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ABSTRACT

In this paper we propose a Bayesian framework for XCS [9],
called BXCS. Following [4], we use probability distributions
to represent the uncertainty over the classifier estimates of
payoff. A novel interpretation of classifier and an extension
of the accuracy concept are presented. The probabilistic ap-
proach is aimed at increasing XCS learning capabilities and
tendency to evolve accurate, maximally general classifiers,
especially when uncertainty affects the environment or the
reward function. We show that BXCS can approximate op-
timal solutions in stochastic environments with a high level
of uncertainty.

Categories and Subject Descriptors: 1.2.6 [Computing
Methodologies]: Artificial Intelligence — Learning

General Terms: Algorithms, Experimentation, Theory.

Keywords: Bayesian Q-Learning, Learning Classifier Sys-
tems, XCS, Exploration Strategy, Value of Information.

1. INTRODUCTION

Reinforcement learning in Markov Decision Processes (MDP)
is the framework where an agent learns how to optimally act
by interacting with a stochastic environment. Q-Learning [8]
is the most known reinforcement learning algorithm proved
to eventually converge to the optimal policy in its tabular
implementation (i.e., using a completely specified represen-
tation of state-action values), if all possible states are visited
infinitely often and two simple conditions on the learning
rate hold.

Learning Classifier Systems use a rule base of classifiers
to approximate the tabular representation of Q-Learning ob-
taining a twofold result: (i) using generalization it is possible
to represent the Q-table in a compact way facing the curse of
dimensionality (ii) a state-action value is approximated by
a set of classifiers resulting in a better approximation w.r.t.
the simple state aggregation technique.
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XCS [9] represents a milestone in learning classifier sys-
tem research because of the use of Q-Learning in classifier
payoff evaluation and its generalization mechanism based on
accuracy, which is a measure of the degree of overgeneraliza-
tion [9]. In deterministic and completely observable environ-
ments, overgeneralization is the unique source of inaccuracy;
while, considering more general environments, there are two
other sources of inaccuracy: perceptual aliasing and stochas-
tic transitions. When experiencing perceptual aliasing, the
agent acts in environments that are partially observable by
its sensors; in such cases the agent is not always able to de-
termine the best action only looking at its sensors because
two or more situations may be aliased, i.e., perceived as the
same. The latter, and probably most common, source of
inaccuracy is found in stochastic environments, where the
effects of agent actions may be uncertain [7] as well as the
reward function.

In Q-Learning, the effects of these three sources of inac-
curacy are faced at the same time, but XCS is able to single
out the inaccuracy due to overgeneralization only when the
environment is both completely observable and determinis-
tic. Lanzi [5] showed that when the environment is partially
observable, memory can be added to XCS in order to dis-
ambiguate perceptually aliased situations. Besides, Lanzi
and Colombetti [7] introduced an extension of XCS, called
XCSpu, that tries to separate the inaccuracy due to overgen-
eralization from that due to uncertainty and showed that
the system converges to an optimal solution for a degree of
uncertainty up to 0.5, i.e., when the results of an action sorts
the desired effect only once out of two.

In XCS, as with Q-Learning, the exploration strategy the
agent uses while acting in the environment is a fundamen-
tal aspect of learning. A good exploration strategy should
balance the expected gain from exploration and the cost
of trying possibly suboptimal actions when better ones are
available to be exploited. Finding optimal solution of the
exploration/exploitation trade-off requires solving an MDP
over information states™. The aim is to find a policy for
the agent that maximizes its expected reward; although this
problem is well-defined, given a prior distribution over pos-
sible environments, it is not easy to solve exactly. From a
naive perspective, we would like to have an informed explo-

*The information state is the set of all possible probability
distributions over environment models that can be reached
by executing all possible action sequences and receiving any
possible percept sequence and reward sequence.



ration strategy able to explore if there is some information
gain, i.e., when the agent improves either its policy or its
knowledge, otherwise we would like to exploit the actual
rule base to refine payoff estimates.

