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ABSTRACT

Heuristic Algorithms (HA) are very widely used to tackle
practical problems in operations research. They are simple,
easy to understand and inspire confidence. Many of these
HAs are good for some problem instances while very poor for
other cases. While Meta-Heuristics try to find which is the
best heuristic and/or parameters to apply for a given prob-
lem instance Hyper-Heuristics (HH) try to combine several
heuristics in the same solution searching process, switching
among them whenever the circumstances vary. Besides, in-
stead to solve a single problem instance it tries to find a
general algorithm to apply to whole families of problems.
HH use evolutionary methods to search for such a problem-
solving algorithm and, once produced, to apply it to any
new problem instance desired. Learning Classifier Systems
(LCS), and in particular XCS, represents an elegant and
simple way to try to fabricate such a composite algorithm.
This represents a different kind of problem to those already
studied by the LCS community. Previous work, using sin-
gle step environments, already showed the usefulness of the
approach. This paper goes further and studies the novel
use of multi-step environments for HH and an alternate way
to consider states to see if chains of actions can be learnt.
A non-trivial, NP-hard family of problems, the Bin Pack-
ing one, is used as benchmark for the procedure. Results
of the approach are very encouraging, showing outperfor-
mance over all HAs used individually and over previously
reported work by the authors, including non-LCS (a GA
based approach used for the same BP set of problems) and
LCS (using single step environments).

Categories and subject descriptors: 1.2.8 [Artificial Intel-
ligence]: Problem Solving, Control Methods, and Search—
Soft Computing

General Terms: Algorithms

Keywords: Soft Computing, Learning Classifier Systems,
Hyper-Heuristics, Heuristics, Evolutionary Computation.
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1. INTRODUCTION

Despite the supposed familiarity with the concept of Dar-
wininan evolution and the success it shows in nature, bio-
inspired algorithms and, in general, stochastic algorithms,
are seen with suspicion by the common user. The facts that
randomness is involved in the process, that it is difficult
to provide guarantees of the quality of the solution, that
many algorithms also have a sizeable set of parameters that
need to be set (a process that can require considerable skill
and experience), etc. produce a deep mistrust outside re-
searchers in the field. Even renowned academical texts [14]
can be very cautious about them, and users may justifiably
prefer to use simpler deterministic approaches even if those
approaches generally produce poorer results.

Besides, from the commercial viewpoint, there is not enough
interest in solving optimisation problems to optimality, or
even close to optimality. Instead the interest seems to be in
obtaining ”good enough - soon enough - cheap enough” kind
of solutions. It is for these reasons that Heuristic Algorithms
(HA) are very widely used to tackle practical problems in
operations research. They are also simple, easy to under-
stand and inspire confidence. Besides, many optimisation
problems have simple heuristic methods to solve them, with
the additional benefit that these heuristics may have asso-
ciated theoretical best and worst performance limits.

Of course, many of these HAs are good for some problem
instances while very poor for other cases. Lately there has
been a lot of research in Meta-Heuristics, that usually tries
to automatically find the best heuristic algorithm, and its
most appropriate parameters, to be applied for a particular
case.

A slightly different approach is taken by Hyper-Heuristics.
On one side it will apply several heuristics at different stages
of the process, whenever the circumstances suggest a more
appropriate method than the currently used. On the other
side it aims to produce a novel problem-solving algorithm
rather than to solve individual problems. The idea is to
use the evolutionary methods to search for such a problem-
solving algorithm and, once produced, to apply it to any
new problem instance desired. The novel algorithm is to be
constructed from simple heuristic ingredients and should,
ideally, be fast and deterministic and with good worst-case
performance across a range of problems.

XCS represents an elegant and simple way to try to fab-
ricate such a composite algorithm, and the interest in this
work lies in assessing competitiveness of its performance.



