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ABSTRACT
This paper analyzes the behavior of the XCS classifier sys-
tem on imbalanced datasets. We show that XCS with stan-
dard parameter settings is quite robust to considerable class
imbalances. For high class imbalances, XCS suffers from bi-
ases toward the majority class. We analyze XCS’s behavior
under such extreme imbalances and prove that appropriate
parameter tuning improves significantly XCS’s performance.
Specifically, we counterbalance the imbalance ratio by equal-
izing the reproduction probabilities of the most occurring
and least occurring niches. The study provides guidelines to
tune XCS’s parameters for unbalanced datasets, based on
the dataset imbalance ratio. We propose a method to esti-
mate the imbalance ratio during XCS’s training and adapt
XCS’s parameters online.

Categories and Subject Descriptors
I.2.6 [Learning]: concept learning, knowledge adquisition

General Terms
Experimentation

Keywords
Evolutionary Computation, Genetic Algorithms, Machine
Learning, Learning Classifier Systems, Class Imbalance

1. INTRODUCTION
During the last decades, research on evolutionary compu-

tation (EC) and learning classifier systems (LCSs) has led to
better knowledge and improved applicability of LCSs. Re-
cently, LCSs and specially XCS [10, 11] have been enhanced
to solve challenging machine learning problems. Learning
from imbalance datasets has been identified as one of such
current challenging problems.
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A dataset is said to be imbalanced if one of the classes is
represented by a very small number of examples compared to
the other classes. This case occurs in several domains such
as fraud detection, oil spills in satellite images, failures in
manufacturing process, rare medical diagnosis, etc. Many
learners assume a uniform distribution of classes, so that
they may suffer from biases toward the majority class when
they are exposed to high class imbalances. Japkowicz [7]
demonstrated empirically that C5.0, and SVM to a minor
degree, suffered from class imbalances.
Methods to deal with class imbalances can be applied at

the sampling level or at the classifier level. Those acting at
the sampling level aim at balancing the a priori probabili-
ties of classes, either by oversampling the minority class in-
stances or undersampling the majority class instances. The
second class of methods tries to adapt the classifier to class
imbalances, e.g., by measuring each classification cost sepa-
rately.
In the LCS field, there are few studies analyzing LCS’s be-

havior with imbalanced datasets. Holmes [5] addressed this
topic in the context of epidemiological datasets, and adapted
EpiCS applying an strategy based on disproportionate rein-
forcement per class. Other recent studies [8, 9] analyzed
UCS [1], a supervised LCS derived from XCS, with different
levels of class imbalances. Results showed that the system
favored the majority class with conditions of severe class
imbalances. Several mechanisms both at the sampling level
and at the classifier level were proved useful to minimize the
bias.
In the field of XCS, there are no systematic studies on

the influence of unbalanced datasets to XCS’s performance.
Although UCS and XCS share several features, parame-
ter updates and fitness computation are different, so that
the behavior and dynamics of UCS may not be directly ex-
tended to XCS. Some preliminary results [12] seem promis-
ing and indicate that XCS has little difficulty learning prob-
lems with considerable class imbalance. Our aim is to ex-
tend these results and investigate XCS’s behavior with un-
balanced datasets.
To understand XCS’s response to different levels of class

imbalance, we use the multiplexer problem, which we pro-
ceed to unbalance gradually. We derive theoretical dataset
bounds necessary for XCS to learn both classes. We find
that XCS is quite robust to moderate class imbalances, but
it performs poorly for high class imbalances even when the
dataset bounds are satisfied. Then, we identify relevant
XCS’s parameters and provide guidelines to set them ap-
propriately under such extreme conditions. In particular, we
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can counterbalance the imbalance ratio between the major-
ity and the minority class instances by adjusting the genetic
opportunities of their respective niches. The study reveals
that an appropriate setting of XCS’s parameters notably im-
proves XCS’s performance for high class imbalances. How-
ever, we acknowledge that some parameters might be diffi-
cult to estimate for real-world problems with unknown im-
balance ratios. Therefore, we propose a method that adapts
these parameters automatically, based on information col-
lected during XCS’s search. The study optimizes XCS for
unbalanced datasets and sets the framework for the appli-
cation of other sampling or classifier methodologies, which
could even improve performance and possibly speed up con-
vergence.
The paper is organized as follows. Section 2 shows the

results of XCS with the unbalanced multiplexer. Section 3
analyzes XCS’s behavior and revises parameter bounds for
XCS with imbalanced datasets. Then, we rerun XCS with
appropriate settings. Next, we propose a method to adjust
these values automatically and show its results. Section 5
discusses extensions of the current work and finally, we pro-
vide conclusions and future work.

