
The Snake in the Box Problem

Mathematical Conjecture and a Genetic Algorithm Approach

Pedro A. Diaz-Gomez
Robotics, Evolution, Adaptation and Learning

Laboratory (REAL Lab)
School of Computer Science

University of Oklahoma, OK, USA

pdiazg@ou.edu

Dean F. Hougen
Robotics, Evolution, Adaptation and Learning

Laboratory (REAL Lab)
School of Computer Science

University of Oklahoma, OK, USA

hougen@ou.edu

ABSTRACT
With applications in coding theory and hypercube-based
computing and networking, the “snake in the box” prob-
lem is of great practical importance. Moreover, it is both
mathematically elegant and highly difficult. The problem
is simply to find the longest “snake” in a hypercube. How-
ever, as the hypercube grows in dimensionality, the size of
the search space increases exponentially. Moreover, as the
maximum snake length is only known for the smallest dimen-
sions (where the snakes themselves have already been iden-
tified), there is no known stopping criterion for the search in
higher dimensions. In this paper we make a mathematical
conjecture about the possible maximum length of a snake in
a hypercube of dimension d. We use a genetic algorithm for
finding snakes in a 8-hypercube to show some results.
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1. INTRODUCTION
A snake in a hypercube of dimension d is a connected open

path in the hypercube d, where each node in the path has
exactly 2 neighbors that are also in the snake, except for
the head (start) and the tail (end) that each have only one
neighbor in the snake. The constraint, then, is that a node
in the hypercube may be visited if it is not a neighbor of
any previously visited node in the snake.

There have been some non-heuristic methods to solve the
problem in hypercubes of dimension less than 8 [1] and it has
been shown experimentally that Genetic Algorithms (GAs)
are a powerful heuristic tool to solve this type of problem [2].
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2. SNAKES AND GENETIC ALGORITHMS
In order to encode a hypercube we use a two dimensional

matrix of neighbors MN, where each row indicates the node
and each column indicates the neighbors of that node. The
matrix multiplication between the MN matrix of neighbors
and the chromosome I gives us the number of neighbors of
each node in the path—we call this product MP.

In order to ensure that the path is connected we use as
our fitness function Equation 1:
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where Penalty corresponds to those points that violate the
constraint, Length S counts the points in the path that are
connected, from the head to the tail—if that is the case—or
to the point where the constraint is violated or the connec-
tion is broken, and #P is the number of points that belong
to the snake. The constraint takes into account the fol-
lowing parts: (1) genes with value 1 in the chromosome and
with number of neighbors greater than 2, (2) isolated points,
that is, genes with value 1 in the chromosome and with no
neighbors, (3) lazy points, that is, genes with value 0 in the
chromosome and with no neighbors, and (4) chromosomes
with more than one head and one tail.

2.1 Experimental Setting
To search for snakes in an 8-dimensional hypercube, we

encode the problem as a binary array of length 28 = 256.
The initial population of 1, 000 individuals (versus 10, 000
used in Casella’s work [1]) is seeded with a maximum length
snake from dimension 7 found by Rajan [3]. The first 128
genes of all the individuals correspond to the length 49 snake
found in the previous hypercube of dimension 7. The re-
maining 128 genes, i.e., genes from 128 to 255 are randomly
generated, taking into account to turn off (give value 0 to)
the neighbors of the snake that is seeded.

Crossover and mutation are performed on the chromosome
only above gene 127, in order to preserve the initial seed. We
used tournament selection: two chromosomes are selected
randomly and with a probability of 75% the one with higher
fitness value is selected and with a probability of 25% the
one with the lower fitness value is selected.
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2.2 Results
In order to evaluate the length of the snake we used dif-

ferent approaches. One was to find a head and a tail and
count the connected points from the head to the tail that
did not violate the constraint, then subtract one. However,
there could be other heads (or tails) that we can take into
account to find a bigger snake. So, another approach was
to look at all points in the chromosome as candidates to be
head or tail, then we evaluate the length from each one of
those, and score as the length the biggest of those. There
could also be better candidates that have only a head but
no tail. So the GA used can run looking at the length of the
snake taking into consideration the path length from each
head-tail pair that exists in the chromosome, or can run
taking into consideration individual heads (tails) that exist
in the chromosome and giving as the length the maximum
connected path found without violations in the chromosome.
For this type of experiment it turns out to be better to look
at only one starting point (head) to find the length of the
connected path that does not violate the constraint. We
ran the algorithm for 1, 000 iterations and found snakes of
length 81.

We can obtain longer snakes using some variants of the
fitness function proposed in Equation 1, but that is not the
topic of this paper.

3. MATHEMATICAL CONJECTURES
We define the energy of a snake as the dot product between

the snake (the chromosome I) and the product vector MP

which is the result of the matrix multiplication between the
matrix of neighbors MN and the snake I. Formally,

E = I · (MN ∗ I)T = I · (MP)T (2)

For instance, for a snake {0, 1, 3, 7, 6} the energy is the
scalar value E = (1 1 0 1 0 0 1 1) · (1 2 3 2 2 2 1 2)T = 8

Conjecture 1. The number of points of a longest snake in
a hypercube of dimension d where d > 3, is greater than or
equal to the energy of the longest snake in the hypercube of
dimension d − 1.

Table 1 shows the values of the energy for longest snakes
and the corresponding number of points for each snake. We
use the energy definition inductively, i.e., we begin with a
known longest snake in the 3-dimensional hypercube and
from there we begin to conjecture as to the number of points
for the longest snake in the 4-dimensional hypercube, and
so forth. Table 1 compares our conjectures with theoretical
results from Abbot [5] and practical bounds [1].

Hyp. Energy #P Conjecture 1 Abbott Casella

3 8 5 2.4 5

4 14 8 4.8 8

5 26 14 9.6 14

6 50 26 19.2 27

7 98 50 38.5 51

8 194 98 77.0 98

9 386 194 154.0 187

10 770 386 308.0 359

11 1,538 770 616.0 681

12 3,074 1,538 1232.0 1,261

Table 1: Conjecture 1 of Number of Points in

Longest Snakes vs. Theoretical and Casella’s Find-

ings

Again, we can observe values quite near those of our con-
jectures with Casella’s experimental findings.

Conjecture 2. A lower bound for the number of points of
a snake in a hypercube of dimension d, with d > 3 is

3 ∗ 2d−3 + 2

This conjecture holds directly from the energy of a snake1.

4. CONCLUSIONS AND FUTURE WORK
We have presented a Genetic Algorithm approach to find

snakes in hypercubes, using a small number of individuals
in the population, few iterations, and an effective fitness
function. We use only the head as a starting point to find
the length of a snake, taking into account the connected
path until the tail is found and/or the constraint is violated.
Besides that, we take into account all the “heads” in the
chromosome and give as the length of the snake the highest
value found in the unviolated connected path. We give the
definition of the energy of a snake and use it to conjecture a
lower bound on the number of points of a longest snake in a
hypercube of dimension d. We compare our conjecture with
theoretical and experimental findings by other researches
and we proposed a new greater lower bound for the number
of points of longest snakes in hypercubes.

For future work we can analyze the fitness function pro-
posed in this paper and others than can be used to find
snakes in the box. We are going to propose a new conjec-
ture related with the upper bound of the number of points
in longest snakes.
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1This result was conjectured by Snevily [4] as an upper bound
for dimension d ≥ 5.
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