
Comparing Genetic Robustness in Generational vs. Steady
State Evolutionary Algorithms

Josh Jones
Department of Computer Science

University of Idaho
Moscow, Idaho

jjones@uidaho.edu

Terry Soule1

Department of Computer Science
University of Idaho

Moscow, Idaho
tsoule@cs.uidaho.edu

ABSTRACT
Previous research has shown that evolutionary systems not only
try to develop solutions that satisfy a fitness requirement, but
indirectly attempt to develop genetically robust solutions as well -
solutions where average loss of fitness due to crossover and other
genetic variation operators is minimized. It has been shown that
in a simple “two peaks” problem, where the fitness landscape
consists of a broad, low peak, and a narrow, high peak,
individuals initially converge on the lower (less fit), but broader
peak, and that increasing an individual’s genetic robustness
through growth is a necessary prerequisite for convergence on the
higher, narrower peak [18]. If growth is restricted, the population
remains converged on the less fit solution. We tested whether this
result holds true only for generational algorithms, or whether it
applies to steady state algorithms as well. We conclude that
although growth occurs with both algorithms, the steady state
algorithm is able to converge on the higher peak without this
growth. This result shows that the role of genetic robustness in
the evolutionary process is significantly different in generational
versus steady state algorithms.

Categories and Subject Descriptors
I.2.2 [Artificial Intelligence]: Automatic Programming, program
synthesis

General Terms
Algorithms, Performance, Experimentation, Theory.

Keywords
Growth, resiliency, genetic robustness, steady-state, generational

1. INTRODUCTION
The use of genetic algorithms (GA), genetic programming (GP),
and related evolutionary algorithms continues to grow as
evolutionary computation becomes more widely accepted as a
practical problem solving technique. However, the details of the

evolutionary process and its effect on the evolution of successful
solutions are not yet fully understood. Previous research has
shown that although these algorithms attempt to evolve solutions
that better satisfy a given fitness function, other evolutionary
pressures exist as well. Specifically, it has been clearly shown
that in any evolutionary system, including GP, GA, evolutionary
artificial life systems, and natural biological systems, there is
significant evolutionary pressure to evolve solutions that are
genetically robust, in addition to being highly fit [2][17][20][21].
Genetic robustness is roughly defined as a measure of the average
change in fitness of an individual as a result of genetic
modification, e.g. crossover and mutation. An individual is more
robust if the average change in fitness due to genetic variation is
smaller.1
Previous work examining the evolution of genetic robustness has
largely overlooked the role of the underlying genetic algorithm,
specifically whether the pressure for genetic robustness varies
significantly depending on whether a generational or steady-state
algorithm is used. Generational and steady state algorithms differ
significantly in how individuals survive over time: how often
individuals are replaced (die) versus how often they may
reproduce. Because the replacement strategy is so different
between generational and steady state algorithms, it is likely to
have a significant effect on the role of genetic robustness. In this
paper we reexamine previous results that were generated using a
generational algorithm, comparing them to new results generated
with a steady state algorithm. The comparison shows that the role
of genetic robustness in directing the evolutionary process is
significantly different in generational versus steady state
algorithms.
This result has important implications for the application of
evolutionary algorithms. For practical applications, where the
goal is simply to find the most fit solution, it means that the
decision whether to use a generational or a steady state algorithm
can have a significant effect on the probability of success.
Similarly, for experiments where the goal is to understand the
dynamics of evolution, it means that the decision whether to use a
generational or a steady state algorithm can have a significant
effect on the observed outcome. The steady state results are of
particular interest to the artificial life community, where attempts
to model microbial evolution lead to steady state like algorithms.