2. XCS ON UNBALANCED MULTIPLEXER
Our first concern was to analyze the effects of training

XCS with datasets that contained class imbalances. For this
purpose, we ran XCS with the 11-bit multiplexer problem
for different imbalance levels. The unbalancing process was
made as in [12]. At each learning step, an input example was
randomly chosen. If it belonged to the class labeled as the
minority class, it was accepted with sampling probability
sp. If it was discarded, another input example was cho-
sen, which underwent the same process. In all experiments
made herein, the undersampled class was the one labeled as
“1”, whereas the class labeled as “0” was sampled with the
normal rate.
We gradually unbalanced the multiplexer problem to dif-

ferent degrees. We will denote as i the imbalance level of
the dataset, where sp = 1/2i. Thus, level i = 0 represents
the balanced multiplexer. For level i > 1, there are half of
the minority class instances with respect to i − 1. In the
following, the imbalance ratio ir will refer to the proportion
of the majority class instances with respect to the minority
class instances.
XCS1 was implemented as described in [4]. The parame-

ters used in all runs were:

N=800, β=0.2, α=0.1, ε0 = 1, ν=5, θGA=25,

χ=0.8, µ=0.04, θdel=20, δ=0.1, θsub=200, P#=0.6

We used proportionate selection and niched mutation (as
introduced in [4]). To avoid a high generalization pressure,
subsumption was not applied on the action set, and was
applied on the GA but requiring a subsumer classifier to be
highly experienced by setting θsub = 200.
Figure 1 shows the true negative (TN) rate, i.e., the ra-

tio of correct classifications for class 0, and the true posi-
tive (TP) rate, the ratio of correct classifications for class
1, obtained by XCS with imbalance levels from i=0 to i=9.
Curves are averaged over ten runs. In all runs, XCS was
trained during 5,000,000 learning iterations, but only the

1We assume the reader has familiarity with the XCS clas-
sifier system. Otherwise, the reader is referred to [10, 11,
4].
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Figure 1: TN rate (a) and TP rate (b) in the 11-bit
multiplexer with imbalance levels from 0 to 9.

first 500,000 are shown for a better visibility. Figure 1(a)
shows that, for all imbalance levels, the TN rate quickly
reaches 100%. Figure 1(b) shows that the TP rate raises
to 100% for imbalance levels up to i=4. For i=5, the TP
rate is 90% after 5 · 105 iterations, stabilizing at 100% after
2 · 106 explore trials. However, for i=6, the TP rate remains
below 20%, and increasing the number of learning iterations
up to 5 ·106 provides no improvement. For higher imbalance
levels, from i=7 to i=9, the system classifies all the input
instances as if they belonged to the majority class. Table
1 shows the most numerous rules evolved by XCS for i=7.
The population mainly consists of the two most overgeneral
rules.
The results show that the TP rate converges more slowly

as the imbalance level increases. At a given point, XCS is
not able to classify correctly the minority class instances and
evolves overgeneral classifiers. The next section analyzes
the possible reasons by reviewing XCS’s behavior and the
influence of parameter settings in XCS’s performance under
unbalanced datasets.

3. ANALYSIS OF PARAMETER BOUNDS

3.1 Classifiers’ Error in Unbalanced Datasets
Our first concern is whether overgeneral classifiers can oc-
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Table 1: Most numerous rules evolved in a run of
XCS with the 11-bit multiplexer for i=7. Cond. in
the classifier’s condition, A. the action it predicts,
and P., Err., F. and Num. are the prediction, error,
fitness and numerosity of the classifier.

Cond. A. P. Err. F Num.