It has already been presented in [13, 16], that even when
the model was trained using only a few problems, it gener-
alised and also performed well on a large number of unseen
problems. That was a useful step towards the concept of us-
ing EAs to generate strong solution processes, rather than
merely using them to find good individual solutions. Later
work [10, 12, 11], using alternate EAs (a genetic algorithm)
and applied to a different kind of problem (timetabling) pro-
vided further evidence of the benefits of the hyper-heuristics
approach.

In [13] an XCS was applied using exclusively single step
environments, meaning that rewards were available only af-
ter each action had taken place. Here the approach is ex-
tended to multi-step environments. Besides, there are two
ways to define a step. One is to consider a step as perform-
ing a single action (in this work an action will be the filling
of a single bin). Another approach is to consider a step as a
sequence of actions (usually the same) until a change in the
state of the environment is produced. Note that a state can
have a large number of actions, and chains of various lengths
can be selected for multi-step problems. This affects how
and when rewards are applied. These approaches are tested
using a large set of benchmark BP problems and a small set
of eight heuristics, consisting of widely used algorithms, and
combinations of these devised by the authors.

The work reported here attempts to find an algorithm that
iteratively builds a solution, however it is important to note
that this is atypical in the field. It is more common for an
algorithm to start with a complete candidate solution and
then search for improvements by making modifications, e.g.
by some kind of controlled neighbourhood search. Hyper-
heuristics could also be applied to try to discover a good, fast
algorithm of that type, with tightly-bounded performance
costs; this might be a topic for further research but outside
the scope of the present work.

The rest of this paper is organised as follows: in section 2
the idea of hyper-heuristic is further developed and justified.
Section 3 introduces one-dimensional bin-packing problems
and some of their features. In section 4 the different heuris-
tics used to solve the bin-packing problem are presented,
followed by descriptions of how the state of the problem
solving procedure is represented. Both, heuristics and state
correspond, respectively, to the actions and the messages
(context) for the XCS. Section 5 reports the experiments
performed, including set-up and results obtained. The pa-
per ends in section 6 were final conclusions are drawn.

2. THEIDEA OF HYPER-HEURISTICS

Despite the aforementioned mistrust from general practi-
tioners with regards to evolutionary techniques, their use is
often justified simply by results. Evolutionary algorithms
can be excellent for searching very large spaces, at least
when there is some reason to believe that there are ’build-
ing blocks’ to be found. A ’building block’ is a fragment,
in the chosen representation, such that chromosomes which
contain it tend to have higher fitness than those which do
not. EAs bring building blocks together by chance recom-
bination, and building blocks which are not present in the
population at all may still be generated by mutation. Some
EAs allow, as well, reinforcement learning, to be applied
when some measure of reward can be granted to actions that
produced good results. This type of learning procedure is
specially useful in tasks where the solution to be found is a
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sequence of actions. In particular, learning classifier systems
have repeatedly shown capabilities to deal with this kind of
problems.

Hyper-Heuristics represents a step towards using EAs in
a way that may solve some problems of acceptability for
potential real-world use. The basic idea of HH is as fol-
lows: instead of using an EA to discover a solution to a
specific problem, the EA is used to try to fabricate a solu-
tion process applicable to many problem instances built from
simple, well-understood heuristics. Such a solution process
might consist of using a certain heuristic initially, but after
a while the nature of the remainder of the task may be such
that a different heuristic becomes more appropriate to use.
Once such solution process is discovered, it can be provided
to users that can apply it as many times, and to as many
different problems, as desired. The problems will be solved
using the reassuring and simple heuristics that users are fa-
miliar with. A good general overview of hyper-heuristics
and their applications can be found in [3].

The key idea in hyper-heuristics is to use members of a set
of known and reasonably understood heuristics to transform
the state of a problem. The key observation is a simple one:
the strength of a heuristic often lies in its ability to make
some good decisions on the route to fabricating an excellent
solution. Why not, therefore, try to associate each heuristic
with the problem conditions under which it flourishes and
hence apply different heuristics to different parts or phases
of the solution process?