In this paper, we propose an evolution of XCS, called
BXCS (Bayesian XCS), based on Bayesian probability dis-
tributions over classifier estimates of payoff, aimed at facing
the environment uncertainty. Broadly speaking, we imple-
ment a Bayesian Q-Learning algorithm instead of classical
Q-Learning to evaluate classifier payoff. Moreover, we define
a new fitness function in order to take directly into account
the uncertainty of the environment during the exploration
phase and focus on exploration actions that have a higher
information gain. We show that BXCS can learn better solu-
tions than classical XCS when the degree of uncertainty that
affects the environment becomes higher. Our main claim is
that the Bayesian fitness function can take into account the
uncertainty on the effects of agent’s actions in a stochastic
environment better than a non-probabilistic one and does
not affect the XCS performances in deterministic ones.

This paper is organized as follows. In Section 2, we pro-
vide a short overview of XCS, with all details that are im-
portant for the remainder of the paper. In Section 3, we
describe Bayesian Q-Learning techniques and Section 4 re-
ports all the relevant modifications to apply them with XCS.
Finally, we test the new system and show the results of a
number of experiments in Section 5. All experiments in this
paper were carried out with Lanzi’s xcslib [6]. Source code
and configuration files required to reproduce the results are
available on request.

2. XCS CLASSIFIER SYSTEMS

In this section, we give a short description of XCS follow-
ing [1]. For a complete description, we refer the interested
reader to the original paper by Wilson [9], and to the recent
algorithmic description in [2].

XCS is a classifier system which differs from the one firstly
introduced by Holland mainly because (i) it has a very sim-
ple architecture, (ii) there is no message list, and, most im-
portant, (iii) the traditional strength is replaced by three
different parameters: prediction, prediction error and accu-
racy.

XCS acts as the classical reinforcement learning agent [8]:
it receives inputs describing the current state of the envi-
ronment, reacts executing actions, and eventually receives
a reward (in the form of a real number) as an indication
of the goodness of its actions. The goal is to maximize the
total reward collected in the long run. XCS achieves this
by learning an action-value function which maps each state-
action pair into a real number, called payoff, analogous to
the @-values in Q-Learning.

Classifier parameters. Classifiers in XCS consist of a con-
dition C' € {0,1,#}* (# is a “don’t care” symbol, L is the
length of the input string) that specifies which input states
the classifier matches, and an associated action a. More-
over, to each classifier are associated three parameters: (i)
the prediction p, which estimates the payoff that the system
expects if the classifier is used, (ii) the prediction error e,
which estimates the error of the prediction p, and (iii) the
fitness F which estimates the accuracy of the payoff predic-
tion p.

It is worth noticing that, because of the generalization
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mechanism, in XCS the expected reward of a state-action
pair is estimated by a mixture of classifiers that differ for
generality. This mixture of classifiers is optimized by the
genetic component using the classifier fitness as target.

Performance component. At each time step, the system
input is used to build the match set [M] containing the clas-
sifiers in the population whose condition part is satisfied by
the current sensory configuration. If the match set contains
less than 6,,n, classifiers, new classifiers are created through
covering, with the condition part matching the current state
and random action. For each action a in the match set the
system prediction P(a) is computed as the weighted aver-
age of the classifier predictions that advocate the action a
using classifier fitness as weight. The value P(a) gives an
evaluation of the expected payoff if a is performed.

Action selection strategy can be either deterministic, i.e.,
the action with the highest prediction is chosen (exploita-
tion), or probabilistic, i.e., the action is chosen with a certain
probability (exploration). The classifiers in [M] which pro-
pose the selected action form the so called action set [A]
and they will be possibly rewarded. The selected action is
then performed in the environment and a scalar reward r is
returned to the system together with a new input configu-
ration.

