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ABSTRACT
We present a genetic model based on simulated recombina-
tion of fixed sequences of quaternary genes (assuming four
distinct forms, or alleles). States and dynamics of the infi-
nite population genetic system, represented by the model,
are derived for quadratic fitness functions. The bivariate
marginal distribution genetic algorithm, devised to simulate
the system, is experimentally compared with the univariate
marginal distribution genetic algorithm with bit-based sim-
ulated crossover (in the case of infinite populations) for the
MAX −CUT problem.

Categories and Subject Descriptors
I.6.5 [Computing Methodologies]: Simulation and Mod-
eling, Model Development

General Terms
Algorithms

Keywords
Marginal Distribution Genetic Algorithms

1. RESULTS
We introduce a genetic model based on simulated crossover

of fixed sequences of two bit genes. Such a model represents
an instance of the Random Heuristic Search (as defined in
chapter 3 of reference [4]) and can be considered as an exten-
sion of the model presented in [1]; the main characteristic
of the system that we shall consider is that the recombi-
nation of the genetic material is obtained by performing
a weighted average of the alleles along each fixed two-bit
locus and using such statistics to produce offspring whose
alleles in distinct loci are independently generated. The ge-
netic algorithm, simulating the model we propose, belongs
to the so-called class of the Marginal Distribution Genetic
Algorithms. Note that the interest in devising marginal dis-
tribution genetic models lies in the fact that (along with
restriction of the fitness to some classes of functions) they
consent efficient simulation for infinite populations; more-
over, in case of univariate marginal distributions, they have
been used to construct approximation algorithms to solve
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(hard) combinatorial problems for which error bounds can
be theoretically estimated.

A population P of individuals is represented by a multi-
set of n ∈ N l−length binary strings (we suppose l even)
in the set Ω = {0, 1}l = {ω1, . . . , ω2l}. Each population
P is associated to its frequency vector F = (Fω1 , . . . , Fω2l )
specifying the proportion of the strings in Ω contained in P.
Each individual is evaluated by his fitness that is measured
by means of a fitness function f : Ω −→ R+. Let A =
{00, 01, 10, 11} and B = A − {00}. For k = 1, . . . , l

2
and

a = a1 · a2 ∈ A, consider functions χk[a] : Ω −→ {0, 1}
defined by

χk[a](ω) =

j
1, if a1, a2 are in positions 2k − 1, 2k of ω;
0, otherwise.

We shall use notation Ep[X] =
P2l

i=1 X(ωi)pi to mean the
expectation of function X : Ω → R considered as a random
variable along with the stochastic vector p = (p1, . . . , p2l).
Starting from an initial population P0, if at time t the state
of the (genetic) system is the population P, represented by
its frequency vector F, then the population at time t + 1 is
obtained as follows:

1. for every k = 1, . . . , l
2

and a ∈ A compute φk,F[a] =
EF[χk[a]f ]

EF[f ]
;

2. generate a new population P ′ of n l−length binary
strings, denoted by P ′ = {ωr1 , . . . , ωrn}, with proba-
bility φk,F[a] of obtaining a1, a2 in positions 2k− 1, 2k
independently from ri and k for 1 ≤ k ≤ l

2
and 1 ≤

i ≤ n.

By definition of the recombination process described in 2., if
P is a population at time t and F its frequency vector, the
population at time t + 1 is obtained by selecting n strings
with probability distribution Φ(F) = (Φ(F)ω1 , ..., Φ(F)ω2l ),

where the probability Φ(F)ωj of generating the string ωj =

ωj,1 · · ·ωj,l is Φ(F)ωj =
Q l

2
k=1 φk,F[ωj,2k−1 · ωj,2k].

In the following, for k = 1, . . . , l
2
, j = 1, 2, {i1, . . . , ij} ⊆

{1, 2} (i1 ≤ ij) and (a1, . . . , aj) ∈ {0, 1}j we shall adopt
notation

φk,F,(i1,...,ij)[a1, . . . , aj ] =
X
a′∈A

(a′
i1

,...,a′
ij

)=(a1,...,aj)

φk,F[a′],

to denote the probability distribution φk,F[a′] = φk,F[(a′
1, a

′
2)]

viewed as a joint probability over {0, 1}2 and its marginal
distributions.
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Vertices | 10 | 14 | 18 | 22 | 26 | 30 | 34

p = 1
7

1BGSC 6, 25 12, 00 18, 10 26, 45 39, 05 50, 05 62, 23
2BGSC 6, 30 12, 10 18, 20 26, 65 39, 40 50, 50 63, 45
12BGSC 6, 32 12, 25 18, 40 26, 80 39, 75 50, 85 63, 80

