
Comparing Genetic Robustness in Generational vs. Steady 
State Evolutionary Algorithms 

 

Josh Jones 
Department of Computer Science 

University of Idaho 
Moscow, Idaho 

jjones@uidaho.edu 

Terry Soule1 

Department of Computer Science 
University of Idaho 

Moscow, Idaho 
tsoule@cs.uidaho.edu 

   
ABSTRACT 
Previous research has shown that evolutionary systems not only 
try to develop solutions that satisfy a fitness requirement, but 
indirectly attempt to develop genetically robust solutions as well -
solutions where average loss of fitness due to crossover and other 
genetic variation operators is minimized.  It has been shown that 
in a simple “two peaks” problem, where the fitness landscape 
consists of a broad, low peak, and a narrow, high peak, 
individuals initially converge on the lower (less fit), but broader 
peak, and that increasing an individual’s genetic robustness 
through growth is a necessary prerequisite for convergence on the 
higher, narrower peak [18].  If growth is restricted, the population 
remains converged on the less fit solution.  We tested whether this 
result holds true only for generational algorithms, or whether it 
applies to steady state algorithms as well.  We conclude that 
although growth occurs with both algorithms, the steady state 
algorithm is able to converge on the higher peak without this 
growth.  This result shows that the role of genetic robustness in 
the evolutionary process is significantly different in generational 
versus steady state algorithms.  

Categories and Subject Descriptors 
I.2.2 [Artificial Intelligence]: Automatic Programming, program 
synthesis 

General Terms 
Algorithms, Performance, Experimentation, Theory. 

Keywords 
Growth, resiliency, genetic robustness, steady-state, generational 

1. INTRODUCTION 
The use of genetic algorithms (GA), genetic programming (GP), 
and related evolutionary algorithms continues to grow as 
evolutionary computation becomes more widely accepted as a 
practical problem solving technique.  However, the details of the 

