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ABSTRACT 
Learning goal-scoring behaviour from scratch for simulated robot 

soccer is considered to be a very difficult problem, and is often 

achieved by endowing players with an innate set of hand-coded 

skills, or by decomposing the problem into learning a set of 

simpler behaviours which are then aggregated into goal-scoring 

behaviour.  When only basic skills are available to the player the 

fitness landscape is very flat, containing only a few thin peaks.  As 

more human expertise is injected via hand-coded skills or a 

composite fitness function, more gradient information becomes 

apparent on the landscape and the genetic search is more 

successful.  The work presented in this paper uses autocorrelation 

and information content measures to examine features of the 

fitness landscape to explain how the difficulty of the problem is 

changed by injecting human expertise.  

Track: Learning Classifier Systems And Other Genetics-Based Machine 

Learning 

Categories and Subject Descriptors 
F.2.0 [Theory of Computation]: Analysis of algorithms and 

problem complexity. 

General Terms 
Algorithms, Performance, Theory. 
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1. INTRODUCTION 
A wide variety of approaches and technologies have been used in 

attempts to construct good robot soccer players.  These include 

hand-coding, genetic algorithms, genetic programming, 

reinforcement learning, neural networks, behaviour-based and 

deliberative agents, and various combinations of those.  In the 

early years of the RoboCupSoccer [7] competition a few 

researchers attempted to fine tune some low-level skills using AI 

machine learning techniques, but nearly all entrants used hand-

coded skills and strategies [9].  Even today hand-coded players, or 

players with hand-coded skills, generally continue to outplay 

players whose skills have been entirely learned or developed 

automatically [8].  For example, the 2005 RoboCupSoccer 2D 

simulation league winner used hand-coded strategies which 

employed a mixture of hand-coded skills and skills developed 

using machine learning techniques [10].  There has been only 

limited success when applying standard machine learning 

techniques to this problem – much of the work to date has been 

characterised by researchers beginning their work with high 

expectations, then ratcheting down their expectations as the work 

progresses, and finally adjusting their goals (and the soccer 

playing behaviours and skills of the players being developed) to 

align with the progress being made.   

The concept of fitness landscapes, and the idea that the process of 

evolution could be studied by visualising the distribution of 

fitness values across the population as a landscape, has been long-

established in the field of evolutionary biology, having been first 

proposed by Wright in 1932 [15] and revived later in [1].   

Much of the work involving fitness landscapes avoids a rigorous 

definition of the landscape under analysis [5], and where it is 

mentioned or implied at all the landscape is usually assumed to be 

the single-bit mutation landscape: the landscape generated by 

arranging all single-bit mutations of a chromosome represented as 

a string of binary digits such that chromosomes that differ by only 

a single bit are neighbours.  On such landscapes, genetic operators 

such as crossover are assumed to take hypersteps over the fitness 

landscape described by mutation.   

The major area of concern with fitness landscapes is that there is 

no generally accepted definition of what constitutes a fitness 

landscape.  There is not much agreement in the field as to what a 

fitness landscape is and whether a neighbourhood relation is 

required to describe it, and much less agreement as to what the 

neighbourhood relation should be.  Jones’ “one operator one 

landscape” approach [5] does have a core following, however 

work continues to try to present a coherent, consistent view of 

fitness landscapes and the neighbourhood relations that define 

them, as well as the methods that are used to measure them.   

The goal of this work is to describe a method for analysis of the 

fitness landscape described by the problem of learning goal-

scoring behaviour, and to use the analysis to better understand the 

difficulty of the problem and how progress might be made. 
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2. EVOLVING THE PLAYER 
For this work a messy-coded genetic algorithm [2] is used to 

evolve a single robot soccer player in a simulated soccer 

environment [11].  In this work a trial begins with a single player 

and the ball being placed in random locations on the field, and 

continues for a fixed period of time.  Any time the player scores a 

goal the player and the ball are set to new random locations and 

the trial continues until the time expires.  The behaviour of the 

player is governed by a fuzzy inferencing system [4] with the 

ruleset for the fuzzy inferencing system being evolved by the 

genetic algorithm. 