The alert reader will immediately notice an objection to
this whole idea. Good decisions are not necessarily easily
recognisable in isolation. It is a sequence of decisions that
builds a solution, and so there can be considerable epista-
sis involved - that is, a non-linear interdependence between
the parts. However, many general search procedures such
as evolutionary algorithms and, in particular, classifier sys-
tems, can cope with a considerable degree of epistasis, so
the objection is not necessarily fatal.

Therefore, a possible framework for a hyper-heuristic al-
gorithm:

1. Start with a set H of heuristic ingredients, each of

which is applicable to a problem state and transform
it to a new problem state.

. Let the initial problem state be Sp

. If the problem state is S; then find the ingredient that
is in some sense most suitable for transforming that
state. Apply it, to get a new state of the problem S; 1

. If the problem is solved, stop. Otherwise go back to 3.

ONE-DIMENSIONAL
BIN-PACKING PROBLEMS

In the one-dimensional Bin Packing problem (1DBPP),
there is an unlimited supply of bins, each with capacity ¢ (a
positive number). A set of n items is to be packed into the
bins, the size of item 4 is s; > 0, and items must not over-fill

any bin:
> s
iebin(k)

3.

(1)

The task is to minimise the total number of bins used.
Despite its simplicity, this is an NP-hard problem. If M is



the minimal number of bins needed, then clearly:

n

M= [(Ysi)/e]

i=1

(2)

and for any algorithm that does not start new bins unneces-
sarily, M < bins used < 2M (because if it used 2M or more
bins there would be two bins whose combined contents were
no more than ¢, and they could be combined into one).

A deeper discussion about algorithms used in literature
to solve BP, including EAs, and the appropriateness of this
benchmark for HH, can be found in [13, 16, 10].

3.1 Bin-packing Benchmark Problems

The problems used in this work come from two sources.
The first collection is available from Beasley’s OR-Library [1],
and contains problems of two kinds that were generated and
largely studied by Falkenauer [8]. The first kind, 80 prob-
lems named uN_M, involve bins of capacity 150. N items are
generated with sizes chosen randomly from the interval 20-
100. For N in the set (120,250, 500, 1000) there are twenty
problems, thus M ranges from 00 to 19. The second kind, 80
problems named tN_M, are the triplet problems mentioned
earlier. The bins have capacity 1000. The number of items
N is one of 60, 120, 249, 501 (all divisible by three), and
as before there are twenty problems per value of N. Item
sizes range from 250 to 499 but are not random; the problem
generation process was described earlier.

The second class of problems studied in this paper comes
from the Operational Research Library [2] at the Technis-
che Universitdt Darmstadt. Their "bppl-1’ set and their very
hard ’bppl-3’ set were used in this paper. In the bppl-1 set
problems are named NxCyWz_a where x is 1 (50 items), 2
(100 items), 3 (200 items) or 4 (500 items); y is 1 (capacity
100), 2 (capacity 120) or 3 (capacity 150); z is 1 (sizes in
[1..100]), 2 (sizes in [20..100]) or 4 (sizes in [30..100]); and
a is a letter in [A..T] indexing the twenty problems per pa-
rameter set. (Martello and Toth [9] also used a set with sizes
drawn from [50..100], but these are far too easy to solve so
they have been excluded from this work.) Of these 720 prob-
lems, the optimal solution is known in 704 cases and in the
other sixteen, the optimal solution is known to lie in some
interval of size 2 or 3. In the hard bppl-3 set there are just
ten problems, each with 200 items and bin capacity 100,000;
item sizes are drawn from the range [20,000..35,000]. The
optimal solution is known in only three cases, in the other
seven the optimal solution lies in an interval of size 2 or 3.
These results were obtained with an exact procedure called
BISON [15] that employs a combination of tabu search and
modified branch-and-bound.

In all, therefore, 890 benchmark problems are used.