evolutionary process and its effect on the evolution of successful 
solutions are not yet fully understood.  Previous research has 
shown that although these algorithms attempt to evolve solutions 
that better satisfy a given fitness function, other evolutionary 
pressures exist as well.  Specifically, it has been clearly shown 
that in any evolutionary system, including GP, GA, evolutionary 
artificial life systems, and natural biological systems, there is 
significant evolutionary pressure to  evolve solutions that are 
genetically robust, in addition to being highly fit [2][17][20][21].  
Genetic robustness is roughly defined as a measure of the average 
change in fitness of an individual as a result of genetic 
modification, e.g. crossover and mutation.  An individual is more 
robust if the average change in fitness due to genetic variation is 
smaller.1 
Previous work examining the evolution of genetic robustness has 
largely overlooked the role of the underlying genetic algorithm, 
specifically whether the pressure for genetic robustness varies 
significantly depending on whether a generational or steady-state 
algorithm is used.  Generational and steady state algorithms differ 
significantly in how individuals survive over time: how often 
individuals are replaced (die) versus how often they may 
reproduce.  Because the replacement strategy is so different 
between generational and steady state algorithms, it is likely to 
have a significant effect on the role of genetic robustness.  In this 
paper we reexamine previous results that were generated using a 
generational algorithm, comparing them to new results generated 
with a steady state algorithm.  The comparison shows that the role 
of genetic robustness in directing the evolutionary process is 
significantly different in generational versus steady state 
algorithms. 
This result has important implications for the application of 
evolutionary algorithms.  For practical applications, where the 
goal is simply to find the most fit solution, it means that the 
decision whether to use a generational or a steady state algorithm 
can have a significant effect on the probability of success.  
Similarly, for experiments where the goal is to understand the 
dynamics of evolution, it means that the decision whether to use a 
generational or a steady state algorithm can have a significant 
effect on the observed outcome.  The steady state results are of 
particular interest to the artificial life community, where attempts 
to model microbial evolution lead to steady state like algorithms.   
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2. BACKGROUND 
Pressure to evolve genetically robust individuals has been 
documented in artificial evolutionary systems in two very broad, 
but related ways.  First, researchers have shown that under many 
conditions, evolving populations will converge on less fit but 
broader peaks in a fitness landscape, rather than on the more fit 
but narrower peaks. Broader peaks represent genetically robust 
solutions because genetic changes to individuals on those broad 
peaks are likely to keep the individual somewhat on the peak, i.e. 
genetic changes cause relatively small fitness changes, the 
definition of a genetically robust individual.  In contrast, genetic 
changes to individuals on a narrow peak are likely to cause the 
individual to 'fall off' the peak.  Second, research has shown that 
there are a number of strategies that evolving individuals adopt to 
increase their genetic robustness.  These are discussed in detail 
below. 
A number of researchers have confirmed that evolving 
populations may converge on less fit, but broader, fitness peaks.  
Wilke et al. found that with the artificial evolutionary system Avida, 
with sufficiently high mutation rates, individuals with low 
reproductive rates that occupy flatter regions of the fitness landscape 
will eventually replace individuals with higher reproductive rates if 
those individuals with high reproductive rates occupy steeper 
regions of the fitness landscape [21].  Wilke has also shown that in 
competition between quasispecies at high mutation rates, 
quasispecies located on a neutral network with higher connection 
density may out-compete quasispecies with a higher replication rate 
on a less connected neutral network [20].  Krakauer and Plotkin 
showed that small populations converge on less fit, but more robust 
solutions (broader peaks) whereas larger populations converge on 
more fit, but genetically less robust solutions (higher, narrower 
peaks) [6]. This previous research confirms that under the 
conditions of small populations or high mutational loads, 
populations will often converge on broader but lower fitness peaks, 
i.e. evolution can favor individuals with lower reproductive rates, 
but higher genetic robustness.  
The phenomenon of code growth (or bloat) observed in genetic 
programming (GP) is one of the most outstanding example of the 
evolution of strategies to increase genetic robustness [2] [5] [7] [11] 
[12] [13] [17].  Code growth is a rapid increase in the size of the 
evolving individuals that is not directly correlated with fitness 
improvements.  It is seen in almost every GP model, and the growth 
usually consists of extra code that does not contribute to the 
program's fitness (known as inoperative code or introns). 
It is commonly accepted that the code growth occurs, at least in part, 
as a mechanism to increase genetic robustness, particularly with 
respect to crossover.  This hypothesis was independently proposed 
by a number of researchers in 1994 [1] and 1995 [11] [12].  The 
general idea is that if an individual's genome is mostly inoperative 
code, then crossover is most likely to exchange this inoperative 
code, and thus not affect fitness.  Therefore, by increasing the ratio 
of inoperative to operative code, an individual can increase its 
genetic robustness, which is done predominantly by increasing the 
amount of inoperative code. 
Recent studies show that code growth is a general phenomenon, not 
restricted to traditional tree-based GP algorithms, nor purely 
inoperative code.  Smith and Harries have shown that growth can 
occur in code that does influence fitness if the code has only a 
negligible effect on performance [14].  Soule et al. have shown that 

code growth can also occur in exons that have a significant effect on 
fitness [15] [19]. 
Additional research has shown mutation can encourage code growth 
in certain situations, so the phenomenon is not restricted to the 
crossover operator, even though the standard method of applying 
mutation in the evolutionary computation field appears to limits 
code growth [10] [19].  Theoretical research strongly suggests that 
code growth is a factor in any evolutionary system using a variable 
sized representation, regardless of the operators used [8] [9] [11].  
In addition to code growth, several other strategies for increasing 
genetic robustness have been shown to evolve.  Hogeweg and 
Hesper found that with high mutation rates, evolving subsequences 
are more likely to use "multiple coding", that is, to use existing, 
conserved, subsequences as recognition sites [4].  This increases 
robustness without necessarily increasing (or decreasing) fitness.   
It has also recently been shown that in representations that include 
multiple 'genes' with similar effects, those genes that produce more 
robust individuals will tend to replace genes that produce less robust 
individuals [15] [16] [19].  Edlund and Adami have shown that in 
artificial evolutionary systems, pressure for robust individuals 
reduces the amount of antagonistic epistasis [3].   
Recently, Soule has studied the interaction of these two phenomena: 
convergence on less fit, but broader peaks, and adaptation of 
strategies to increase genetic robustness.  Using a modified 
generational evolutionary algorithm to solve a simple “two peaks” 
problem, it was shown that increasing genetic robustness could 
cause a population that originally converged on a less fit, broad peak 
to shift to a more fit, narrower peak [18].  The increasing genetic 
robustness of the individuals effectively 'broadened' the narrower 
peak making it evolutionarily competitive.  In this problem, 
individuals are numeric strings consisting of 0s, 1s, and 4s.  The 
strings vary in length, and have a value: the sum of all digits in the 
string.  Fitness is a function of value, as shown in Figure 1. 
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Figure 1: Individual's fitness based on its value. 