########### 0 1000 1.2 · 10−4 0.98 385
########### 1 1.2 · 10−4 7.4 · 10−5 0.98 366

...

cur easily with unbalanced datasets. If the ratio of instances
of the majority class with respect to the minority class in-
creases, overgeneral classifiers that match instances of both
classes and predict the majority class will tend to have lower
error. At a given imbalance ratio, overgeneral classifiers will
be considered as accurate. This will happen when their er-
ror is less than ε0. We seek to determine the imbalance ratio
bound that allow overgeneral classifiers to be identified as
inaccurate.
According to [2], the prediction P of a classifier can be

approximated by:

P = Pc(cl) · Rmax + (1− Pc(cl)) · Rmin (1)

where Pc(cl) is the probability that a classifier classifies the
matching input correctly, Rmax is the maximum reward, and
Rmin the minimum reward given by the environment. The
error of a classifier can be approximated by:

ε = |P − Rmax|Pc(cl) + |P − Rmin|(1− Pc(cl)) (2)

For classification problems, Rmin is usually 0, so that the
prediction of a classifier can be estimated by: P = Pc(cl)Rmax.
Substituting P into formula 2, we get a prediction error es-
timate:

ε = 2Rmax(Pc(cl)− Pc(cl)
2) (3)

Pc(cl) can be approximated as:

Pc(cl) =
C

C+!C
(4)

where C is the number of instances that the classifier pre-
dicts correctly (i.e., the predicted class agrees with that of
the sample) and !C is the number of instances that the clas-
sifier predicts incorrectly (i.e., the predicted class does not
agree with that of the sample). The sum C+!C corresponds
to the total number of examples that the classifier matches.
Let’s denote as p the ratio between !C and C:

p =
!C

C
(5)

We can derive the classifier’s probability of being correct as:

Pc(cl) =
1

1 + p
(6)

and its error estimate as:

ε =
2p

(1 + p)2
Rmax (7)

In an accurate classifier, p = 0, which gives an error esti-
mate equal to zero. For the maximally overgeneral classifier

predicting the majority class, p=1/ir. An overgeneral clas-
sifier would be considered inaccurate as long as:

ε ≥ ε0 (8)

Using equation 7, we get:

2p

(1 + p)2
Rmax ≥ ε0 (9)

Deriving the formula, we obtain:

−ε0p
2 + 2p(Rmax − ε0)− ε0 ≥ 0 (10)

This represents a parabola where ε takes values higher than
ε0 for p ranging between pl and pu.
Formula 10 sets the error bounds for a classifier to be

considered as accurate. It depends on both Rmax and ε0.
Substituting ε0 = 1 and Rmax = 1000 in formula 10, the
approximate values for pl and pu are: pl = 1/1998, pu =
1998. This means that an overgeneral classifier covering a
ratio higher than 1998 instances of one class with respect to
the others would be considered as accurate. As long as the
ratio of instances of one class does not exceed this bound,
an overgeneral classifier would be theoretically detected as
inaccurate.
In the unbalanced multiplexer at a given imbalance ratio

ir, the overgeneral classifier predicting the majority class
###########:0 has a ratio p = 1/ir. Thus, its error will be
higher than ε0 if:

1 ≤ ir ≤ 1998 (11)

which corresponds to an imbalance level i < 11. This sug-
gests that XCS would theoretically identify overgeneral clas-
sifiers as inaccurate as long as i < 11. Nonetheless, XCS
found difficulties for i ≥ 6. For i = 7 and higher, the popu-
lation was overcome by ovegeneral classifiers.
Next, we analyze if this could be caused by a deviation of

the real values of prediction and error with respect to the
theoretical estimates. This deviation could be significant for
high values of the learning rate β.

3.2 Learning Rate and Stability of Prediction
and Error Estimates

In the 11-bit multiplexer with imbalance level i = 7, the
population evolved by XCS consisted mostly of two over-
general classifiers, as shown in table 1. Note that the over-
general rule ###########:0 has prediction P = 1000 and a
very low error, much lower than ε0. However, the prediction
and error estimates computed for ir = 128 are:

ε = 15.38 (12)

P = 992.24 (13)

The overgeneral rule ###########:1 has a prediction and
error very low, but still does not correspond to the theoret-
ical values:

ε = 15.38 (14)

P = 7.75 (15)