Edges 6, 42 13, 00 20, 80 31, 71 46, 42 62, 14 80, 14

p = 1
4

1BGSC 8, 85 18, 90 30, 05 43, 65 58, 10 80, 04 96, 63
2BGSC 9, 05 19, 03 30, 20 44, 05 58, 30 80, 29 97, 33
12BGSC 9, 25 19, 45 30, 40 44, 45 58, 80 81, 25 98, 05

Edges 11, 25 22, 75 40, 05 57, 75 81, 25 108, 75 140, 25

Table 1: Mean Size of the cuts found by the genetic algorithms

Theorem 1 Let n ≥ 8
“

M
εEΦ(F)[f ]

”2

log
`

24 l
δ

´
, where ε, δ ∈

(0, 1] and M is the maximum value that the fitness function
can assume; if at time t the system is in the state F, then the
state F′ at time t+1 is such that for all k = 1, . . . l

2
, j = 1, 2,

{i1, . . . , ij} ⊆ {1, 2} (i1 ≤ ij) and (a1, . . . , aj) ∈ {0, 1}j it re-
sults

˛̨
φk,F′,(i1,...,ij)[a1, ..., aj ] − φk,Φ(F)),(i1,...,ij)[a1, ..., aj ]

˛̨
< ε with probability at least 1 − δ.

Proof It is a result obtained by a first-order approxima-
tion and based on the Hoeffding’s inequality [3]. �

We consider fitness functions f : Ω −→ R+ that can be
represented by quadratic functions defined on [0, 1]l, coinci-

dent with f on Ω, of the form Qf(x1, . . . , xl) =
Pl

i,j=1
i�=j

wi,jxi

(1 − xj). Let q = l
2
. In case of infinite populations, The-

orem 1 states a probability convergence result according
to which the stochastic genetic system becomes an itera-
tive deterministic system whose states are 3q−component
vectors Ψ = (ψ1,01, ψ1,10, ψ1,11, . . . , ψq,01, ψq,10, ψq,11) ∈
[0, 1]3q and whose dynamics is described by the equations

ψk,z(t + 1) =
ψk,z(t)ξk,z(Ψ(t))

p(Ψ(t))
for 1 ≤ k ≤ q, z ∈ B, where,

by independence of the alleles generated in distinct loci and
the linearity properties of the mean, we get

p(Ψ(t)) =

qX
u=1

2X
i,j=1
i�=j

w2(u−1)+i,2(u−1)+j

X
a∈B

ai=1,aj=0

ψu,a(t)

+

qX
u,u′=1
u �=u′

2X
i,j=1

w2(u−1)+i,2(u′−1)+j

X
a∈B
ai=1

ψu,a(t)ψ̄u′,j(t)

and

ξk,z(Ψ(t)) =
2X

i,j=1
i�=j

zi=1,zj=0

w2(k−1)+i,2(k−1)+j

+

qX
u=1
u �=k

2X
i,j=1
i�=j

w2(u−1)+i,2(u−1)+j

X
a∈B

ai=1,aj=0

ψu,a(t)

+

qX
u=1
u �=k

2X
j=1

2X
i=1

zi=1

w2(k−1)+i,2(u−1)+jψ̄u,j(t)

+

qX
u=1
u �=k

2X
j=1

2X
i=1

zi=0

w2(u−1)+j,2(k−1)+i

X
a∈B
aj=1

ψu,a(t)

+

qX
u,u′=1
u,u′ �=k
u �=u′

2X
i,j=1

w2(u−1)+i,2(u′−1)+j

X
a∈B
ai=1

ψu,a(t)ψ̄u′,j(t),

with ψ̄u,j(t) =

„
1 − P

a∈B
aj=1

ψu,a(t)

«
.

Following the guidelines of reference [1], the system has
been simulated to solve (in the sense of an approximation
algorithm) the MAX −CUT (hard optimization) problem
for p−random undirected graphs. In Table 1 there are the
results of the simulations intended to compare the perfor-
mances of the genetic algorithm with simulated crossover of
sequences of two-bit genes (2BGSC) and that with recom-
bination of sequences of binary genes (1BGSC) introduced
in [1]. In the table it is also reported the expected number
of edges (row Edges) of the p−random graphs. The algo-
rithm 2BGSC consents to improve (in average) the perfor-
mances of 1BGSC that in [1], in case of p−random graphs
for p = 1

7
, 1

4
, exhibited performances slightly worse than that

of an Hopfield’s network [1]. In Table 1 there are also the
mean sizes of the cuts obtained by choosing the best ones,
for a same p−random graph, found by the two algorithms
(row 12BGSC). Note that the performances were depen-
dent on specific p−random graphs; this fact, supported by
the remark that the concept of gene in classic genetic al-
gorithms is more general than that provided in univariate
marginal distribution ones, evidences the need of the intro-
duction and analysis of a more general (infinite population)
dynamical system marginal distribution model.
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