 
Note that in Figure 1 the peak on the left is much broader, but the 
second peak is higher by 1 point.  It was found that when using a 
“constant crossover” (described later), solutions initially converged 
on the broader peak [18].  However, as the algorithm continued, the 
individual strings grew in length, increasing genetic robustness.  
When a certain critical length was reached, individuals suddenly left 
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the broader peak and converged on the sharper peak.  A second type 
of crossover, “proportional crossover”, limited the individuals' 
growth, and the population never left the broader peak.  Soule 
concluded that increasing genetic robustness could be a prerequisite 
to finding better solutions, if those solutions represented narrower 
fitness peaks. 
The research described above used generational models of the 
evolutionary process, which raises the question of whether the 
presence and role of pressure for genetic robustness exists in all 
implementations of evolutionary algorithms.  Specifically, would 
the same pressure for robustness exist in a steady state 
implementation?  Would an increase in robustness (accomplished 
through growth or some other strategy) remain a necessary 
prerequisite to convergence on a higher, narrower peak?  Given the 
widespread use of steady state algorithms in evolutionary 
computation and artificial life applications, and given the significant 
influence of the pressure for robustness on the evolutionary process, 
it is important to determine whether similar results apply to steady 
state algorithms. 
Whereas in previous research, individuals suddenly switched from 
the lower peak to the higher peak when they reached a certain 
critical length, we hypothesize that using a steady state algorithm 
will cause the population to converge on a higher, narrower peak 
more smoothly.  This hypothesis is based on the fact that in steady 
state algorithms the current best solutions are automatically 
maintained in the population – only the poorest individuals run a 
risk of being replaced.  In contrast, in a generational algorithm every 
individual is replaced in every generation, thus there is a much 
greater pressure to produce offspring that are not degraded by 
crossover and mutation. 
For example, consider the fate of an individual in the top 20% of the 
population.  In a steady state algorithm, that individual will be 
selected as a parent fairly often and thus will have the chance to 
produce offspring, but it is in no danger of being replaced (at least 
not until the average fitness of the population rises to the point 
where it is no longer in the top 20% of the population).  Thus, even 
if the individual is genetically 'brittle' and most of its offspring are 
significantly degraded by crossover and/or mutation, it will still 
survive, at least until the average fitness of the population surpasses 
its fitness.  
In contrast, in a generational algorithm with the same selection 
mechanism, the same individual in the top 20% of the population 
will be selected to be a parent equally often, but at the end of the 
generation the individual is deleted along with the rest of the 
previous generation's population.  In this case, if the individual is 
genetically brittle and therefore it has offspring with degraded 
fitness, both the offspring and the original individual are likely to 
die out.  (Of course, it is possibly that this hypothetical individual 
will manage to survive into the next generation, but for the typical 
crossover and mutation rates used in evolutionary algorithms it is 
unlikely that it would escape all genetic changes for more than a 
few generations.) 
To test our hypothesis we solved the two peaks problem using both 
a generational and a steady state algorithm.  Although it is a small, 
narrow problem, we chose it due to its ability to represent a much 
wider variety of problems.  Specifically, if it can be demonstrated 
that generational and steady state algorithms can produce 
significantly different results for this small problem, it suggests a 
significant difference exists between other problems as well.  