1 This publication was made possible by NIH Grant P20 RR16448

from the COBRE Program of the National Center for Research
Resources

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

143

2. BACKGROUND
Pressure to evolve genetically robust individuals has been
documented in artificial evolutionary systems in two very broad,
but related ways. First, researchers have shown that under many
conditions, evolving populations will converge on less fit but
broader peaks in a fitness landscape, rather than on the more fit
but narrower peaks. Broader peaks represent genetically robust
solutions because genetic changes to individuals on those broad
peaks are likely to keep the individual somewhat on the peak, i.e.
genetic changes cause relatively small fitness changes, the
definition of a genetically robust individual. In contrast, genetic
changes to individuals on a narrow peak are likely to cause the
individual to 'fall off' the peak. Second, research has shown that
there are a number of strategies that evolving individuals adopt to
increase their genetic robustness. These are discussed in detail
below.
A number of researchers have confirmed that evolving
populations may converge on less fit, but broader, fitness peaks.
Wilke et al. found that with the artificial evolutionary system Avida,
with sufficiently high mutation rates, individuals with low
reproductive rates that occupy flatter regions of the fitness landscape
will eventually replace individuals with higher reproductive rates if
those individuals with high reproductive rates occupy steeper
regions of the fitness landscape [21]. Wilke has also shown that in
competition between quasispecies at high mutation rates,
quasispecies located on a neutral network with higher connection
density may out-compete quasispecies with a higher replication rate
on a less connected neutral network [20]. Krakauer and Plotkin
showed that small populations converge on less fit, but more robust
solutions (broader peaks) whereas larger populations converge on
more fit, but genetically less robust solutions (higher, narrower
peaks) [6]. This previous research confirms that under the
conditions of small populations or high mutational loads,
populations will often converge on broader but lower fitness peaks,
i.e. evolution can favor individuals with lower reproductive rates,
but higher genetic robustness.
The phenomenon of code growth (or bloat) observed in genetic
programming (GP) is one of the most outstanding example of the
evolution of strategies to increase genetic robustness [2] [5] [7] [11]
[12] [13] [17]. Code growth is a rapid increase in the size of the
evolving individuals that is not directly correlated with fitness
improvements. It is seen in almost every GP model, and the growth
usually consists of extra code that does not contribute to the
program's fitness (known as inoperative code or introns).
It is commonly accepted that the code growth occurs, at least in part,
as a mechanism to increase genetic robustness, particularly with
respect to crossover. This hypothesis was independently proposed
by a number of researchers in 1994 [1] and 1995 [11] [12]. The
general idea is that if an individual's genome is mostly inoperative
code, then crossover is most likely to exchange this inoperative
code, and thus not affect fitness. Therefore, by increasing the ratio
of inoperative to operative code, an individual can increase its
genetic robustness, which is done predominantly by increasing the
amount of inoperative code.
Recent studies show that code growth is a general phenomenon, not
restricted to traditional tree-based GP algorithms, nor purely
inoperative code. Smith and Harries have shown that growth can
occur in code that does influence fitness if the code has only a
negligible effect on performance [14]. Soule et al. have shown that

code growth can also occur in exons that have a significant effect on
fitness [15] [19].
Additional research has shown mutation can encourage code growth
in certain situations, so the phenomenon is not restricted to the
crossover operator, even though the standard method of applying
mutation in the evolutionary computation field appears to limits
code growth [10] [19]. Theoretical research strongly suggests that
code growth is a factor in any evolutionary system using a variable
sized representation, regardless of the operators used [8] [9] [11].
In addition to code growth, several other strategies for increasing
genetic robustness have been shown to evolve. Hogeweg and
Hesper found that with high mutation rates, evolving subsequences
are more likely to use "multiple coding", that is, to use existing,
conserved, subsequences as recognition sites [4]. This increases
robustness without necessarily increasing (or decreasing) fitness.
It has also recently been shown that in representations that include
multiple 'genes' with similar effects, those genes that produce more
robust individuals will tend to replace genes that produce less robust
individuals [15] [16] [19]. Edlund and Adami have shown that in
artificial evolutionary systems, pressure for robust individuals
reduces the amount of antagonistic epistasis [3].
Recently, Soule has studied the interaction of these two phenomena:
convergence on less fit, but broader peaks, and adaptation of
strategies to increase genetic robustness. Using a modified
generational evolutionary algorithm to solve a simple “two peaks”
problem, it was shown that increasing genetic robustness could
cause a population that originally converged on a less fit, broad peak
to shift to a more fit, narrower peak [18]. The increasing genetic
robustness of the individuals effectively 'broadened' the narrower
peak making it evolutionarily competitive. In this problem,
individuals are numeric strings consisting of 0s, 1s, and 4s. The
strings vary in length, and have a value: the sum of all digits in the
string. Fitness is a function of value, as shown in Figure 1.