Reinforcement component. The reward received from the
environment is used to update the parameters of the classi-
fiers in the action set. First, the prediction is updated:

pe—p+nP—-p), 0<n<l,

where 1 denotes the learning rate, and P is computed as
the sum of the reward received at previous time step and
the maximum system prediction, discounted by a factor
(0 < v < 1). Next, the prediction error is adjusted using
the delta rule formula:

e —e+n(|P—p|l—e).

Updating fitness is slightly more complex: initially, the pre-
diction error is used to evaluate the classifier accuracy k as
k= a(e/eo)™" if e > g0 or k = 1 otherwise. Subsequently,
the relative accuracy k' of each classifier is computed from
k and, finally, the fitness parameter is adjusted by the rule:

F— F+nyk - F).

Discovery component. In XCS a genetic algorithm (GA)
is applied to the classifiers in the current action set when the
average time since the last application exceeds a threshold
04q. The GA selects two classifiers with probability propor-
tional to their fitness, and applies on them crossover and
mutation operators respectively with probability p, and p,.

3. BAYESIAN Q-LEARNING

Bayesian Q-Learning was introduced by Dearden et al.
in [4] to face uncertainty of the environment by means of a
Bayesian probabilistic approach. In the Bayesian Q-Learning
framework, we need to consider prior distributions over Q-
values, and then update these priors based on the reward
collected by the agent acting in the environment. Formally,
let Rs,. be a random variable that denotes the total dis-
counted reward received when action a is executed in state



s and an optimal policy is followed thereafter. Initially, we
are uncertain about how R; . is distributed and this is rep-
resented by the initial prior; in particular, we want to learn
the value Q*(s,a) = E[Rs,q].

To make the approach practical, the following assump-
tions are taken:

Assumption 1: R, has a normal distribution; this im-
plies that to model the uncertainty about the distri-
bution of R, it is possible to use a distribution over
the mean ps o and the precision 7s,q of Rs o (note that
the precision of a normal variable is the inverse of its
variance, i.e., Ts,azl/aia);

Assumption 2: The prior distribution over p, . and 754
is independent of the prior distribution of ps . and
Ter o for s # 8" or a # d';

Assumption 3: The prior is a Normal-Gamma distribu-
tion: p(ts,a; Ts,a) ~ NG(po, A, a, 3); the relationship
between this bivariate distribution and the random
variable Rs, is: 7 ~ Gamma(a,8) T, and p | 7 ~
N (po,1/(A7))* being Gamma and N respectively the
Gamma and Normal distributions [3];

Assumption 4: At any stage, the agent’s posterior over
ts,a and T 4 is independent of the posterior py o+ and
Ter o for s # s ora+#ad'.

Through assumptions 2 and 3 we can represent our prior
by a tuple of hyperparameters for each state s and action a.
Assumption 4 is likely to be violated in an MDP; nonethe-
less, we shall assume that we can represent the posterior as
though the observations were independent. To update prior
distribution after receiving a new sample from R , we apply
the result of the following theorem:

THEOREM 1. Let p(u,7) ~ NG(uo, A\, o, 3) be a prior
distribution over the unknown parameters p and T for a
normally distributed variable R (with mean p and variance
1/7), and let r1,-- -, be n independent samples of R with
first two moments:

Ml - %Zrh
i

Then p(p, 7 | 11, ,mn) ~ NG(ug, N, a’, ') where:

1
and My = —
n

Z(T’i — M1)2.

i

/LE) = %, )\IZA+’I’L, a':a+%n,
/ 1 2 nA(M1—/,Lo)2
= — Mo — M. - - - 7
3 B+ gn(Ma = M) + ===

That is, given a Normal-Gamma prior, the posterior after
any sequence of independent observations is again a Normal-
Gamma distribution. For more details about the aforemen-
tioned assumptions and Theorem 1 refer to [4].