Additionally, the two peaks problem had previously been used to 
show genetic robustness was necessary to converge upon more-fit 
solutions[18], a result which applies to a wide variety of additional 
problems as well.  It was necessary, therefore, to use the same 
problem to demonstrate the limitations of these results.  

The two peaks problem is designed specifically to highlight both the 
preference for lower, broader peaks and the adaptation of strategies 
to increase robustness in various algorithms.  Specifically, we 
measure the time required for populations evolved with each 
algorithm to converge on either peak, and determine whether 
populations evolved with the steady state algorithm converge on the 
higher, narrower peak more smoothly or more rapidly than those 
evolved with the generational algorithm.  We also observed the rate 
of growth of the individuals, to determine whether the steady state 
algorithm results in as rapid code growth as the generational 
algorithm. 

3. METHODS 
The generational evolutionary algorithm was implemented 
identically to the one used by Soule [18], explained below.  The 
steady state version differed only in that it was a steady state 
algorithm.  The parameters used in these experiments are described 
in Table 1. 
 

Table 1: Parameters of the Evolutionary Algorithms 

Fitness F(sum of integers in 
chromosome) 

Integer Values 0,1,4 

Population Size 500 

Crossover Probability (for 
generational algorithm only) 

90% 

Mutation Probability 0% (No Mutation) 

Selection 3 member tournament (1 for 
each parent) 

Iterations 2000 generations 

Maximum Length 3000 genes 

Elitism (for generational 
algorithm only) 

2 copies of the single best 
individual  

Initial Population Random, of lengths 5 to 59. 

Number of Trials 50 

Crossover Proportional and Constant 
(explained below) 

Peak 1 Height 25 

Peak 1 Location 33 

Peak 1 Width 14 

Peak 2 Height 26 

Peak 2 Location 66 

Peak 2 Width 3 
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The length of the individual was allowed to vary in size, up to 3000 
digits long.  Solutions exceeding this length were truncated to 3000 
(deleting all digits after the three thousandth.)  A value was assigned 
to each individual by summing all the digits in its integer string.  
The individual’s fitness was then assigned by mapping its value to a 
fitness using the function illustrated in figure 1.  Although allowing 
variable length chromosomes meant the two algorithms were not 
standard genetic algorithms, it allowed specific advantages.  First, it 
provided a clear measure of genetic robustness through an 
individual’s size, and more specifically, the number of 0’s in the 
individual’s integer string.  Secondly, it allowed the algorithms to 
more closely model GP algorithms, where genetic robustness in the 
form of code growth is larger topic of concern.  Finally, using two 
different forms of crossover (explained below), we were still able to 
model standard genetic algorithms due to the lack of growth that 
resulted using proportional crossover, while still modeling GP when 
using constant crossover.       
For the steady state algorithm, a “generation” was defined as 250 
(half the population) crossovers, where each crossover generates 2 
children (crossover behavior applies to both generational and steady 
state algorithms).  Each child in the steady state algorithm then 
replaced an individual supplied by a worst-of-three tournament (one 
tournament for each child).  The replacement was automatic; the 
child did not need to be of better fitness than the individual it was 
replacing.  This stipulation was added because the algorithm was 
otherwise quick to generate enough optimal solutions to saturate the 
population, effectively stopping the algorithm and making it 
difficult to study its effects over time. 
Each algorithm was tested with two different versions of crossover: 
proportional and constant crossovers.  Proportional crossover is 
analogous to two-point crossover in a standard GA.  Two crossover 
points are randomly selected on each parent, and the integer string 
between these two points is swapped between parents.  For 
example: 
0114|140|0104  ->  0114|104401|0104 
10|104401|100  ->  10|140|100 
Note that in proportional crossover, the distance between an 
individual’s two crossover points is random, and strongly dependent 
on the length of the individual.  The second crossover, constant 
crossover, developed crossover points which were not strongly 
dependent on the individuals’ length.  The first crossover point was 
chosen randomly, as usual.  The second crossover point was picked 
as a function of its distance from the first crossover point.  
Specifically,  
distance = 2; 
while(random() < 0.50) 
 distance *= 2; 
crossover2 = crossover1 + distance; 
In other words, the second crossover point was by default 2 indices 
ahead of the first crossover point, but that distance iteratively 
doubled with 50% probability.  I.e. 50% of the crossover regions are 
of length 2, 25% are of length 4, 12.5% are of length 8, etc. The 
maximum allowed distance was half of the individual's length, e.g. 
the maximum crossed region in an individual of length N is N/2. 
Constant crossover is analogous to crossover in tree-based GP.  In 
standard tree-based GP crossover a random point is chosen for 
crossover.  For full binary trees this results in an average crossover 
branch size of two nodes regardless of the tree size.  I.e. larger 