The player being evolved is endowed with a configurable subset 

of soccer-playing skills taken from the full set of skills shown in 

Table 1.  In addition, if the player is unable to determine an action 

to be taken based on the information known to it, the player will 

perform a hand-coded default hunt action (on the basis that the 

most likely cause for a player not being able to determine an 

action is that the ball is not visible).  The hand-coded hunt actions 

available to be configured as default actions are listed in Table 2.   

The player will perform one of the available actions, or the 

configured default action, in response to external stimuli; the 

specific response being determined by the fuzzy ruleset.  The 

external stimulus used as input to the fuzzy inference system is the 

visual information supplied by the soccer simulator, after 

undergoing fuzzification.  The output of the fuzzy inference 

system is an (action, value) pair which defines the action to be 

taken by the player, and the degree to which the action is to be 

taken.  For example: 

(KickTowardGoal, power) 

(RunTowardBall, power) 

(Turn, direction) 

where power and direction are crisp values representing the 

defuzzified fuzzy set membership of the action to be taken.  An 

example rule developed by the genetic algorithm is: 

if Ball is Left and Goal is Left then Turn Slightly Left 

Chromosomes for the genetic algorithm are not fixed length: the 

length of each chromosome in the population varies with the 

length of individual rules and the number of rules on the 

chromosome.  The number of clauses in a rule and the number of 

rules in a ruleset is only limited by the maximum size of a 

chromosome which for this work was 68 genes.   

Table 2. Available Hunt Actions 

Action Description 

Hunt Action 1 

Goto Ball 

if the ball is not visible then 

   dash in a randomly chosen direction 

else  

   if ball is not in kickable distance then 

      dash toward the ball 

   else  

      do nothing 

Hunt Action 2 

Locate Ball 

if the ball is not visible then  

   dash in a randomly chosen direction 

else 

   do nothing 

Hunt Action 3 

Random Turn 
turn 90° in a randomly chosen direction 

Table 1. Available Player Skills 

Skill Description 

Turn 
The player turns through the angle specified.   

Argument: angle. 

Dash 

The player dashes in the direction specified with 

the power specified.   

Arguments: direction, power. 

Kick 

If the ball is within a kickable distance from the 

player, the player kicks the ball in the direction 

specified with the power specified.   

Arguments: direction, power. 

RunTowardGoal 

If the direction to the player’s goal is known, the 

player dashes once in that direction, otherwise no 

action is taken.   

Argument: power.   

RunTowardBall 

If the direction to the ball is known, the player 

dashes once in that direction, otherwise no action is 

taken.   

Argument: power. 

GoToBall 

If the direction to the ball is known, the player 

dashes towards the ball and continues to dash in 

that direction until the ball is within the kickable 

distance, otherwise no action is taken.   

Argument: power. 

KickTowardGoal 

If the direction to the player’s goal is known, and 

the ball is within the kickable distance, the player 

kicks the ball once in the direction of its goal, 

otherwise no action is taken.   

Argument: power. 

DribbleTowardGoal 

If the direction to the player’s goal is known, and 

the ball is within the kickable distance, the player 

kicks the ball once in the direction of its goal, then 

dashes once in the same direction.   

If the direction to the player’s goal is not known, or 

the ball is not within the kickable distance, no 

action is taken.   

Argument: power. 

Dribble 

If the ball is within the kickable distance, the 

player kicks the ball once in the direction it is 

facing, then dashes once in the same direction.   

If the ball is not within the kickable distance, no 

action is taken.   

Argument: power. 

DoNothing The player takes no action. 