0

5

10

15

20

25

30

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99

Value

Fi
tn

es
s

Figure 1: Individual's fitness based on its value.

Note that in Figure 1 the peak on the left is much broader, but the
second peak is higher by 1 point. It was found that when using a
“constant crossover” (described later), solutions initially converged
on the broader peak [18]. However, as the algorithm continued, the
individual strings grew in length, increasing genetic robustness.
When a certain critical length was reached, individuals suddenly left

144

the broader peak and converged on the sharper peak. A second type
of crossover, “proportional crossover”, limited the individuals'
growth, and the population never left the broader peak. Soule
concluded that increasing genetic robustness could be a prerequisite
to finding better solutions, if those solutions represented narrower
fitness peaks.
The research described above used generational models of the
evolutionary process, which raises the question of whether the
presence and role of pressure for genetic robustness exists in all
implementations of evolutionary algorithms. Specifically, would
the same pressure for robustness exist in a steady state
implementation? Would an increase in robustness (accomplished
through growth or some other strategy) remain a necessary
prerequisite to convergence on a higher, narrower peak? Given the
widespread use of steady state algorithms in evolutionary
computation and artificial life applications, and given the significant
influence of the pressure for robustness on the evolutionary process,
it is important to determine whether similar results apply to steady
state algorithms.
Whereas in previous research, individuals suddenly switched from
the lower peak to the higher peak when they reached a certain
critical length, we hypothesize that using a steady state algorithm
will cause the population to converge on a higher, narrower peak
more smoothly. This hypothesis is based on the fact that in steady
state algorithms the current best solutions are automatically
maintained in the population – only the poorest individuals run a
risk of being replaced. In contrast, in a generational algorithm every
individual is replaced in every generation, thus there is a much
greater pressure to produce offspring that are not degraded by
crossover and mutation.
For example, consider the fate of an individual in the top 20% of the
population. In a steady state algorithm, that individual will be
selected as a parent fairly often and thus will have the chance to
produce offspring, but it is in no danger of being replaced (at least
not until the average fitness of the population rises to the point
where it is no longer in the top 20% of the population). Thus, even
if the individual is genetically 'brittle' and most of its offspring are
significantly degraded by crossover and/or mutation, it will still
survive, at least until the average fitness of the population surpasses
its fitness.
In contrast, in a generational algorithm with the same selection
mechanism, the same individual in the top 20% of the population
will be selected to be a parent equally often, but at the end of the
generation the individual is deleted along with the rest of the
previous generation's population. In this case, if the individual is
genetically brittle and therefore it has offspring with degraded
fitness, both the offspring and the original individual are likely to
die out. (Of course, it is possibly that this hypothetical individual
will manage to survive into the next generation, but for the typical
crossover and mutation rates used in evolutionary algorithms it is
unlikely that it would escape all genetic changes for more than a
few generations.)
To test our hypothesis we solved the two peaks problem using both
a generational and a steady state algorithm. Although it is a small,
narrow problem, we chose it due to its ability to represent a much
wider variety of problems. Specifically, if it can be demonstrated
that generational and steady state algorithms can produce
significantly different results for this small problem, it suggests a
significant difference exists between other problems as well.

Additionally, the two peaks problem had previously been used to
show genetic robustness was necessary to converge upon more-fit
solutions[18], a result which applies to a wide variety of additional
problems as well. It was necessary, therefore, to use the same
problem to demonstrate the limitations of these results.