4. BXCS CLASSIFIER SYSTEMS

We consider the Bayesian Q-Learning technique intro-
duced in the previous section to represent the uncertainty a

[e]

= E’
YFor 1 we have: E[u] = po, and var[u] =

o

5.
g 8
A(a—1).

"For 7 we have: E[r] and var[r] =
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classifier has about its estimate of Q-value (i.e., predicted
reward). By keeping and propagating distributions over
Q-value, rather than point estimates (as in traditional Q-
Learning), we can take more informed decisions aimed at an
informed global exploration.

4.1 Classifier: a new interpretation

We are interested in exploiting the Bayesian Q-Learning
concepts to define probability distributions over the pre-
dicted payoff in order to assess the classifier uncertainty.
In doing this, a classifier can be considered as an entity able
to act by taking directly into account the uncertainty of the
environment and the uncertainty in reward perception due
to generalization, i.e., the uncertainty in representing the re-
ward over a portion of the state-action space that aggregates
more than one possible configurations.

From the architectural point of view, the traditional pa-
rameters used in Wilson’s XCS [9] are replaced by a tuple
< po, A, a, 8 > of hyperparameters which define a poste-
rior distribution p(u, 7) of the random variable R, the total
discounted reward received when the classifier matches the
state and its action is chosen by the system.

The three main parameters of XCS, i.e. prediction, pre-
diction error and accuracy, are thus replaced by their prob-
abilistic counterparts, i.e. po, A, «a, B introduced above,
and the new Bayesian accuracy kp (see Section 4.4). These
parameters characterize the uncertainty about the environ-
ment and reward perception. This is an evolution of XCS,
and in particular of its concept of accuracy.

4.2 Prediction array and action selection

For each action a in [M], BXCS computes the action value
P(a), which represents an estimate of the payoff that the
system expects to receive when action a is performed. P(a)
is computed in two steps: (i) we define a joint distribution
over a from the posterior of all matching classifiers that pro-
pose action a. Then, (ii) we apply to this joint distribution
one of the Bayesian action selection strategies proposed in
the next section. The different values of P(a) form the pre-
diction array. BXCS selects an action w.r.t. the values in
the prediction array.

To get the action value P(a) for action a we need to follow
these four steps:

1. for each classifier ¢l; in [M], compute R; as:

Hi = Ho;,
o? = Xi+1 B
¢ )\7; o — 1.

being p(ui, 7) ~ NG(po;, Mi, i, 3;) the prior defined
by cl; on R; ~ N (i, 0?);

2. from this derive R, ~ N (pta,o2) with:

Ha = Z Fi’uow
cl; €[M]q

on = Y, FPd,
el €[M]q
F

Fl o=

chiE[M]aFi

3. the joint Normal-Gamma p(pa, 7a) ~ NG(to,, Aas Qa, Ba)



is obtained by:

Hog Ha,
)\a = Z Fi/)‘i7
clie[M],
Ag — Z Fz/ah
cl;€[M]q
Aalg — 1
Ba = g ( )

Ao t+1
4. compute P(a) using the appropriate selection strategy.

The selection strategy is crucial to the performance of
the algorithm. The basic idea is balancing exploration of
untested actions and exploitation of actions that are known
to be good. Applying a greedy selection we would select the
action a that maximizes the expected reward value E[uq].
Unfortunately, selecting the action with the greatest mean
would reduce the attempts to perform exploration and does
not take into account any uncertainty about the predicted
payoff. In the following section we present two alternative
approaches for exploration directly derived from the applica-
tion of Bayesian Q-learning: Q-value sampling and Myopic-
VPI [4].