branches are exponentially less likely to be chosen for crossover.  In 
practice, GP usually leads to randomly shaped trees rather than full 
trees.  However, the distribution of crossover points still heavily 
favors small branches and using the 90/10 rule (choosing leaf nodes 
for crossover only 10\% of the time) only slightly shifts the 
distribution towards larger branches.  Thus, the distribution of 
crossover sizes with constant crossover is comparable to those seen 
in tree-based GP; both emphasize exchanging small branches. 

4. Results 
The generational and the steady state algorithms were tested with 
both types of crossovers, for a total of 4 combinations.  Each 
combination was tested for 50 trials.   
When running the algorithms, the generational algorithm performed 
exactly as in the original study, as expected.  Figures 2 and 3 show 
the average value of the individuals in each generation, averaged 
across all 50 trials.  The error bars are the standard deviation across 
the 50 trials.  Recall that the lower (less fit), but broader peak is 
centered on the value 33 and the higher, narrower peak is centered 
on the value 66. 
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Figure 2: Average value of individuals using proportional 
crossover, error bars are one standard deviation.   
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Figure 3:  Average value of individuals using constant 
crossover, error bars are one standard deviation. 
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The generational algorithm using proportional crossover (Figure 
2, dark line) converges on the lower peak of 33.  The generational 
algorithm using constant crossover (Figure 3, dark line) initially 
converges on the lower peak, and then halfway through the run 
switches over to the higher peak. 
The steady state algorithm produces significantly different results.  
Although Figure 2 (pale line) shows a brief dip to the broader 
peak in the very early generations, the population of the steady 
state algorithm, using either crossover, quickly finds the higher 
peak and slowly converges on it as the run continues. 
Interestingly, even with the steady state algorithm the two 
crossovers do not behave identically.  The average value of the 
population with constant crossover is consistently 10 higher then 
that of the proportional crossover.  Why should this occur? 
The answer also seems to be based on the evolution of genetic 
robustness.  Because the children in the steady state algorithm 
replace the loser in a worst-of-three tournament, the upper 2/3rds 
of the population will be the more optimal solutions (solutions 
that are on the higher peak), while the lower 1/3rd of the 
population will be individuals who were produced by crossover 
and were potentially 'pushed' off of the higher peak.  With half of 
all constant crossovers only changing two genes in an individual, 
these offspring do not differ much from their parents, and 
therefore are much less likely to have been pushed far from the 
higher peak.  Thus, these offspring do not pull the average value 
far from the optimal.  In contrast, proportional crossover causes 
offspring to be significantly changed from their parents, causing 
more variation in the individuals in the lower third of the 
population and a lower average value. 
To help understand this behavior, two snapshots were taken of the 
population during one trial of proportional crossover.  The 
snapshot counted how many individuals existed with each value.  
One snapshot was taken at generation 100, the other at generation 
1900.  The results are shown in Figures 4 and 5.   
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Figure 4: Distribution of individuals in the steady state 
algorithm, using proportional crossover, generation 100 
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Figure 5: Distribution of individuals in the steady state 