The two peaks problem is designed specifically to highlight both the
preference for lower, broader peaks and the adaptation of strategies
to increase robustness in various algorithms. Specifically, we
measure the time required for populations evolved with each
algorithm to converge on either peak, and determine whether
populations evolved with the steady state algorithm converge on the
higher, narrower peak more smoothly or more rapidly than those
evolved with the generational algorithm. We also observed the rate
of growth of the individuals, to determine whether the steady state
algorithm results in as rapid code growth as the generational
algorithm.

3. METHODS
The generational evolutionary algorithm was implemented
identically to the one used by Soule [18], explained below. The
steady state version differed only in that it was a steady state
algorithm. The parameters used in these experiments are described
in Table 1.

Table 1: Parameters of the Evolutionary Algorithms

Fitness F(sum of integers in
chromosome)

Integer Values 0,1,4

Population Size 500

Crossover Probability (for
generational algorithm only)

90%

Mutation Probability 0% (No Mutation)

Selection 3 member tournament (1 for
each parent)

Iterations 2000 generations

Maximum Length 3000 genes

Elitism (for generational
algorithm only)

2 copies of the single best
individual

Initial Population Random, of lengths 5 to 59.

Number of Trials 50

Crossover Proportional and Constant
(explained below)

Peak 1 Height 25

Peak 1 Location 33

Peak 1 Width 14

Peak 2 Height 26

Peak 2 Location 66

Peak 2 Width 3

145

The length of the individual was allowed to vary in size, up to 3000
digits long. Solutions exceeding this length were truncated to 3000
(deleting all digits after the three thousandth.) A value was assigned
to each individual by summing all the digits in its integer string.
The individual’s fitness was then assigned by mapping its value to a
fitness using the function illustrated in figure 1. Although allowing
variable length chromosomes meant the two algorithms were not
standard genetic algorithms, it allowed specific advantages. First, it
provided a clear measure of genetic robustness through an
individual’s size, and more specifically, the number of 0’s in the
individual’s integer string. Secondly, it allowed the algorithms to
more closely model GP algorithms, where genetic robustness in the
form of code growth is larger topic of concern. Finally, using two
different forms of crossover (explained below), we were still able to
model standard genetic algorithms due to the lack of growth that
resulted using proportional crossover, while still modeling GP when
using constant crossover.
For the steady state algorithm, a “generation” was defined as 250
(half the population) crossovers, where each crossover generates 2
children (crossover behavior applies to both generational and steady
state algorithms). Each child in the steady state algorithm then
replaced an individual supplied by a worst-of-three tournament (one
tournament for each child). The replacement was automatic; the
child did not need to be of better fitness than the individual it was
replacing. This stipulation was added because the algorithm was
otherwise quick to generate enough optimal solutions to saturate the
population, effectively stopping the algorithm and making it
difficult to study its effects over time.
Each algorithm was tested with two different versions of crossover:
proportional and constant crossovers. Proportional crossover is
analogous to two-point crossover in a standard GA. Two crossover
points are randomly selected on each parent, and the integer string
between these two points is swapped between parents. For
example:
0114|140|0104 -> 0114|104401|0104
10|104401|100 -> 10|140|100
Note that in proportional crossover, the distance between an
individual’s two crossover points is random, and strongly dependent
on the length of the individual. The second crossover, constant
crossover, developed crossover points which were not strongly
dependent on the individuals’ length. The first crossover point was
chosen randomly, as usual. The second crossover point was picked
as a function of its distance from the first crossover point.
Specifically,
distance = 2;
while(random() < 0.50)
 distance *= 2;
crossover2 = crossover1 + distance;
In other words, the second crossover point was by default 2 indices
ahead of the first crossover point, but that distance iteratively
doubled with 50% probability. I.e. 50% of the crossover regions are
of length 2, 25% are of length 4, 12.5% are of length 8, etc. The
maximum allowed distance was half of the individual's length, e.g.
the maximum crossed region in an individual of length N is N/2.
Constant crossover is analogous to crossover in tree-based GP. In
standard tree-based GP crossover a random point is chosen for
crossover. For full binary trees this results in an average crossover
branch size of two nodes regardless of the tree size. I.e. larger

branches are exponentially less likely to be chosen for crossover. In
practice, GP usually leads to randomly shaped trees rather than full
trees. However, the distribution of crossover points still heavily
favors small branches and using the 90/10 rule (choosing leaf nodes
for crossover only 10\% of the time) only slightly shifts the
distribution towards larger branches. Thus, the distribution of
crossover sizes with constant crossover is comparable to those seen
in tree-based GP; both emphasize exchanging small branches.