3. THE FITNESS LANDSCAPE 

3.1 Fitness Landscape Definition 
A review of relevant literature [e.g. 3, 5, 6, 12, 13, 14] indicates 

there are several possible definitions of, and representations for, 

fitness landscapes, and choosing the definition and representation 

which best describes the combination of the problem being 

studied and the algorithm being used to study it is extremely 

important.  A fitness landscape is most often defined by three 

basic attributes: 

• a search space 

• a relation that defines which points are neighbours in the 

search space 

• a fitness function that assigns a fitness value to each point in 

the search space 
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The neighbourhood relation and its specification is extremely 

important because any discussion of landscapes invariably 

involves the terms “peaks” and “valleys”, and no peak or valley 

can exist without the notion of neighbourhood – a peak is only a 

peak because it is higher than its neighbours.   

For this work the fitness landscape is considered to be defined by 

the overall operation of the genetic algorithm.  Consider an 

observer watching a genetic algorithm searcher perform a random 

walk on a fitness landscape and assume that although the observer 

is able to discern the granularity of the search (the genetic 

algorithm’s single steps), the means by which the GA determines 

where each step takes it is hidden from the observer.  The random 

walk is conducted as follows: 

• An individual i0 is randomly selected from the search space 

• For each step s, s = 1 .. maxsteps 

o is-1 undergoes mutation with probability Pmutation 

o Another individual i, i ≠  is-1, is randomly selected 

from the search space 

o Crossover is performed between i and is-1 with 

probability Pcrossover, resulting in two new individuals 

i'1 and i'2, both of which are neighbours of (a single 

step from) is-1 

o Set is = i'1 and step to is 

The observer sees the searcher walking randomly over the 

landscape and considers points on the landscape one step apart to 

be neighbours.  The definition of the neigbourhood relation is of 

no consequence to, and is not required by, the observer since the 

searcher is defining neigbouring points by performing the walk.  If 

the random walk performed by the genetic algorithm searcher was 

sufficiently long, and the “altitude” (fitness) at each step recorded 

for the observer, the entire fitness landscape would be determined 

by observation.  The landscape so determined would be the 

precise fitness landscape defined by the search algorithm.   

This “black box” view of the genetic algorithm operation and 

consequential determination of the neigbourhood relation and 

fitness landscape satisfies the requirement that the landscape 

neigbourhood relation be defined by the search algorithm, and is 

the definition used for the robot soccer problem addressed by this 

work. 

3.2 Fitness Landscape Measures 
The methods used to measure and analyse the structure of fitness 

landscapes in this work are the autocorrelation method suggested 

by Weingberger [14], and the information content approach 

suggested by Vassilev et al. [12, 13]. 

3.2.1 Autocorrelation and Correlation Length 
Weinberger’s autocorrelation definition [3, 14]: 

Given measurements,                   at time                        , where 

     is the number of measurements, and 

 

  

the time lag      autocorrelation function       is defined as 

 

 

 

If                  there is much correlation between the points    steps 

apart in the series, whereas if                 there is little correlation. 

Weinberger proposed that a random walk be generated on the 

fitness landscape, where each step on the walk is taken between 

neighbouring points, with the neighbour to which the step is taken 

selected randomly.  The fitness values for the points visited during 

the random walk form a time series of numbers.  The 

autocorrelation function can then be used as a measure of the 

ruggedness of the landscape described by the random walk.  

The correlation length of a series of numbers is the largest 

distance, or time lag, between points for which some correlation 

exists.  Hordijk [3] defines the correlation length of a time series 

as one less than the first time lag for which the autocorrelation 

falls inside the region bounded by the two-standard-error bound 

(i.e. one less than the first time lag at which the autocorrelation 

becomes statistically equal to zero, making the correlation length 

the largest time lag for which the correlation between two points 

is still statistically significant).  This is the method used for 

calculating the correlation length in this work.  The two-standard-

error bound      is defined as 
 

 

 

so the correlation length      is defined in this work as the first lag 

     for which 

 

 

3.2.2 Information Content 
Vassilev et al. propose three information measures that 

characterise the structure of a fitness landscape from a series of 

points generated by a random walk over the landscape [12, 13]: 

• Information Content – characterises the ruggedness of the 

landscape. 