algorithm, using proportional crossover, generation 1900 
 
As expected, both figures show a large number of individuals at 
the higher peak, with a scattering of individuals, representing the 
lower ranks in the population, which bring down the average 
fitness.  What is interesting is that these lower ranked individuals, 
at least initially, still tend to converge on the lower peak.  It 
appears that the individuals on or near the lower, broader peak, 
have sufficient fitness to not lose the worst-of-three tournament in 
all circumstances, so they remained in the population, but did not 
have high enough fitness to be selected as a parent.  As time went 
on, the number of individuals at the higher peak increased and the 
individuals at the lower peak began to lose the worst-of-three 
tournament more often, causing the slow increase in average 
value seen in Figures 2 and 3. 
Next we examined the total code growth for each algorithm.  It 
was previously shown that code growth does not occur in the 
generational algorithm when proportional crossover is used, but 
that growth does occur with constant crossover [18].   
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Figure 6: Average size of individuals using constant crossover, 
error bars are standard error. 

147



10

15

20

25

30

35

0
12

0
24

0
36

0
48

0
60

0
72

0
84

0
96

0
10

80
12

00
13

20
14

40
15

60
16

80
18

00
19

20

Generation

Si
ze

Generational Steady State
 

Figure 7: Average size of individuals using proportional 
crossover, error bars are standard error. 

 
Figures 6 and 7 show the average individual size and standard 
error for constant crossover and proportional crossover with the 
generational and steady state algorithms.  As expected, both the 
generational and steady state algorithms produce no code growth 
when proportional crossover is used.  Likewise, both the 
generational and steady state algorithms show significant code 
growth when constant crossover is used.  What is curious is the 
significant difference in the rates at which code growth occurs.  
The size of individuals in the generational algorithm increased 
steadily throughout the run.  In contrast, the steady state algorithm 
individuals had minimal code growth throughout the first half the 
algorithm, followed by a rapid increase for the second half.  
Recall that for individuals evolved with the steady state 
algorithm, the average value with both constant crossover and 
proportional crossover increased at the same relatively slow rate 
(Figures 2 and 3).  In particular, with constant crossover the 
population reached the higher average value (above the value 
reached when proportional crossover was used) before code 
growth became a factor.  I.e. Figure 3 shows that with constant 
crossover and the steady state algorithm, the average value is 
constant after generation 840, which is when the rapid growth 
begins.  Therefore, it does not seem that code growth played a 
role in shifting from one peak to the other with the steady state 
algorithm. 

5. CONCLUSIONS 
The results confirm that for this problem, proportional crossover 
limits code growth while constant crossover allows it, even with a 
steady state algorithm.  This supports the theory that growth only 
occurs when the number of 'genes' changed by crossover (and 
presumably other genetic variation operators) is independent of 
individuals’ total size, regardless of whether a generational or 
steady state algorithm is used.  I.e. if the number of genes 
changed by genetic operators is proportional to the size of the 
evolving individuals, growth is no longer an effective strategy to 
increase robustness and does not occur.  The results also 
demonstrate that both the rate of growth and, more importantly, 
the growth curve, are functions of the algorithm used.    
 
More importantly, the results show that code growth with the 
steady state algorithm, and presumably robustness in general, is 

not a prerequisite to the population's shifting to a narrower peak 
in the fitness landscape. With the steady state algorithm and either 
form of crossover, the population shifted to the higher, narrower 
peak within a few generations, and the average fitness with both 
constant and proportional crossover are very similar, even though 
one shows rapid growth and the other shows no growth.  In 
contrast, code growth in the generational algorithm, or 
presumably some other mechanism to increase robustness, is a 
necessary prerequisite to the population's shifting to the higher, 
narrower peak.  Thus, these results show that the role of genetic 
robustness is significantly different in steady state, as opposed to 
generational, evolutionary algorithms.  Given our increasing 
understanding of the importance of pressure for genetic 
robustness in influencing the tempo and dynamics of evolution, it 
is important to understand exactly how this pressure differs 
between the two algorithms.   
In particular this research suggests several significant questions 
that need to be addressed.  In what other ways do the performance 
of a generational and steady state algorithm differ?  How 
important are these potential differences to other research results?  
Is code growth a significant hindrance in genetic programming, or 
does it serve a necessary purpose? 
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