Q-value sampling. In Q-value sampling, we select actions
stochastically, based on the system current belief of their
optimality. In other words, action a is performed with prob-
ability given by:
pla = argmax o, ) = p(Va' # a, po, > po,,)
a
o0
— [t =) [T ploo,, < 2)d
- a’#a

Note that if p(pa,7a) ~ NG(po, , Aa, Qa, Ba), then the mar-
ginal density of p, is:

(1)

} g
) = (532) B (Bt e = m0?) 2
1
Yo = % and 5ai—(aa+%),

where I' is the Gamma function. In practice, we can avoid
the computation of Equation 1. Instead, for each action a
we sample a value from the corresponding p(u,) and execute
the action with the highest sampled value. The cumulative
distribution of p(pa) is a t-distribution with 2a, degrees of
freedom and it can be efficiently evaluated using standard
statistical packages. It is proved that this procedure selects
a with probability given by Equation 1. The major weakness
of this approach is that it does not consider the improvement
over the current policy that could arise from the choice of
action a, i.e., it does not consider the information gain of
exploration.

Myopic-VPI selection. The benefit of exploration can be
estimated using the notion of Value of Information (VPI),
i.e. the expected improvement in future decision quality
that might arise from the information gathered during ex-
ploration. In short, this selection approach consists of a
myopic approximation of the value of information for each
action and leads to select the action that best balances ex-
ploration and exploitation. Roughly speaking, we need to
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balance the expected gains from exploration against the ex-
pected costs of doing a potentially suboptimal action.

The information gain Gaing(u;), we get by learning the
true value u, of p, can change the system policy only in two
cases: (a) when it proves that an action previously consid-
ered sub-optimal is actually the best choice and (b) when
it shows that an action previously considered best is actu-
ally worse than other actions. Since the value of u; is not
known in advance, it is necessary to compute the expected
gain given the system prior beliefs. Thus, the value of per-
fect information for action a will be:

VPI(a) =

Gaing(2)p(pe = x)dx. 3)

—o0

This formula can be reduced to a closed form equation. As-
sume that a; is the action with the highest expected value
and az is the second best action; then V PI(a) is equal to
¢+ (Elptas] = Elpiay )p(ptay < Elpa,]) if @ = a1, and it is
equal to ¢+ (E[pa] — Eltta;])p(tta > Eljta,]) otherwise. The
procedure for computing ¢ and a full explanation of this
method are given in [4].

The cost of doing a potentially sub-optimal action is given
by the difference between the value of a and the value of the
current best action, i.e. maxy {E[pa] — E[pa]}-

Finally, the value of action a can be computed as:

VPI(a) ~ (max {Fluar] ~ Flual}), (4)
which is equivalent to V PI(a)+ E[pa]. The Myopic-VPI se-
lection strategy selects the action that maximizes this value.

4.3 Posterior distributions updating

Let’s now consider how to update the classifier distribu-
tions over predicted payoff after executing an action. Since
posterior updating takes place in the current action set, in
the following we omit the subscript ‘a’. This consideration
holds also for Section 4.4.

We can adopt an adaptation of Moment Updating tech-
nique based on the results of Theorem 1 [4]. Actually, we
define distributions over expected, total rewards, but the
available observations are instances of actual, local rewards;
therefore, we cannot use Theorem 1 directly. Now, suppose
that the system is in state s, executes action a, receives re-
ward r, and ends up in state s’. Let R and R,/ be two ran-
dom variables denoting the expected total discounted sum
of rewards received respectively from s and s’ onwards.

The basic idea is to randomly sample values R./,--- , R
from classifiers distribution, and then update the posterior
p(p, 7) with the samples r +~R%,,--- ,r +~vR". Theorem 1
implies that we only need the first two moments of this sam-
ple to update our distribution; assuming that n tends to
infinity, these two moments are:

M,
Mo

E[r+~Ry]=r+~vE[Rs],
E[(r++vRy)’] = E[r® + 2yrRy +~°R%/]
r? +2yrE [Ry] ++°E [Rzz] .