4. COMBINING HEURISTICSWITH XCS

This section is divided into three parts. The first subsec-
tion describes the heuristics used, addressing why they were
selected. The next subsection describes the representation
used within XCS. Finally, how XCS is used to discover a
good set of rules is explained.

4.1 The Set of Heuristics

First, a variety of heuristics were developed and their per-
formances were evaluated on the benchmark collection. Of
the fourteen that were implemented and tested, some were
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taken directly from the literature, others were variants cre-
ated by the authors. Some of these algorithms were always
dominated by others; among those that sometimes obtained
the best of the fourteen results on a problem, some were al-
ways first-equal, rather than being uniquely the best of the
set. There is no space here to describe the full set, but four,
whose performance seemed collectively to be representative
of the best, were selected as follows:

e Largest Fit Decreasing (LFD): items are taken in order
of size, largest first, and put in the first bin where they
will fit (a new bin is opened if necessary, and effectively
all bins stay open). This was the best of the fourteen
heuristics in over 81% (compared with other heuristics
tested and not with the results reported in literature)
of the bppl-1 problems, but was never the winner in
the bppl-3 problems.

Next-Fit-Decreasing (NFD): an item is placed in the
current bin if possible, or else a new bin is opened,
becoming the current bin where the item is placed.
This heuristic usually performs very poorly.

Djang and Finch’s algorithm (DJD), see [7]. This puts
items into a bin, taking items largest-first, until that
bin is at least one third full. It then tries to find one,
or two, or three items that completely fill the bin. If
there is no such combination it tries again, but looking
instead for a combination that fills the bin to within 1
of its capacity. If that fails, it tries to find such a com-
bination that fills the bin to within 2 of its capacity;
and so on. This of course gets excellent results on, for
example, Falkenauer’s problems; it was the best per-
former on just over 79% (again against other tested
Heuristics and not with the results reported in litera-
ture) of those problems but was never the winner on
the hard bppl-3 problems.

DJT (Djang and Finch, more tuples): devised by the
authors, this corresponds to a modified form of DJD,
considering combinations of up to five items rather
than three items. In the Falkenauer problems, DJT
performs exactly like DJD, as one would expect; in
the bppl-1 problems it is a little better than DJD.

In addition to these four, a ’filler’ process was also used
(coupled with each algorithm), which tried to find items to
pack in any open bins, rather than moving on to a new bin.
This might, for example, make a difference in DJD if a bin
could be better filled by using more than three items once
the bin was one-third full. Thus, in all, eight heuristics were
used. The action of the filler process is described later.

4.2 Representing Problem State for XCS

As explained above, the idea is to find a good set of rules
each of which associates a heuristic with some description of
the current state of the problem. To execute the rules, the
initial state is used to select a heuristic and that heuristic
is used to pack a bin. The rules are then consulted again
to find a heuristic appropriate to the altered problem state,
and the process repeats until all items have been packed.

The problem state is reduced to the following simple de-
scription. The number of items remaining to be packed are
examined, and the percentage R of items in each of four
ranges is calculated. These ranges are shown in table 1.



Table 1: Item size ranges

Huge: items over 1/2 of bin capacity

Large: items from 1/3 up to 1/2 of bin capacity
Medium: | items from 1/4 up to 1/3 of bin capacity

Small: items up to 1/4 of bin capacity

These are, in a sense, natural choices, since at most one
huge item will fit in a bin, at most two large items will fit a
bin, and so on. The percentage of items that lie within any
one of these ranges is encoded using two bits as shown in
table 2.

Table 2: Representing the proportion of items in a
given range

Bits | Proportion of items
00 0 - 10%
01 10 — 20%
10 20 - 50%
11 50 —100%

Thus, there are two bits for each of the four ranges. Fi-
nally, it seemed important to also represent how far the pro-
cess had got in packing items. For example, if there are very
few items left to pack, there will probably be no huge items
left. Thus, three bits are used to encode the percentage of
the original number of items that still remain to be packed;
table 3 illustrates this.