• Partial Information Content – measures the modality of the 

landscape. 

• Information Stability – the sensitivity of the information 

content measures. 

These measures are calculated by generating a random walk of 

length n on the fitness landscape, with the aim being to extract 

information by characterising the series of points as an ensemble 

of objects.   

To calculate the information content, a string 

                                          , 

representing a group of objects generated from a random walk 

over the fitness landscape.           is enumerated according to the 

function: 

                                                , for  
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Thus the string       defines a sequence of objects where each 

object is represented by a substring           being a sub-block of 

length two of the string         .   

The parameter     is a real number taken from the interval 

[0.0, 1.0] (in this case) which defines neutral fitness and 

determines the accuracy with which the string         is defined.  If 

the absolute fitness difference between neighbouring points is less 

than     the points are considered to be of equal fitness.  This 

means that as    increases from 0.0 to the maximum possible 

fitness difference between points along the walk (1.0), the amount 

of fitness change (entropy) and the sensitivity of  

         decrease to zero. 

The information content is defined as the entropic measure of the 

group of sub-blocks of length two of string         , and is given by 

 

 

        are frequencies of the possible blocks pq of elements from 

the set               given by 

 

where        is the number of occurrences of pq in         and     the 

length of         . 

The partial information content is a measure of the modality (the 

number or frequency of local optima) of the landscape, and is 

calculated by filtering out elements of the string         which are 

not essential for measuring modality to create a new string         , 

then measuring the length      of the new string          .   

The string is defined as 

        

 

Thus the string          has the form               , representing the 

slopes of the path taken by the random walk over the landscape, 

and so is empty if         contains only      . The partial information 

content is given by 

 
Note that when            is 1, the path taken by the random walk 

over the landscape is considered to be maximally multimodal, and 

when            is 0, the path is flat. 

The information stability      is defined as the smallest value of  

for which the landscape becomes flat (i.e. for which        is 

empty).  Since     governs the sensitivity of the information 

content and partial information content measures,     is a measure 

of the difference in fitness between neighbouring points on the 

random walk. 

4. EXPERIMENTS & ANALYSIS 
A number of experiments were performed to compare the effect 

on the performance of the evolutionary search of varying the 

player skillset, the default action and the fitness function.  In 

addition to the evolutionary search, five random walks (as 

described earlier) were conducted for each experiment, each walk 

starting at a randomly selected point on the fitness landscape and 

continuing for a duration of 100,000 steps. The statistics gathered 

during the walks are also analysed.  

For each experiment the following information is presented for 

analysis and comparison: 

• Data from the evolutionary search: 

• Line graphs showing the population average fitness and 
individual best fitness for generations 1 to 500. 

• A bar chart showing the cumulative fitness distribution for 
all individuals evaluated during the 500 generations, 

showing the percentage of all individuals evaluated which 

failed to kick the ball (denoted by “nm” on the graph x-

axis), moved the ball closer to the goal (graduated), kicked 

one goal, two goals, three goals etc. 

• Data from the random walks over the fitness landscape: 

• A correlogram showing the autocorrelation data for time 
lags 1 to 100 for the five random walks and the two-

standard error bounds. 

• A graph showing the information content data for 
0<=ε <=1.0 for the five walks. 

Two different fitness functions were compared – a composite 

fitness function and a simple, goals-only fitness function.  For 

both fitness functions implemented the fitness values range from 

0.0 to 1.0, with 1.0 being the worst fitness possible, and optimal 

fitness values approaching 0.0. 

 The simple goals-only fitness function rewards a player for goals 

scored only – the greater the number of goals scored the greater 

the reward.  The goals-only fitness function was implemented as: 

 

 

 

 

where goals is the number of goals scored by the player. 