We attribute the deviation between the real and the the-
oretical parameters’ values to the chosen β. In the reported
experiments β = 0.2. This is a relatively high value, which
may be appropriate to get a fast approximation to the es-
timates, but tends to oscillate when the classifiers do not
receive uniform distribution of samples. In the case of huge
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Figure 2: Evolution of parameters P and ε of clas-
sifier ###########:0 in the 11-bit multiplexer at im-
balance level i=7: (a) and (b) using β = 0.2; (c) and
(d) using β = 0.002.

class imbalances, overgeneral classifiers predicting the ma-
jority class match one instance of the minority class for each
2i instances of the majority class. This means that, for
2i samples, the overgeneral classifier receives the maximum
payoff and, in only one case, the overgeneral classifier re-
ceives the minimum payoff. For high values of β, such a
regime could lead to unstable estimations. In fact, the pa-
rameter updates give much more importance to the recent
rewards; i.e., the values of the parameters are reflecting the
average of few learning iterations (the most recent ones).
Decreasing β causes a slower but better approximation of
these parameters.
Figure 2 shows the distribution of prediction and error

values of the overgeneral classifier ###########:0 along a
single run, for β = 0.2 and β = 0.002. The experiment
was performed by initializing the population with the two
maximally overgeneral rules —thus, without covering—, and
disabling the genetic algorithm. P and ε values were sam-
pled every 1,000 learning iterations. The results show that,
with β = 0.2, P takes a value very close to 1000 (see fig-
ure 2(a)), and ε oscillates near 0 (see figure 2(b)). Besides,
there are other peaks in the distribution density, which de-
note that these values change quickly when the classifier
sees a counterexample. Decreasing β to 0.002 smoothes the
density curves and the distribution becomes closer to the
theoretical values (see figures 2(c) and 2(d)).
Note that the real values of the prediction and error have

a deviation over the theoretical values. This deviation is
significant with unequal distribution of examples and coun-
terexamples, plus an additional effect which depends on the
setting of the learning rate β. We could rewrite formula
10 to consider the deviation with respect to the theoretical
bounds as:

ε ± σ > ε0 (16)

To minimize this deviation, we reran the experiments in
the 11-multiplexer with β = 0.002 (not shown for brevity).
We found that the classifiers’ parameters were better esti-
mated but the TP rate was not improved with respect to
the previous results.

3.3 Occurrence-based reproduction
In this section, we seek to analyze why XCS is not able to

create and maintain accurate maximally general rules cover-
ing each of the classes for high imbalance ratios. Specifically,
we will focus on the reproductive opportunities of niches of
the majority and the minority class. As the classifier’s re-
production is occurrence-based, we start by analyzing the
classifier’s probability of belonging to an action set, which
we denote as pocc (probability of occurrence).
The population evolved with high class imbalances con-

tained two overgeneral classifiers: s0: ###########:0 and
s1: ###########:1. Let’s derive the occurrence probabil-
ity of these classifiers. During training, XCS runs under an
exploration regime: for each explore trial, an action is se-
lected randomly. Therefore, the occurrence probability of
these overgeneral classifiers is 1/2. Their participation in an
action set does not depend on the imbalance ratio. That
is why the numerosity of both overgeneral classifiers is very
similar (see table 1), even though the examples of class 1
are less frequent.
Next, let’s analyze two of the accurate maximally gen-

eral classifiers representing a majority class niche and a
minority class niche respectively: m0=0000#######:0 and
m1=0001#######:1. The first one classifies the majority
class; thus, its occurrence probability is almost the same as
in the balanced case. The occurrence probability of the sec-
ond classifier is inversely proportional to the imbalance ratio
ir, since its representative examples belong to the minority
class (for brevity, we do not develop the full formulas).
Thus, the occurrence opportunities of overgeneral classi-

fiers with respect to maximally general classifiers (predicting
the minority class) is proportional to the imbalance ratio.
Similarly, the occurrence opportunities of maximally gen-
eral classifiers predicting the majority class with respect to
those predicting the minority class increase proportionally
to the imbalance ratio.
The activation of a classifier triggers its parameters up-