Table 3: Percentage of Items Left

Bits | % left to pack || Bits | % left to pack
000 0-125 100 50 — 62.5
001 12.5 - 25 101 62.5 - 75
010 25 -37.5 110 75 - 87.5
011 37.5 - 50 111 87.5 — 100

The action is an integer indicating the decision of which
strategy to use at the current environmental condition, as
shown in table 4. As mentioned earlier, the second four ac-
tions use a filler process too, which tries to fill any open bins
as much as possible. If the filling action successfully inserts
at least one item, the filling step finishes. If no insertion was
possible, then the associated heuristic (for example, LFD in
'Filler+LFD’) is used. This forces a change in the prob-
lem state. It is important to remember that the trained
XCS chooses deterministically, so that it is important for
the problem state (if not the state description) to change
each time, to prevent endless looping.

The alert reader might wonder whether the above problem
state description in some way made heuristic selection an
easy task. However, when each of our 14 original heuristics
were evaluated, it was found that many cases where two
problems had the same initial state description, but different
algorithms, were the winners of the 14-way contest. For each
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Table 4: The action representation

Action | Meaning, Use || Action | Meaning, Use
000 LFD 100 Filler + LFD
001 NFD 101 Filler + NFD
010 DJD 110 Filler + DJD
011 DJT 111 Filler + DJT

of the 14 algorithms it was tried using a perceptron to see
whether it was possible to classify problems into those on
which a given algorithm was a winner and those on which
it was not a winner. In every case, it was not possible, and
therefore the learning task faced by XCS was not a trivial
one.

5. THE EXPERIMENTS

The core of the application is Martin Butz’ version of XCS
[4, 5, 6], freely available over the web from the IIliGAL site.
The reward scheme, including when and what to reward,
lies in a level above the general XCS implementation. Some
modifications were made for multi-step environment, which
will be explained below, but the core remained the same, in
an effort of providing more evidence of the usefulness and
generality capabilities of XCS. The XCS parameters used
were exactly as in [17], unless otherwise stated.

51 Set-up
5.1.1 Training and testing sets:

Each set of bin-packing problems is divided into training
and test sets. In each case, the training set contained 75%
of the problems; every fourth problem was placed in the test
set. Since the problems come in groups of twenty for each
type, the different sorts of problem were well represented
in both training and test sets. All types of problems were
combined into one large set of 890 problems that divided
in training and test sets in the same manner. The reports
below focus only on results by this combined collection, in
which the training set has 667 problems and the test set has
223 problems. The combined set provides a good test of
whether the system can learn from a very varied collection
of problems.

5.1.2 Computational effort:

The experiments proceeded as follows. A limit of L for
training cycles for XCS was set, where the values tried were
L = 10000, 15000, 20000, 25000, 30000. During the learning
phase, XCS first randomly chooses a problem to work on
from the training set. One step, whether explore or exploit,
usually corresponds to filling one bin (see below more about
steps). In an explore step the action is chosen randomly, in
an exploit step it is chosen according to the maximum pre-
diction appropriate to the current problem state description.
This is repeated until all the items in the current problem
have been packed. A new random problem is then chosen.
A cycle will always be considered as packing a single bin
(some ’steps’ can pack several bins and consume several cy-
cles). Clearly, a large problem such as one of the u1000_M
will consume a great number of cycles.



5.1.3 Recording theresults:

The best result obtained on each problem during this
training phase is recorded. Remember, however, that train-
ing continues, so the rule set may change after such best
result was found. In particular, the final rule set at the end
of the training phase might not be able to reproduce the best
result ever recorded on every problem. Note as well that,
during training, there is some exploration that uses random
choices. Nevertheless, it is reasonable to record the best re-
sult ever found during (rather than at the end of) training
on each problem also, because these are still reproducible
results, by re-running the training with the same seed, and
easily so. That best result obtained during training will be
termed as TRB. It represents a potential achievable result
for the hyper-heuristics.