The composite fitness function rewards, in order of importance: 

• the number of goals scored in a trial 

• minimising the distance of the ball from the goal 

This combination was chosen to reward players primarily for 

goals scored, while players that do not score goals are rewarded 

on the basis of how close they are able to move the ball to the goal 

on the assumption that a player which kicks the ball close to the 

goal is more likely to produce offspring capable of scoring goals.  

This decomposes the original problem of evolving goal-scoring 

behaviour into the two less difficult problems:  

• evolve ball-kicking behaviour that minimises the distance 

between the ball and goal, and  

• evolve goal-scoring behaviour from the now increased base 

level of skill and knowledge 

The composite fitness function was implemented as: 

 

 

 

 

 

 

 

 

where goals = the number of goals scored by the player 

kicks = the number of times the player kicked the ball 

dist = the minimum distance of the ball to the goal 

fieldLen = the length of the field 
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4.1 Exp.1: Comp. Fitness, All Skills, Hunt Action 1 
In the first experiment the search algorithm has been given the 

most help in the form of initial player skills and the default action: 

the player has been given all available skills and hunt action 1 as 

the default action.  The fitness function is the composite fitness 

function, rewarding ball movement as well as goal-scoring.  The 

data shown on the graph of population average fitness (Fig 1a) 

tends to indicate that the population as a whole ceases to improve 

after 30 to 40 generations though, as evidenced by the graph of 

best fitness values, individuals of good fitness continue to be 

found beyond that point.  The percentage of the population 

exhibiting ball-kicking or goal-scoring behaviour is reasonably 

high, as shown by the frequency distribution (Fig 1b). 

The autocorrelation graph and associated correlation length 

(Fig 1c) indicate that the fitness landscape for this problem (as 

described by the random walk) offers a reasonable amount of 

gradient information that the search algorithm can use to guide the 

search.  With an autocorrelation of ~0.32 for points on the random 

walk a single step apart and a fairly steep descent for points 

further apart, the correlation between next and near neighbours on 

this fitness landscape is not so high that a search algorithm is led 

unerringly to a solution, but with a good correlation and a long 

correlation length the problem, in this form, should be readily 

solved by a search algorithm able to take advantage of the 

landscape features.   

The information content graph (Fig 1d) supports the 

autocorrelation data for this experiment.  Information stability is 

quite high at 0.885, indicating a high difference in fitness among 

neighbouring points, so pointing to some good gradient 

information being present in the landscape.  H(0.0) is not 

particularly large, indicating that the diversity of shapes on the 

landscape is not high.  Similarly M(0.0) is relatively small, 

indicating that the degree of modality of the landscape is low. 

4.2 Exp.2: Comp. Fitness, Base Skills, Hunt Action 1 
The difference between this experiment and experiment 1 is that 

instead of the player being endowed with all available skills, the 

player in this experiment has only the base skills of turn, kick and 

dash.  The player has hunt action 1 configured as the default 

action.  The fitness function is the composite fitness function.   

The data shown on the graph of population average fitness 

(Fig 2a) indicate that improvement of the population stops at 

about generation 150, and although the graph of best fitness 

values indicates that individuals exhibiting goal-scoring behaviour 

continue to be found, terminating the search after generation 150 

would not have adversely affected the result.  Figure 2b shows 

that the percentage of the population exhibiting goal-scoring 

behaviour is extremely small, with a very large proportion of the 

population not kicking the ball at all. 

These results show clearly the effect of removing from the players 

a range of mid-level hand-coded skills, and raise the question of 

what effect removing those skills has on the structure of the 

fitness landscape and how that affects the search. 

The autocorrelation graph and associated correlation length 

(Fig 2c) indicate that the fitness landscape for this problem offers 

only a limited amount of useful gradient information that the 

search algorithm can use to guide the search.  With an 

autocorrelation of ~0.1 for points on the random walk a single 

step apart and falling to zero for points just a few steps further 

apart, the correlation between next and near neighbours on this 

fitness landscape indicates that the structure of the fitness 

landscape is close to random and not as conducive to search as 

was the fitness landscape of experiment 1, thus increasing the 

difficulty of the problem.  The information content graph for this 

experiment (Fig 2d) supports the autocorrelation data.  