4. Results
The generational and the steady state algorithms were tested with
both types of crossovers, for a total of 4 combinations. Each
combination was tested for 50 trials.
When running the algorithms, the generational algorithm performed
exactly as in the original study, as expected. Figures 2 and 3 show
the average value of the individuals in each generation, averaged
across all 50 trials. The error bars are the standard deviation across
the 50 trials. Recall that the lower (less fit), but broader peak is
centered on the value 33 and the higher, narrower peak is centered
on the value 66.

0
10
20
30
40
50
60
70

0
140 280 420 560 700 840 980

112
0

126
0

140
0

154
0

168
0

182
0

196
0

Generation

Va
lu

e

Generational Steady State

Figure 2: Average value of individuals using proportional
crossover, error bars are one standard deviation.

0
10
20
30
40
50
60
70
80

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20

Generation

Va
lu

e

Generational Steady State

Figure 3: Average value of individuals using constant
crossover, error bars are one standard deviation.

146

The generational algorithm using proportional crossover (Figure
2, dark line) converges on the lower peak of 33. The generational
algorithm using constant crossover (Figure 3, dark line) initially
converges on the lower peak, and then halfway through the run
switches over to the higher peak.
The steady state algorithm produces significantly different results.
Although Figure 2 (pale line) shows a brief dip to the broader
peak in the very early generations, the population of the steady
state algorithm, using either crossover, quickly finds the higher
peak and slowly converges on it as the run continues.
Interestingly, even with the steady state algorithm the two
crossovers do not behave identically. The average value of the
population with constant crossover is consistently 10 higher then
that of the proportional crossover. Why should this occur?
The answer also seems to be based on the evolution of genetic
robustness. Because the children in the steady state algorithm
replace the loser in a worst-of-three tournament, the upper 2/3rds
of the population will be the more optimal solutions (solutions
that are on the higher peak), while the lower 1/3rd of the
population will be individuals who were produced by crossover
and were potentially 'pushed' off of the higher peak. With half of
all constant crossovers only changing two genes in an individual,
these offspring do not differ much from their parents, and
therefore are much less likely to have been pushed far from the
higher peak. Thus, these offspring do not pull the average value
far from the optimal. In contrast, proportional crossover causes
offspring to be significantly changed from their parents, causing
more variation in the individuals in the lower third of the
population and a lower average value.
To help understand this behavior, two snapshots were taken of the
population during one trial of proportional crossover. The
snapshot counted how many individuals existed with each value.
One snapshot was taken at generation 100, the other at generation
1900. The results are shown in Figures 4 and 5.

0

20

40

60

80

100

120

140

1 9 17 25 33 41 49 57 65 73 81 89 97
Value

C
ou

nt

Figure 4: Distribution of individuals in the steady state
algorithm, using proportional crossover, generation 100

0

20

40

60

80

100

120

140

160

180

1 8 15 22 29 36 43 50 57 64 71 78 85 92 99
Value

C
ou

nt

Figure 5: Distribution of individuals in the steady state

algorithm, using proportional crossover, generation 1900

As expected, both figures show a large number of individuals at
the higher peak, with a scattering of individuals, representing the
lower ranks in the population, which bring down the average
fitness. What is interesting is that these lower ranked individuals,
at least initially, still tend to converge on the lower peak. It
appears that the individuals on or near the lower, broader peak,
have sufficient fitness to not lose the worst-of-three tournament in
all circumstances, so they remained in the population, but did not
have high enough fitness to be selected as a parent. As time went
on, the number of individuals at the higher peak increased and the
individuals at the lower peak began to lose the worst-of-three
tournament more often, causing the slow increase in average
value seen in Figures 2 and 3.
Next we examined the total code growth for each algorithm. It
was previously shown that code growth does not occur in the
generational algorithm when proportional crossover is used, but
that growth does occur with constant crossover [18].