date. Thus, classifiers activating more often have better pa-
rameter estimates. Moreover, when a classifier participates
in an action set, the genetic algorithm may trigger. Conse-
quently, more frequent classifiers will have more reproduc-
tion opportunities. As class imbalance increases, the repro-
duction opportunities of overgeneral classifiers increase with
respect to niches covering the minority class. In the same
way, those niches covering the majority class have more re-
production opportunities than their counterparts covering
the minority class.
The GA rate depends on the setting of the GA triggering

threshold θGA and the classifier’s occurrence. We recall that
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the GA triggers if the average time in the action set since
the last GA event is greater than θGA. Thus, if θGA is very
low, the GA will be activated very often and will favor the
most frequent classifiers. Those classifiers occurring infre-
quently will receive a GA event only when they belong to
an action set. This is the case for θGA = 20, which is the
value used in our experiments. A way to counterbalance the
reproductive opportunities of niches is to set θGA to a value
higher than the maximum delay between infrequent niches.
This would guarantee that all niches will receive the same
opportunities, regardless of the occurrence frequency of each
niche. Besides, this counteracts the generalization pressure
toward overgeneral classifiers.

3.4 Population Size
Population size has been identified as a key parameter

for niche support in XCS. The study reported in [3] derives
a population size bound that suggests that population size
should increase linearly with 1/pocc. The authors argue that
the probability of a niche to be lost depends on the delay
between niche occurrences. Setting an appropriate popula-
tion size guarantees that all niches will be maintained with
a given confidence value. In the case of different occur-
rence probabilities, the study recommends to set pocc to the
lowest occurrence probability, but there is no experimental
evidence of the potential benefits.
According to this study, population size should be in-

creased with the imbalance of the multiplexer problem. How-
ever, all runs made herein were made with the same popu-
lation size. We reran XCS for i = 6 and i = 7 with higher
population sizes to analyze whether the correct niches could
be evolved and maintained in the population. We used the
same configuration as in section 2, except for N=10,000 at
i=6, and N=20,000 at i=7. The results provided no improve-
ment. In fact, XCS’s behavior was similar, with overgeneral
classifiers arising in the population, with high numerosity
and unstable estimates.
This suggests that a compound solution is required for an

optimal performance of XCS in unbalanced problems. The
next section gives the details.

3.5 Guidelines for Parameter Tuning
XCS’s dynamics on unbalanced problems depends highly

on parameter settings. Our analysis provides insight into the
role of some critical parameters and its influence on XCS’s
performance. In the following, we summarize some guide-
lines to set these parameters appropriately.
Firstly, ε0 and Rmax determine the maximum error that

a classifier can have to be considered as accurate. They
define the threshold between negligible noise and imbalance
acceptance.
The learning rate β determines somehow the window size

of the update mechanism. The worst case is that of an
overgeneral classifier covering both the most frequent niche
and the least frequent niche. A small learning rate sets the
window size to include examples of both niches, and thus
avoids forgetting the less frequent examples. Otherwise, the
parameter estimates would fluctuate and overgeneral clas-
sifiers would be considered accurate. Our suggestion is to
set β according to the proportion of frequencies between the
least occurring niche (fmin) and the most frequent niche

(fmax):

β = k1 · fmin

fmax
(17)

where k1 is an arbitrary constant. The ratio fmin/fmax

tells us how many examples of the minority class niche are
provided with respect to those of the majority class niche.
If this ratio decreases, we should also decrease β.
Finally, section 3.3 pointed that θGA should be set to a

value greater than the delay between examples of the mi-
nority niche:

θGA = k2 · 1

fmin
(18)

where k2 is a constant. This counterbalances the opportuni-
ties between minority and majority class niches. For k2 > 1,
the reproductive events over all niches will be completely
balanced, as suggested in section 3.3.
Moreover, the population size should assure that no niche

will be lost. As suggested elsewhere [3], it should be in-
creased proportionally with the imbalance ratio ir.

3.6 Results
We reran the same experiments with the 11-bit multi-

plexer, setting XCS’s parameters according to the recom-
mendations. We only changed the parameters of the runs
that failed: i={6,7,8,9}. Specifically, θGA = {200, 400, 800,
1600} and β = {0.04, 0.02, 0.01, 0.005} for each imbalance
level respectively. The population size was initially not mod-
ified.
The results, reported in figure 3, show that XCS can

solve the unbalanced 11-bit multiplexer problem until i = 8,
which is a notable improvement with respect to the initial
experiments. The theoretical dataset bound was i < 11 (see
section 3.1). We got closer to this bound with the appropri-
ate parameter settings.
Higher population sizes (not shown for brevity) did not

improve these results. In fact, our results prove that set-
ting appropriately the learning rate and the GA triggering
threshold suffice for better performance. Higher population
sizes are not needed in our case, so that computational re-
sources may be minimized.