At the end of training, the final rule set is used on every
problem in the same training set to assess how well this rule
set works. This is done using exploitation all the time so
the result may be worse than the aforementioned best re-
sult recorded during the training process. This reproducible
training result will be referred to as TRR.

Of course, the classifier obtained is also applied to every
problem in the test set to measure the generalisation capa-
bilities of the process. These test results will be shown under
the label TST.

In summary, there would be two values for the training
problems set: best ever explored (TRB) and the best re-
called (TRR). Likewise, there is one value for the testing
problems set (T'ST). All results shown are averages over ten
runs with different seeds, unless stated otherwise.

In previous work [13, 10, 16] comparisons where made
not only against the best results reported in literature, but
also with the best result obtained by any of the constituent
heuristics used. This makes sense, as a fair measure of the
synergistic effect of hyper-heuristics is to compare it with
the best of all of its individual components for each problem.
However, since results of these comparisons were excellent
—always above 98% and for the extra 2%, only one extra bin
was used—, demonstrating the convenience of using hyper-
heuristics over single heuristics has been set aside in this
work. So in what follows, only comparisons against best
results reported in literature will be provided.

5.1.4 Rewards:

The reward earned is proportional to how efficiently a
bin was packed. For example, if a bin is packed to 94%
of its capacity, then the reward earned is 0.94. Remember
that 'packing’ here means continuing to the point where the
heuristic would switch bins, rather than optimally packing.
A reward of 1.0 is paid for packing the final bin. Otherwise,
an algorithm which, say, placed the final item of size 1 in a
final bin in order to complete the packing, would earn only
0.01. The filler is rewarded in a slightly different way; it is
rewarded in proportion to how much it reduces the empty
space in the open bins.

5.1.5 Random Algorithm for comparison:

The problems were also solved using an algorithm that
chooses randomly a heuristic to be applied. This is done
to double check that the algorithm is learning indeed. The
results are also averaged over 10 seeds as well. However, the
random choice of the heuristic solved optimally only 50.4%
and 54.9% of the problems on the training and test sets
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respectively, and the HH reaches over 80%. Since the value
is so low, it is not included in the following figures.

5.2 Alternatives explored

This paper will focus in comparing a single step environ-
ment versus a multi-step environment using a step by state.
A deeper study, with more alternatives and learning param-
eters is currently under revision.

521 Sep by State/Action:

In [13] one step is defined as packing one bin (LFD was
modified to pack only one bin and stop). From deeper study
of the sequences of actions applied and the status of the
problems, it was clear that in many cases the filling of a
single bin does not change the status itself, given the binary
representation proposed. It is easy to see that, as what is
represented is ranges, and not absolute values, slight changes
may not be reflected immediately in a change of status. As
an alternative, one step can be considered to be taking a
’single action’ (the repetition of the same single bin packing
action) until there is a change of state.

The reward is the average of the different rewards obtained
in each action of packing a single bin, and is only applied
once at the change of state. For example, if four actions of
type 2 were applied to perform a single step by state —2222—
and each action has rewards of, say: 990, 560, 230, and 870,
the reward given to the action set (the rules that suggested
the action) would be 990+560+230+870 = 2650/4 = 662.5,
and it will be rewarded only once.

5.2.2 Sngle Sep and Multiple Step Environment:

As mentioned, in single step environments, rewards are
available at every step (being this step delimited by either a
change of state or action). A multi-step environment allows
to consider sequences of steps and be rewarded together as
a chain. This means that the reward can be paid after per-
forming a number of complete states, or individual actions
(depending if step by state is used or not, respectively). In
these cases it is likely that several and different actions are
applied in one multi-step trial. Several multi-step chain sizes
have been tried, namely chains of size 2, 5 and 10 actions.