()

(6)

If we assume that from s’ onwards the system follows the
current optimal policy, then R, is a normally distributed
variable. Thus, we can use the properties of the Normal-
Gamma distribution to compute the expected values:



E[Ry] (7)

(8)

This approach results in a simple closed-form equation
for updating classifiers hyperparameters. Unfortunately, it
might become too confident of the value of the mean of
pf. In other words, uncertainty about R, is not directly
translated to uncertainty about the mean of R. To avoid
this problem we can act on the § parameter by using some
sort of discount factor ng:

Xi (M1 — po,)?
2(M\i +1) ’

All the classifiers belonging to the same action set [A] are
updated with the same moments.

E [R%]

B = (1—n)Bi+ns (%(M2 - M7) +

4.4 Fitness and genetics

Bayesian Q-Learning concepts lead straightforwardly to
the definition of a Bayesian accuracy kp based on the pre-
cision T of classifiers instead of XCS error €. The analytical
expression of kg is:

oL

Here By controls indirectly the tolerance of the precision T,
and w is a simple discount rate.

This fitness recalls the idea of a strong selection which is
behind Wilson’s accuracy [9]. It is obtained by (i) a thresh-
old Bp which distinguishes “good” classifiers from the “bad”
ones, and (ii) a high rate of decline in goodness of classi-
fiers, given by w and v parameters. As Wilson’s accuracy
rewards classifiers whose prediction error is below €g, our
fitness function acts rewarding classifiers whose precision is
above the threshold 1/5o.

The main difference between our Bayesian accuracy (based
on precision) and Wilson’s accuracy (based on prediction er-
ror) is that ours has a higher informative content than Wil-
son’s. This is motivated by the following reasons: Bayesian
accuracy is defined on the parameter 8 which (a) is inversely
proportional to the mean and variance of the random vari-
able 7, (b) is directly proportional to the variance of the
random variable p (Section 4.1), and (c) takes part in the
updating process of the mean of p (Theorem 1). In other
words, Bayesian accuracy takes into account the uncertainty
about the unknown payoffs through the § parameter, which
affects the distributions over both the mean and the preci-
sion of the unknown related random variable R. Roughly
speaking, in a probabilistic context Wilson’s accuracy can
be considered as a surrogate just for the variance of u.

In our way of thinking, a Bayesian fitness function can
take into account the uncertainty on the effects of agent’s
actions in a stochastic environment better than a non prob-
abilistic one. To have a fair comparison with Wilson’s accu-
racy, we can determine the threshold Sy from e¢ by the fol-
lowing relationship: P(r—eo < p < r+¢0) = 0.999. We can
assume that p ~ N(r, 5o), and so compute the value of Gy
from the standard normal distribution table: By = (

lfﬁ < /807

—v
s ) otherwise.

Bo

2
3.;805) )

$Note that the parameter A can be intended as the confi-
dence in the estimate of the unknown mean of pu.
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5. EXPERIMENTAL VALIDATION

The experiments we present in this paper have been con-
ducted in the well-known “multiplexer” problems and “woods”
environments, which are common benchmarks in the XCS
community. All experiments in this paper were carried out
with Lanzi’s xcslib [6]. The description of the tasks and
input codings will be here summarized leaving the reader
to [9] for a complete description. Any statistics presented
in this paper is averaged over ten experiments. In each plot
we use the performance of XCS with no generalization to
indicate optimal performance.

5.1 The Boolean Multiplexer Problem

Boolean multiplexers are defined for strings of [ bits, where
l=k+ 2k; the first k bits (xo,--- ,xr—1) represent an ad-
dress which indexes the remaining 2% bits (yo,--- ,ygr_;).
The function returns the value of the indexed bit. For in-
stance, in the 6-multiplexer function mps, we have that
mpe(100010) = 1. Though they are “one-step” (i.e. not
sequential) artificial environments, we consider them be-
cause they make it possible to study generalization without
the added complications that sequential environments en-
tail. The performance of each system is computed as the
average reward in the last 50 testing problems and plots are
obtained averaging 10 runs of the algorithm.