4. PARAMETER ADAPTATION

4.1 Reformulating the Problem
The provided guidelines assume that the frequency of mi-

nority and majority class niches is known. In the multiplexer
problem, these frequencies could be estimated from the im-
balance ratio of the dataset. However, in real-world datasets
containing class imbalances, niche frequencies are unknown.
Although we can estimate the class imbalance ratio from
the dataset, this may not be related to niche frequencies.
In fact, the class imbalance ratio tells us the proportion of
examples per class, but does not provide information about
the distribution of niches over the feature space. Even with a
balanced ratio of instances per class, XCS (and other learn-
ers as well) may suffer from unbalanced niches. This has
commonly been addressed as the problem of small disjuncts
[6].
Rather than working on class imbalance ratios, we are

more focused on niche imbalance ratios. Specifically, we
aim at estimating the frequency of the most frequent niche
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Figure 3: TN rate (a) and TP rate (b) in the 11-
bit multiplexer with imbalance levels from 0 to 9.
Parameters are set according to the guidelines.

(fmax) and the least frequent niche (fmin). From their es-
timation, we could derive a bound for the learning rate and
the GA triggering threshold.
Our approach is to use information collected by the clas-

sifiers themselves during XCS’s training. From the analysis
of XCS’s behavior in the multiplexer problem, we assume
that overgeneral classifiers will tend to cover niches that are
close in the attribute space and present a high imbalance ra-
tio. If we compute the percentage of instances of each class
that the overgeneral covers, we can get an estimate of the
imbalance ratio between the niches.
This is a local approach to the problem, which we think

is much more accurate than the global approach on class
imbalance ratio. Thus, we really consider unbalanced niches
that promote overgeneral classifiers. The identification of
the infrequent niches covered by an overgeneral classifier can
be classified as an online identification of the small disjuncts.

4.2 Online Adaptation of Learning 
Parameters

The procedure identifies the overgeneral classifiers. We
estimate the niche imbalance ratio ircl by computing the ra-
tio between the number of covered instances of the majority

1. ADAPT PARAMETERS
2. if ((pclt−1 > Lmax · Rmax) ∧ (pclt < Ldec · Rmax)) then

3. ircl :=
expmaj(cl)

expmin(cl)

4. if ircl > ir0 then
5. if ((expcl > θir) ∧ (numcl > num[P ])) then
6. Adapt β
7. Adapt θGA

8. end if
9. end if

10. end if

Figure 4: Algorithm firing parameter adaptation.
expmaj and expmin are the classifier’s experience in
the majority and the minority class respectively.
Lmax and Ldec are two constants which determine
the degree of oscillation of the prediction parameter
firing the adaptation algorithm. ir0 and θir are con-
stants set by the user. The parameters of the cur-
rent classifier are: exp (experience), num (numeros-
ity) and p (prediction). See text for details.

1. ADAPT β

2. ircl :=
expmaj (cl)

expmin(cl)

3. do

4. Estimate pirβ
with the current β

5. if pirβ
> pth then

6. β = β · ζ
7. end if
8. while pirβ

> pth

Figure 5: Algorithm for adaptation of parameter β.
pth is the value of prediction estimated with formula
6. pirβ is an estimation of the value of prediction that
the classifier would obtain with the current β. ζ is
a discount factor (ζ < 1).

class (expmaj) with respect to those of the minority class
(expmin). Note that XCS is slightly modified to compute
the experience per class. With that estimate, the algorithm
decides the best parameter settings following the guidelines
provided in section 3.5.
Figure 4 shows the algorithm. First, the algorithm is fired

if the prediction value of the classifier oscillates, and the
detected imbalance in class experiences exceeds a certain
threshold ir0 set by the user. This threshold indicates the
maximum noise allowed in the classifier; its value may be
set according to ε0. Then, the algorithm checks whether
the classifier being updated is experienced enough and has
higher numerosity than the population average. In this case,
β and θGA are adapted.
Figure 5 shows the algorithm for the adaptation of β.