5.2.3 Rewarding Sngle Siep and Multiple Step (with
Sep by Sate)

Given a hypothetical sequence of actions (dash represent
a change in state) as follows:

TiT2T3  T4TH  TETTT8T9  T10  T11T12T13  T14
T T T T T T
-222-11-3333- 2 - 111- 1 -
—— T e N e——
S1 Sa S3 Sa S5 Se

Here, there are 6 different states and 14 different actions of
3 types. Each of the 14 actions produces a potential reward
ri;1 <14 < 14 based, as mentioned, in how efficient was the
packing of a single bin.

In the sequence below, underlines will represent where the
reward pointed by the upwards arrow is applied. Overbraces
will represent how the rewards to be used are obtained (by
averaging).

If Single Step and Step by State is used, then the rewards
are averaged for each state, and rewards applied only once
per state, therefore rewards were given 6 times, as follows:
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Figure 1: Computational Effort
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On the other hand, if Multi-Step (size 2) is used, then
rewards are calculated as the averages of the rewards of the
states. As the step here is performed by state, these rewards
by state (M) are obtained by averaging the individual re-
wards of the different actions that were executed in that
step. The obtained rewards (R,,) are awarded only once
per state. Therefore there are 3 different reward values, and
the rewarding procedure is performed 6 times:

Rq Ro R3
"My M, My My Ms Mg
e Lot Rosutume lothe Ronhue lothe
(222) (11) (3333) (2) (111) (1)
T T T T T T
Ry Ry Ry Ro Rz  Rg
J\41 — r1t+rotrs ]\42 — 4475 ]\43 — T§+T1IT§+TQ
3 2
My =110 M5 = 7T11+T}2+T13 Ms =114
Ry = MHQ-MQ Ry = Mﬁ-gzu Ry — MHQ-MQ
(4)
5.3 Results

5.3.1 Computational Effort:

Figure 1 shows average runs for single step and multi-steps
of size 2 and 10 drawn against the number of training cycles.
As it can be expected, the more cycles allowed to the clas-
sifier, the better the results. Nevertheless, there are differ-
ences between the best ever obtained while training (TRB)
and what can be later recalled (TRR) on the same training
problems (see section 5.1.4). While the former is obtaining
better and better results, the latter seems to level near the
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Figure 2: Single vs Multiple step approach

80%. This points to the fact that it seems that although
the heuristics can be combined to achieve the results given
by TRB values, the classifier, in exploiting mode (TRR), is
unable to reproduce them later. It seems that the represen-
tation of the state is too poor to provide enough informa-
tion about situations where other actions are more fruitful.
Remember that in exploiting mode the same action is per-
formed until the state representation changes, as expected of
a deterministic algorithm. There is sufficient evidence of the
learning capabilities of XCS, even within the limitations of
its binary representation, so research was conducted to eval-
uate the effects of using more information for the state rep-
resentation [12, 11] and with alternative learning methods
using real numbers [10]. There was a substantial increase in
performance, reaching values close to the best of training.
This seems to support the idea that the state representation
used can be improved and that XCS will then be provided
with enough information to properly discriminate. Experi-
ments with extended status representations using XCS are
proposed as further research.

Single step seems to have a ceiling of performance at
around 78% on TRR values (on the averaged results). This
ceiling is reached with just 10000 cycles. More cycles do
not improve the results significantly. Figure 2 shows the ef-
fect on performance for several different training efforts with
regards to the length of the chains used in single and multi-
step environments. There, the small impact of increasing
the number of cycles on single step environments can be
seen. It seems to learn fast what it can learn. But that
is below what multi-step environments can achieve, albeit
with more computational effort, as will be seen next.

5.3.2 SnglevsMultiple step approach:

In [16] early experiments with multi-step (size 2) provided
promising results on its impact in hyper-heuristic bin pack-
ing using XCS. When, in this work, larger chains were tested,
a decrease in performance was clearly revealed. While size 2
outperformed single step, it failed to generalise with longer
chains. It needs many more training cycles to achieve closer
results. Figure 2 shows how the longer the chain, the more
training needed.

