theorems (NFLTs) do not consider ex-
plicitly the structure of problems. In [1] we gave a formal
definition of structure. We showed that many metaheuris-
tics have identical performance on problems which belong
to the same structural class. In this paper, we define a no-
tion of a distance between fitness functions. We argue that
an algorithm cannot be efficient on a class of problems if
the distance between the fitness function associated with in-
stances of that class is too big. In [2] we corroborate our
ideas using several problems.
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1. INTRODUCTION
With their No-free-lunch theorem (NFLT) Wolpert and

Macready [3] put an end to the hope of developing a general-
purpose optimization algorithm. Following these results the
NFLTs are usually interpreted in the following way: even
though it is not possible to design a general algorithm it is
possible to design an efficient algorithm for a specific subset
of problems, real-world problems being such set.

In other words, considering the subset F = {f1, f2, ..., fl},
the idea is that it should be possible to choose a search
algorithm a such that the performance of a over F will be
good. Naturally, this is not possible for an arbitrary set.
However, it is assumed that instances of real-world problems
which belong to the same class (e.g., SAT or MAXSAT)
are structurally “related” and that, therefore, there exists a
search algorithm which performs well on all of them. This
informal definition of “structure” and “relation” makes it
impossible to validate (or disprove) this assumption. In this
paper we make a first attempt to solve this problem.
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The paper is organized as follows. In section 2 we define,
for each function, the class of its structurally identical func-
tions, which we call the isometry group of a function. We
argue that the many metaheuristics are expected to have
the same performance on every function which belong to
the same isometry group (see [1] for more details). In sec-
tion 3 we define a notion of distance between functions. We
discuss, in section 4, functions with various distances and
assess the likelihood that a search algorithm exists that can
efficiently optimise them.

2. STRUCTURE
A problem in the black box scenario is often represented

by the triple (X, d, f) where X is the search space, d : X →
R is a distance function and f : X → R is the objective
function. In this section we propose to define structure as
an isometric isomorphism relation between functions.

Definition 1. Let (X, d) be a metric space. The transfor-
mation σd : X → X is a distance preserving transformation
(or an isometry) if:

∀x, y ∈ X d(x, y) = d(σd(x), σd(y))

The Isometry group is the set of all isometries under function
composition.

Based on a distance preserving permutation of a metric
space, we can define a distance preserving permutation of
a function. Such a permutation preserves all the structural
properties of the fitness landscape.

Definition 2. Let (X, d) be a metric space, σd a distance
preserving permutation and Σ the isometry group. For any
f : X → Y :

1. The permutation σdf of f is the function σdf : X → Y

defined by σdf(x) = f(σd−1

(x)).

2. The set F = {g|∃σd ∈ Σ, g = σdf} is the structural

class (or orbit) of f .

The distance preserving permutation of a function pre-
serves the relations between the fitness values and the neigh-
borhood structure. The notion of structural class of a func-
tion clarifies the many symmetries which exist in the space
of all possible problems.
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3. DISTANCE BETWEEN FUNCTIONS
The main objective of this paper is to estimate, given

a group of instances (or fitness functions defined over the
same metric space), the likelihood that a search algorithm
which solves all of them efficiently, exists. Intuitively, if the
functions are completely different (i.e., they do not share any
structural property), it is not likely for such an algorithm to
exist. In this section we formally define a notion of distance
or similarity between functions.

Before we define the distance formally we represent a fit-
ness function in terms of the relative fitness values: each
fitness function, f : X → Y , can be represented by a
|X| × |X| matrix M with entries mi,j = t(xi, xj), where
t : X × X → {0, 1} is given by

t(xi, xj) =

8

<

:

1 if f(xi) > f(xj),
0.5 if f(xi) = f(xj),
0 otherwise.

(1)

For every pair (xi, xj) of elements in X, mi,j indicates
whether they have the same fitness and if not which is prefer-
able. This matrix was denoted in [4] as an information land-
scape. Since, in this paper we consider the matrix in a dif-
ferent context we will simply refer to it as a relative fitness

matrix or relative fitness function.

Definition 3. Let f ′, f ′′ be two fitness functions and
M ′, M ′′ be the two corresponding relative fitness matrices.
Let s(X) = (|X|2 − |X|)/2 be the number of distinct ele-
ments in a matrix M . The distance between f ′ and f ′′ is
defined as:

df (f ′, f ′′) = df (M ′, M ′′) =
1

s(X)

X

i>j

|m′

i,j − m′′

i,j |. (2)

That is, the distance between two functions is defined as
the absolute difference between the two matrices, normalised
to stay in the interval [0, 1]. This distance was used in [4]
as a predictive measure of problem difficulty. It was shown,
using several case-studies, that the distance of a particular
problem from an optimal (easy) landscape correlates well
with the efficiency of a simple GA on this problem.

However, this distance does not correspond to the struc-
ture of the search space, as defined in the previous section.
The following distance measure resolves this problem:

Definition 4. Let f ′, f ′′ be two fitness functions. Let F ′′

be the structural class of f ′′. The structural distance, ds
f ,

between f ′, f ′′ is defined as:

ds
f (f ′, f ′′) = min

g∈F ′′

df (f ′, g) (3)

Equation 3 measures the distance of aligned functions.
Keeping one of the functions (f ′) fixed, it picks the function
(g) from the structural class (F ′′) of (f ′′) which minimises
the distance as defined by equation 2.

4. A CLASS OF TWO PROBLEMS
In the previous section we defined a notion of distance be-

tween functions, we argued that a search algorithm is able
to search efficiently a group of problems only if the struc-
tural distance (equation 3) between them is small. In [2] we
exemplify this notion using onemax, needle-in-a-haystack,
longpath (isotonic) and deceptive functions. We show, using

this distance, that while it is likely for an efficient algorithm

to solve both deceptive and onemax problems, it is not pos-
sible to solve efficiently both onemax and NIAH problems.
We argue that depending on the specific instances of the
longpath problem such an algorithm may or may not exists.

Moving from artificial problems to more realistic ones, we
consider in [2] the SAT and MAXSAT problems. We argue
that it is not possible to consider, from the black box per-

spective the structure of the SAT problem. All instances of
SAT are variants of the NIAH (with possible more than one
needle). The search strategy of randomized search heuristics
depends on the ability to select solutions (from the ones al-
ready sampled) around which to focus the search – if no such
solutions exists, the algorithm behave like a random search.
This is not the case for MAXSAT, the optimisation variant
of SAT. However, we gave example of two instances which
belong to MAXSAT and have a big structural distance.

5. CONCLUSIONS
Understanding the connection between real world classes

of problems to the black box scenario is perhaps one of the
most important objectives for a theoretical framework for
metaheuristics. In this paper we made some initial steps in
this direction.

The starting point of our results was our formal definition
of structure as an isometric isomorphism relation between
functions. We then proceeded by defining a notion of a
structural distance – that is a measure of distance between
functions which respects structural similarities and differ-
ences. We argued that the same algorithm is not likely to
solve efficiently instances of problems unless they are struc-
turally related, i.e., their mutual structural distances are
small.

Section 4 summarizes briefly the results obtained in [2]. In
particular, we showed that instances of MAXSAT may not
necessarily belong to the same black box class of problems.
We believe that these surprising preliminary results call for
further investigation. The distribution of problem instances,
for example, might play a major role in determining whether
or not an algorithm capable of solving a problem efficiently
may exist. E.g., if most of the instances are structurally
related while a minority are not, then the situation might be
better than what we can infer at the moment for MAXSAT
and SAT.
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