Recall that β should be adjusted so that the real values of
prediction and ε of that overgeneral classifier will be close
to the theoretical ones (estimated with formula 6). Here
the worst case is considered: we suppose that the classifier
receives one example of the minority class, and then, ircl =
expmaj

expmin
instances of the majority class. We compute pirβ

as the prediction value that the classifier would get after
receiving these ircl + 1 examples with the current β value.
So, pirβ is calculated with the following series:

pirβ0
= Rmax · (1− β) (19)

∀1 < i ≤ ircl : pirβi
= β(Rmax − pirβi−1

) (20)
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If pirβ is still far from the theoretical estimate, we decrease
β by a proportion ζ < 1 and repeat the same process. In
this way, β is adapted to guarantee that, in the worst case,
the prediction and ε values will be close to the theoretical
ones.
Finally, θGA is set according to equation 18. Specifically,

fmin is estimated as:

θGAt = k2 · 1

fmin
= k2 · expmin + expmaj

expmin
(21)

where k2 determines the minimum number of examples of
the minority class between GA events. For k2 = 1 the sys-
tem only sees one example of the minority class between
GA events. In the experiments made in this paper, we used
k2 = 5 to allow for better stability of parameter estimates
between GA events.

4.3 Results
Figure 6 shows the results obtained in XCS with auto-

matic adjustment of β and θGA. The results are similar to
those shown in figure 3, where XCS can solve 11-bit multi-
plexer for imbalance levels up to i=8. With online parameter
adaptation, the convergence is delayed because XCS needs
some time to realize the existence of the overgeneral rules
to delete them.
The parameter adaptation algorithm simplifies XCS’s tun-

ing, since it does not require a previous estimation of the
learning rate and GA triggering threshold, which are crit-
ical to XCS’s performance. There are few constants that
must be set for the user, which may be initialized as follows
(as runs shown herein):

Lmax=0.99, Ldec=0.9, ir0=2000, θir=10000

Lmax and Ldec serve to detect that the classifier’s predic-
tion oscillates. They could be replaced by checking if the
classifier receives a counterexample. ir0 is the maximum
imbalance ratio permitted. We set ir0 = 2000 according
to the maximum bound obtained with formula 10. Finally,
we set θir = 5 · ir0 to ensure that a classifier will receive
5 instances of minority class at the higher imbalance ratio
before firing the algorithm.
Neither a manual nor an automatic adjustment permitted

XCS to solve the multiplexer problem at imbalance levels
i=9 and i=10. By setting appropriately β and θGA we assure
that the parameters of overgeneral classifiers will be close to
its theoretical values and the reproductive opportunities of
all niches will be balanced. However, such a low supply of
minority class instances obstructs the discovering of highly
rewarded niches predicting the minority class. For example,
for i=10 XCS sees about 1000 examples of the minority class
in 1,000,000 learning iterations. Under a pure exploration
regime, half of these 1000 examples activate niches of class 1
(highly rewarded niches), and the other half activate niches
of class 0 (with reward 0). Thus, the system has only ap-
proximately 500 examples for discovering the high rewarding
niches of the minority class. Such a severe imbalance ratio
makes learning of the minority class really difficult. It is
very hard to discover such niches in the population. Even
though they are discovered, they are hard to maintain; with
such low supply, the probability that a niche will be lost is
very high. However, we believe that XCS is quite robust to
high class imbalances. Imbalance levels i = 9 and i = 10
represent two extreme cases in which we suspect that many
learners will also suffer from biases.
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Figure 6: TN rate (a) and TP rate (b) in the 11-bit
multiplexer with imbalance levels from 0 to 9. XCS
was run with parameter adaptation on β and θGA.