20-Multiplexer. We begin by comparing results on the 20-
multiplexer problem using the following parameters: (§ =
02, = 01,7y = 0.7,e0 = 10, v = 5,040 = 25, py =
0.8, pp = 0.04, O4e; = 20, § = 0.1, and ng = 0.8. Population
is set to 2000 classifiers and Pz = 0.6 and XCS parameters
are those reported in [9]. Figure 1 shows that BXCS reaches
100% performance a few problems before XCS, but the two
systems converge to the same population size, i.e. they show
the same generalization capabilities.

37-Multiplexer. In these simulations we used the same pa-
rameter settings of the previous experiments, except for pop-
ulation size, which is set to 5000 classifiers. Figure 2 shows
that XCS reaches 100% performance before BXCS, but ex-
amination of the populations reveales that BXCS seems to
have a higher tendency to generalize than XCS, i.e., it reaches
a more compact final population.

5.2 The deterministic woods environment

Woods environments are grid worlds in which each cell
can be empty, represented as “.“, can contain an obstacle,
represented by “T” (tree), or otherwise food, “F”. An an-
imat placed in the environment must learn to reach food
cells. The animat senses the environment by eight sensors,
one for each adjacent cell, and the perception is represented
as a binary string of 16 digits (for environments with only
one type of food and obstacles). The animat can decide to
move in any of the adjacent cells. If the destination cell is
free then the animat moves; if the cell contains food the ani-
mat moves and eats the food receiving a reward (e.g. 1000),
while if the destination cell contains a tree the move does not
take place. In these environments, the agent has probability
1 of reaching the correct destination.

Each experiment focuses on a number of problems that
the animat must solve. For each problem the animat is ran-
domly placed in a blank cell of the environment; it then
moves under the control of the system until it enters a food
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Figure 2: 37-multiplexer with 1000/0 reward

cell, eats the food and receives the reward. The food im-
mediately re-grows and a new problem begins. The perfor-
mance of each system is computed as the average number of
steps to a goal position in the last 50 testing problems and
plots are obtained averaging 10 runs of the algorithm.

Woods1. We tested the systems with the following param-
eters: 3 =02, a=01,v=07¢ =001, v =25,04 =
25, py = 0.8, p, = 0.04, 04; = 20,9 = 0.1, ng 0.2.
Population is set to 400 classifiers and Py = 0.5. As we
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Figure 3: Deterministic Woodsl with semiuniform
action selection probability set to 0.25
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Figure 4: Deterministic Maze4 with semiuniform ac-
tion selection probability set to 0.25

can see from Figure 3, when semiuniform action selection
probability is set to 0.25, i.e., in the exploration phase, the
best action is selected with probability p = 0.75, the two
systems show the analogous performance (Figure 3) while
BXCS seems to have a higher generalization capability.

Maze4. In these simulations we use the same parameter
settings used in experiments on Woodsl, except for popula-
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uniform action selection probability set to 0.25

tion which is set to 1600 classifiers. Experiments reported
in Figure 4 show that with a uniform action selection prob-
ability set to 0.25, XCS seems to reach an optimal solution,

but it has lower generalization capabilities than BXCS.

5.3 Stochastic woods environment

In the stochastic version of woods environment, when the
agent tries to move in a certain direction it has probability
1—¢€ (0 < e < 1) of reaching the correct destination; it
has probability € of slipping, i.e., reaching one of the two
positions next to the original destination on the left or on
the right. The value € represents the degree of uncertainty

affecting agent actions.

