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ABSTRACT

The dynamics of variable length representations in evolu-
tionary computation have been shown to be complex and dif-
ferent from those seen in standard fixed length genetic algo-
rithms. This paper explores a simple variable length genetic
algorithm with multiple chromosomes and its underlying dy-
namics when used for the onemax problem. The changes in
length of the chromosomes are especially observed and ex-
planations for these fluctuations are sought.

Categories and Subject Descriptors: G.1.6 Numerical
Analysis: Global Optimization 1.2.8 Artificial Intelligence-
Control methods and search

General Terms: Algorithms Performance Design

Keywords: Genetic Algorithms, representations, size

1. INTRODUCTION

The one max problem is often used to explore the basic
dynamics of operators within evolutionary computing and
how they affect the formation of building blocks. This pa-
per uses a variation of the problem to examine a variable
length genetic algorithm under varying conditions to inform
us about the underlying dynamics of the system and the
settings which allow optimal behaviour.

The system used for the experiments in this paper was
originally designed to be a multi-chromosomal genetic pro-
gramming system [1, 2], where variable length strings are
evolved and then translated into a Prolog program using a
grammatical evolution [6] type process.

1.1 The Problem and Setup

The onemax problem, is a common test used throughout
evolutionary computation. It is chosen for its simplicity and
its ability to highlight whether an algorithm can optimise
many variables in parallel. The standard one max problem
is formulated on a fixed length binary string and is defined
as y ., x; where n is the length of the binary string.

For a variable length genetic algorithm the onemax prob-

lem can be sensibly redefined as 1 — % where n is the

length of the binary string (low fitness is good).
There have been several other investigations into the one-
max problem using variable length representations [3, 5, 7].
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The system used in these experiments involves individu-
als made up of 4 sets of 4 variable length binary strings.
The operators used are shuffling, crossover and mutation.
Selection is done via tournament selection with a tourna-
ment size of 4. The population has 100 individuals and all
chromosomes start with at least 120 bits.

Shuffling involves taking the chromosomes from both par-
ent individuals and within sets of 4, mixing them up to
create two new sets in which every chromosome from the
parents is present in its exact same form.

Crossover is like the standard GA crossover, except it is
done between two strings from the same set and can be
multi-point (up to 3 points are currently allowed within the
system). The position of the crossover point is the same in
both strings when counting from the left hand side of the
string. Where not otherwise stated the crossover rate is 0.5.

Mutation can effect one of three actions, delete the digit
at the locus to be mutated (1), flip the digit at the locus
to be mutated (5) or insert a new digit at the locus to be
mutated (1). Mutation normally acts on 1 in 500 bits.

2. RESULTS

In figure 1 we see that mutation is necessary; without it
evolution is stunted after several generations and does not
proceed. We observe two phases to the evolutionary process
with mutation being irrelevant in the first phase (about 10-
20 generations), but having a greater effect later in the run.

As shown in figure 2, a high crossover rate is beneficial to
this problem and the correlation between performance and
crossover rate is very strong. The headless chicken cross-
over operator shown in figure 1 is useless, which shows that
crossover is doing much more than just macromutation.

The length of the chromosomes being evolved changes in
interesting ways throughout the run (figure 3) and again
shows evidence of two phases. The first phase lasting 20-
30 generations and consisting of a sharp decline in length,
before a drastic slowing of this decline occurs and the change
in length stabilises. As shown, the mutation operator is
not causing the shrinkage as, although it occurs slightly less
when mutation is turned off, it is still evident. This lessening
effect may also be triggered by switching to one mutation
per chromosome instead of one mutation per 500 bits.

These results relate to a theory seen in the work done
by Harvey [4] which predicts that when operators allow for
jumps in length then “an early population could fluctuate in
length through long jump adaptation which effectively acts
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in an uncorrelated landscape.”, but predicts that as average
fitness increases this process will slow down drastically. This
theory says nothing about why the overall trend of the long
jumps is a decrease in length.

The shortening appears to be related to the amount of
crossover which is allowed to occur within the system (see
figure 4). The influence of crossover on length can be seen
by taking a simple string one hundred bits long, with fifty
1’s and fifty 0’s. Two seemingly equivalent crossover oper-
ations occur to this string, one adds ten 1’s the other takes
away ten 0’s. However, after the first operator, the fitness
is 0.45, but in the second case the fitness is now 0.4. With
tournament selection this means the second individual will
have an advantage. This small difference in fitness would
not last for long, since once the average number of 1’s in the
population grows then the chances of removing a block of
0’s will drop. This fits with the observation that the length
drops at the start of a run and then stabilises.

Interestingly, at the start, the numbers of ones and zeros
in the chromosomes are roughly equal, at around 1750 of
each. After twenty generations, the number of bits in the
chromosomes has dropped to 2500 (see figure 3) and the
percentage of zeros is now around 35%. This means that the
best individuals in the population have lost approximately
half the zeros they started off with, yet have only lost 7% of
the ones with which they began.

Finally, shuffling must also play a role in the selection
pressure, since when crossover is turned off the shrinkage still
occurs. However, when shuffling is turned off by using only
a single extra-long chromosome, the shrinkage occurs more,
so shuffling cannot be a key source of selection pressure.

2.1 Conclusions

This paper looked at the dynamics involved in a simple
variable length, multiple chromosome, genetic algorithm on
the onemax problem and studied the effects of the opera-
tors within this system. It observed that the operators have
varying effects at different stages of evolution. It has also
looked at the evolution of length over the course of a run,
finding that, in this case, there is an unexplained selection
pressure at the start of a run to shorten the length.

Future work will include more studies into the observed
selection pressure and looking at the dynamics on more com-
plicated problems where gene linkage exists.
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