0

200

400

600

800

1000

1200

0
140 280 420 560 700 840 980

112
0

126
0

140
0

154
0

168
0

182
0

196
0

Generation

Si
ze

Generational Steady State

Figure 6: Average size of individuals using constant crossover,
error bars are standard error.

147

10

15

20

25

30

35

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20

Generation

Si
ze

Generational Steady State

Figure 7: Average size of individuals using proportional
crossover, error bars are standard error.

Figures 6 and 7 show the average individual size and standard
error for constant crossover and proportional crossover with the
generational and steady state algorithms. As expected, both the
generational and steady state algorithms produce no code growth
when proportional crossover is used. Likewise, both the
generational and steady state algorithms show significant code
growth when constant crossover is used. What is curious is the
significant difference in the rates at which code growth occurs.
The size of individuals in the generational algorithm increased
steadily throughout the run. In contrast, the steady state algorithm
individuals had minimal code growth throughout the first half the
algorithm, followed by a rapid increase for the second half.
Recall that for individuals evolved with the steady state
algorithm, the average value with both constant crossover and
proportional crossover increased at the same relatively slow rate
(Figures 2 and 3). In particular, with constant crossover the
population reached the higher average value (above the value
reached when proportional crossover was used) before code
growth became a factor. I.e. Figure 3 shows that with constant
crossover and the steady state algorithm, the average value is
constant after generation 840, which is when the rapid growth
begins. Therefore, it does not seem that code growth played a
role in shifting from one peak to the other with the steady state
algorithm.

5. CONCLUSIONS
The results confirm that for this problem, proportional crossover
limits code growth while constant crossover allows it, even with a
steady state algorithm. This supports the theory that growth only
occurs when the number of 'genes' changed by crossover (and
presumably other genetic variation operators) is independent of
individuals’ total size, regardless of whether a generational or
steady state algorithm is used. I.e. if the number of genes
changed by genetic operators is proportional to the size of the
evolving individuals, growth is no longer an effective strategy to
increase robustness and does not occur. The results also
demonstrate that both the rate of growth and, more importantly,
the growth curve, are functions of the algorithm used.

More importantly, the results show that code growth with the
steady state algorithm, and presumably robustness in general, is

not a prerequisite to the population's shifting to a narrower peak
in the fitness landscape. With the steady state algorithm and either
form of crossover, the population shifted to the higher, narrower
peak within a few generations, and the average fitness with both
constant and proportional crossover are very similar, even though
one shows rapid growth and the other shows no growth. In
contrast, code growth in the generational algorithm, or
presumably some other mechanism to increase robustness, is a
necessary prerequisite to the population's shifting to the higher,
narrower peak. Thus, these results show that the role of genetic
robustness is significantly different in steady state, as opposed to
generational, evolutionary algorithms. Given our increasing
understanding of the importance of pressure for genetic
robustness in influencing the tempo and dynamics of evolution, it
is important to understand exactly how this pressure differs
between the two algorithms.
In particular this research suggests several significant questions
that need to be addressed. In what other ways do the performance
of a generational and steady state algorithm differ? How
important are these potential differences to other research results?
Is code growth a significant hindrance in genetic programming, or
does it serve a necessary purpose?

6. REFERENCES
[1] Blickle, T., and Thiele, L. Genetic Programming and

Redundancy. In Genetic Algorithms within the Framework
of Evolutionary Computation. Max-Planck-Institut fur
Informatik, Saarbrucken, Germany, 1994, 33-38.

[2] DeVisser, A.G.M., Hermission, J., Wager, G., Meyers, L.A.,
Bagheri-ChaiChain, H., Blanchard, J.L., Chao, L., Cheverud,
J.M., Elena, S.F., Fontana, W., Gibson, G., Hansen, T.F.,
Krakauer, D., Lewontin, R.C., Ofria, C., Rice, S.H., von
Dassow, G., and Wagner, A. Perspective: Evolution and
Detection of Genetic Robustness. Evolution, 57, 2003,
1959-1972.