Woodsl. A first analysis of the agent performance in stochas-

tic environments can be drawn using the simple Woodsl
6 =02 a=
0.1,y =07,e0 = 001, v = 5,040 = 25, py = 08, p, =
0.04, 64e1 = 20, 6 = 0.1, ng = 0.2. Population size is set to
400 classifiers and Py = 0.5. Figure 5 shows the results
obtained when ¢ = 0.5. XCS converges to a sub-optimal
solution, whereas BXCS comes close to the optimum. Note
that BXCS cannot stably reach optimal performance be-
cause it has to deal with overgeneralization. A higher level
e = 0.66, makes XCS unable to learn
from its experience (see Figure 6). BXCS can cope with
this new worst environmental situation, converging near to
the optimum, without losing its generalization capabilities.
We'll go deeper into this question by analyzing the results

task. General parameters are as follows:

of uncertainty, i.e.

coming from stochastic Maze4 task.

Maze4. For stochastic maze4 environment we ran experi-
ments for increasing values of sliding probability (€). Gen-
02, « = 0.1, v
0.7, e0 = 0.01, v = 5, 040 = 25, py, = 0.8, py, = 0.04, 41 =

13 =

eral parameters are as follows:
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Figure 6: Stochastic Woodsl with ¢ = 0.66 and semi-
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Figure 7: Stochastic Maze4 with ¢ = 0.5 and semiu-
niform action selection probability set to 0.25

20, and 6 = 0.1. Population is set to 1600 classifiers and
Py = 0.5. Finally, we set semiuniform random action se-
lection probability to 0.25. Figure 7 shows that when the
uncertainty on the agent actions is less than or equal to 0.5,
XCS tends to converge close to optimal performance, while
BXCS becomes stable very close to the optimum after a few
number of problems. As noted in stochastic woodsl environ-
ment, BXCS cannot reach optimal performance because it
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Figure 8: Stochastic Mazed with ¢ = 0.66 and semi-
uniform action selection probability set to 0.25

has to deal with overgeneralization. However, when uncer-
tainty is higher, i.e. € is 0.66, the previous considerations do
not hold anymore; it is important to specify that for e = 0.66
the effects of agent actions are almost unpredictable. The
results plotted in Figure 8 give evidence to the drastic drop
of performance of XCS, which rapidly becomes completely
unstable. On the other hand, BXCS can cope with these lev-
els of uncertainty and converge close to the optimal solution.
This happens because BXCS is able to distinguish between
the loss of precision (7, see Section 4) due to overgeneral-
ization and the one due to uncertainty of the environment.
On the basis of this valuable skill we mark out the parame-
ter B (Section 4) and its updating mechanism. We update
classifier posteriors and select actions by means of joint dis-
tributions defined on environmental niches; as a result, all
the classifiers belonging to the same action set (niche) feel,
share, and suffer the same degree of uncertainty about the
environment. From this point of view, BXCS appears to be
a useful tool for incorporating various forms of uncertainty
into a uniform framework.

6. CONCLUSION

In this paper, we have introduced a new approach to XCS,
based on a Bayesian framework. The definition of probabil-
ity distributions over classifiers payoff estimates induces a
novel interpretation of classifier founded on the concept of
precision. We extended the notion of accuracy exploiting the
value of information gained during exploration. We showed
that our system can cope with a high level of uncertainty,
guaranteeing the convergence to the optimum and consider-
able generalization capabilities as summarized by the results
reported in Table 6.

As a matter of fact, the strategy of maintaining and prop-
agating probability distribution over the classifier estimate
of payoff reflects uncertainty: the decisions are nearly deter-

Table 1: Average number of steps to goal in Woodsl1
(above) and Maze4 (below)

ministic when the distributions are sharp, and conversely,
nearly random when they are flat. XCS is vulnerable to
noise, i.e., when the degree of uncertainty is high its per-
formance may break down drastically [7]; BXCS shows the
ability both to reason despite uncertainty and to decide tak-
ing uncertainty into account.

We are currently investigating the opportunity to use the
Bayesian approach to define a new fitness function. The
main idea is that Bayes theorem can be used to estimate the
posterior fitness of classifiers from their prior fitness values,
thus implementing a form of “Bayesian evolution”.
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