5. DISCUSSION
The work presented here has to do with the discovery

and maintenance of niches for unbalanced problems. We
are really more concerned about the presence of unbalanced
niches rather that the general approach to the class imbal-
ance problem. A complexity factor for XCS is how the niches
are distributed in the feature space. It is possible that a
niche has a high number of instances compared to another
one that is described by a few number of instances, even
though the dataset has the same number of instances per
class. If two niches with significantly different number of
instances are close in the feature space, XCS could evolve a
classifier overgeneralizing both niches simultaneously. This
approach is in close relation with the small disjuncts problem
described in [6]. The key issue is how to identify the presence
of small disjuncts and avoid the tendency to overgeneraliza-
tion. Our mechanism for parameter adaptation is a novel
approach that takes advantage of XCS’s learning mecha-
nism; it does not need any a priori estimation of the small
disjuncts problem because it uses the information collected
by the classifiers themselves. We are currently investigating
how the approach applies to other types of problems.
A systematic study of XCS’s niche support for balanced
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problems can be found in [3]. Therein, the authors sug-
gest that the population size should be increased linearly
with 1/pocc, where pocc must be set to the lowest occur-
rence probability. Our experimental proofs demonstrated
that this is not as important if β and θGA are tuned prop-
erly. Furthermore, not increasing the population size allows
for less computational resources. We agree with the authors
that a larger GA threshold balances the opportunities be-
tween frequent and infrequent niches. The proposed method
for parameter adaptation uses a standard low GA threshold
and high β value in the first iterations, which allows a fast
estimation and speeds up learning, and later on adapts their
values to stabilize learning.
Although a high value of θGA rebalances the reproduc-

tion opportunities of all niches, the low supply of examples
of the minority class niches slows down the estimates of the
corresponding classifiers. Therefore, it seems feasible to ap-
ply either an oversampling or an undersampling method to
increase the occurrence of unfavored niches. Again, the key
issue is how to detect those infrequent niches. The algo-
rithm used to adapt XCS’s parameters could be widened
to oversample those examples triggering the least frequent
niches.
The results show XCS’s robustness with the unbalanced

multiplexer problem. Our aim is to extend the study to a
more general class of problems, containing continuous at-
tributes, non-overlapping niches, and noise. Our estimation
of the imbalance ratio in a niche assumes that there is no
noise in the dataset. The presence of instances falling inside
a niche which are wrongly labeled as the other class would
be considered as unbalanced instances. In this case, XCS
could overfit and evolve several niches instead of a single
one. The setting of ε0 and Rmax determines the degree of
noise admitted in a classifier; so that all noise falling below
the threshold would be considered negligible.

6. CONCLUSIONS
We showed that XCS with standard parameter settings

is quite robust to the unbalanced multiplexer problem up
to an imbalance ratio of 64. For higher imbalance levels, an
appropriate tuning of XCS’s parameters is needed to achieve
classification of infrequent examples.
We first studied theoretical imbalance ratio bounds that

allow XCS to detect such imbalances, obtaining the thresh-
old between what is to be considered as unbalanced pro-
portion of examples and negligible noise. Online learning
with a windowed update mechanism specially suffers from
very infrequent examples. A high learning rate produces
unstable parameter estimates and provides short memory
to remember examples coming infrequently. Lower values of
the learning rate parameter are needed although this con-
sequently slows down convergence. In turn, slower conver-
gence in parameter estimates suggests a decrease of GA fre-
quency, provided that the GA is going to work with simi-
lar parameter estimates as in the balanced case. Moreover,
occurrence-based reproduction is highly sensitive to imbal-
ances: it tends to give higher reproduction opportunities to
the most frequent niches, in a relation proportional to the
imbalance ratio. Delaying the GA triggering mechanism is
proved an effective method to counterbalance this effect.
We provided guidelines to set XCS’s parameters based

on the dataset imbalance ratio. In case that the imbal-
ance ratio could not be estimated, we proposed a method to

adapt XCS’s parameters based on the information collected
by XCS during training. We tested the 11-bit multiplexer;
first, by adjusting XCS’s parameters following the guide-
lines, and further using the automatic adaptation method.
Results showed that, with appropriate parameter settings,
XCS is robust to class imbalances. As further work, we
would like to test XCS on multiple step problems in which
the problem of unbalanced niches is severe as some environ-
mental states are rarely seen by the system.
For classification tasks, research is on the way to further

improve XCS’s performance and speed up convergence based
on resampling techniques or additional mechanisms acting
at the classifier level. At this stage of research, there are
promising results to establish a comparison with other types
of learners and extend the study to real-world problems.
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