[3] Edlund, J., and Adami, C. Evolution of Robustness in Digital
Organisms. Aritficial Life, 10, 2004, 167-179.

[4] Hogeweg, P., and Hesper, B. Evolutionary Dynamics and the
Coding Structure of Sequences: Multiple Coding as a
Consequence of Crossover and High Mutation Rates.
Computers and Chemistry, 16, 1992, 171-182.

[5] Koza, J.R. Genetic Programming: On the Programming of
Computers by Means of Natural Selection. The MIT Press,
Cambridge, MA, 1992.

[6] Krackauer, D.C., Plotkin, J.B. Redundnacy, antiredundancy,
and the robustness of genomes. PNAS, 99 (2002), 1405-
1409.

[7] Langdon, W. Fitness Causes Bloat: Simulated Annealing,
Hill Climbing and Populations. Technical Report CSRP-97-
22, University of Birmingham, Birmingham, UK, 1997.

[8] Langdon, W., and Poli, R. Fitness Causes Bloat. In Second
On-line World Conference on Soft Computing in
Engineering Design and Manufacturing, Springer-Verlag,
London, 1997, 13-22.

[9] Langdon, W., and Poli, R. Fitness Causes Bloat: Mutation. In
Proceedings of the First European Workshop on Genetic
Programming, Springer-Verlag, Paris, 1998, 37-48.

148

[10] Langdon, W., Soule, T., Poli, R., and Foster, J. The
Evolution of Size and Shape. In Advances in Genetic
Programming III. The MIT Press, Cambridge, MA, 1999,
163-190.

[11] McPhee, N.F., and Miller, J.D. Accurate Replication in
Genetic Programming. In Proceedings of the Sixth
International Conference on Genetic Algorithms. Morgan
Kaufmann, San Francisco, CA, 1995, 310-317

[12] Nordin, P., and Banzhaf, W. Complexity Compression and
Evolution. In Proceedings of the Sixth International
Conference on Genetic Algorithms. Morgan Kaufmann, San
Francisco, CA, 1995, 310-317.

[13] Nordin, P., Banzhaf, W., and Francone, F. Introns in Nature
and in Simulated Structure Evolution. In Proceedings Bio-
Computing and Emergent Computation. Springer, 1997, 22-
35.

[14] Smith, P., and Harries, K. Code Growth, Explicitly Defined
Introns, and Alternative Selection Schemes. Evolutionary
Computation, 6, 4 (1998), 339-360

[15] Soule, T. Exons and Code Growth in Genetic Programming.
In Genetic Programming, 5th European Conference,
EuroGP 2002, 2002, 142-151.

[16] Soule, T. Operator Choice and the Evolution of Robust
Solutions. In Genetic Programming Theory and Practice,
Riolo R., and Worzel, B., 2003, 257-270.

[17] Soule, T. Resilient Individuals Improve Evolutionary Search.
Artificial Life, 12, 1 (Winter 2005), 17-34.

[18] Soule, T., Foster, J., and Dickinson, J. Code Growth in
Genetic Programming. In Genetic Programming 1996:
Proceedings of the First Annual Conference. MIT Press,
Cambridge, MA, 1996, 215-223.

[19] Soule, T., Heckendorn, R., and Shen, J. Solution Stability in
Evolutonary Computation. In Proceedings of the 17th
International Symposium on Computer and Information
Systems, 2002, 237-241.

[20] Wilke, C. Selection for Fitness versus Selection for
Robustness in RNA Secondary Structure Folding. Evolution,
55 (2001), 2412-2420.

[21] Wilke, C., Wang, J.L., Ofria, C, Lenski, R.E., and Adami, C.
Evolution of digital organisms at high mutation rates leads to
survival of the flattest. Nature, 412 (2001), 331-33.

149

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