This result of a performance peak on size 2 chains while
it decreases on longer chains is very interesting. It suggests



that there must be pairs of actions that seem to be useful
enough, one after the other, as to easily emerge after the
reinforcement learning. Unfortunately, longer chains seem
not to be as useful for the bin packing problem and need
many more cycles to achieve slightly better results.

Of course, it may also be that 10000, the minimum num-
ber of cycles chosen, is enough for the size 2 chains to show
its potential and that single environments have reached their
ceiling some cycles before. But this then highlights the po-
tential of multi-step environments, as the ceilings seem to
be above single step ones. The issue then will be at which
computational cost to achieve a gain. Here 10000 cycles
is enough for multi-step environments to start to show its
potential.

5.3.3 Bestruns:

While the results provided are averages, on several runs of
the XCS training, to show the general behaviour expected,
it is true that a single run is usually easily affordable (with
respect to computer use) in applications that are not time-
critical. This means that several runs with different seeds
can be computed, and the best chosen as the final product.
Figure 3 shows the best results (here only TRR and TST are
shown) out of the 10 runs for single step and chain sizes 2 and
10, drawn against the number of cycles allowed for training.
Here it is more clear that longer chain schemes may catch
up with shorter ones, but at the cost of much more training.
This graph also hints that with the configuration used, the
status chosen and the heuristics available, the best recallable
XCS is at around the 82% mark, with 80% on the testing
set. The best attainable ever found (that is, the best TRB
result) reached an exceptional 86.1% of optimality.
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Figure 3: Best results of some experiments

54 Generalisation properties

Although not previously mentioned, it seems clear from
the figures that the results on the testing set where similar
to those obtained in the training set, a good indication that
the system is able to generalise well. Results of the exploit
steps during training are very close to results using a trained
classifier on new test cases. This means that particular de-
tails learnt (a structure of some kind) during the adaptive
phase (when the classifier rules are being modified accord-
ing to experience, etc.) can be reproduced with completely
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new data (unseen problems taken from the test sets). As an
example, as already reported in [13], for one of Falkenauer’s
problems, DJD (and our DJT) produced a new best, and
optimal result (this had already been reported in [7] where
DJD was described). Even if this problem is excluded from
the training set, the learnt rule set can still solve it optimally.

6. CONCLUSIONS

This work has extended the experiments and applied some
of the suggested enhancements of previous work [13, 10, 16]
on applying hyper-heuristics to the bin packing problem us-
ing learning classifiers.

It will be appreciated that the scope of this work is broad.
Attempts have been made to address several important is-
sues, including narrowing the gap between the use of heuris-
tic algorithms and evolutionary algorithms, and that of aca-
demic reports, and real-world applications. In summary,
XCS was able to create a solution process that performed
competitively well on a large collection of NP-hard, non-
trivial problems found in literature. The system performed
better than any of its constituent individual heuristics, and
always performed better than the worst of the algorithms
involved.

In particular, when using the heuristics independently, the
best one of all (our own DJD version), achieved optimal-
ity in around 73% of the problems. However, the evolved
XCS rule-sets were able to produce optimal solutions for over
78% of the problems (on unseen testing problems) in single
step environments, and over 81% in multi-step environments
(also on unseen testing problems), while in the rest it pro-
duced a solution very close to optimal. The best attainable
found was 86.1%, which indeed represents an exceptionally
good result given the ingredients used, and a considerable
improvement from previous work reported.

Experiments showed that multistep environments of small
size, under the right conditions outperform single step re-
sults. In addition, results seem to point out that multi-step
environments can obtain better results than the single step
environments could ever achieve. The ceiling, after which
an increase of training cycles does not provide better re-
sults, appears to be higher in multi-step environments.

A longer version of this work, comparing the effects of al-
ternate reward schemas, the use of step by state and by
action, and other exploration/explotation policies during
training is currently under revision.
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