Information stability is relatively low at 0.371, indicating a low 

difference in fitness among neighbouring points.  With the 

autocorrelation data indicating a near random landscape, and 

information stability indicating a low fitness variation among 

neighbouring points, there is almost no useful gradient 

information in the landscape to guide the search.  H(0.0) is very 

small, indicating that the diversity of shapes on the landscape is 

very low.  Similarly M(0.0) is extremely small, indicating that the 

landscape lacks any real degree of modality.  Both values further 

indicate the lack of useful landscape data to guide the search.  

The data presented all indicate that the removal of a set of mid-

level, hand-coded skills has changed the relative difficulty of the 

problem, and that this is a result of the structure and features of 

the fitness landscape being altered by the problem representation 

– what was a landscape reasonably rich in features that helped 

guide the search has become a relatively barren landscape lacking 

in information useful for search. 

4.3 Exp.3: Comp. Fitness, All Skills, Hunt Action 3 
For experiment 3 the player is again given all available skills, but 

the default action is limited – in this case the default action is just 

to turn        in a randomly chosen direction.  The fitness function 

is the composite fitness function.   

The results show that this limiting of the default hunt action 

negatively affects the search.  The population average fitness 

remains high (Fig 3a), and the percentage of the population 

exhibiting ball-kicking or goal-scoring behaviour is low, as shown 

by the frequency distribution (Fig 3b) – significantly lower than 

the previous experiments.  The autocorrelation and information 

content data shown in Figures 3c and 3d paint a similar picture – 

from this data it is clear that the fitness landscape lacks much of 

the gradient information seen in the earlier experiments.  This is 

entirely due to the removal of any sort of intelligence from the 

default hunt action. 

4.4 Exp.4: Goals Fitness, All Skills, Hunt Action 1 
In experiment 4 the player is given all available skills, and the 

default action is configured to be hunt action 1.  The fitness 

function for this experiment is the goals-only fitness function, so 

the player is rewarded only for scoring goals. 

The results for experiment 4 are very similar to those for 

experiment 1, with the major difference being the autocorrelation 

and information content data (Fig 4c & 4d).  The population 

average fitness is, as expected for a goals-only fitness function, 

higher for experiment 4, but the best fitness and fitness frequency 

graphs are almost identical (for goal-scoring behaviour in the case 

of the fitness frequency graph) (Fig 4a & 4b).  The autocorrelation 

and information content graphs (Fig 4c & 4d) indicate that the 

fitness landscape has somewhat less gradient information useful 

for search, but still sufficient to facilitate a successful search.  This 

is another indication that when the players are given the full 

complement of hand-coded skills the difficulty of the problem is 

reduced significantly. 
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Figure 1a  
Note that a lower fitness indicates more goals scored.   

The best players are scoring between 4 and 6 goals 

Figure 1b 

Figure 1c 

Figure 1 Composite Fitness, All Skills, Hunt Action 1 

Figure 1d 

Figure 2a 
After generation 130 the best player’s score  

alternates between 1 and 2 goals 

Figure 2b 

Figure 2c 

Figure 2 Composite Fitness, Base Skills, Hunt Action 1 

Figure 2d 
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Figure 3a 

Figure 3b 

Figure 3c 

Figure 3 Composite Fitness, All Skills, Hunt Action 3 

Figure 3d 

Figure 4a 

Figure 4b 

Figure 4c 

Figure 4d 

Figure 4 Goals-Only Fitness, All Skills, Hunt Action 1 
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5. CONCLUSIONS & FURTHER WORK 
This work has presented a method for the analysis of the fitness 

landscape described by the problem of learning goal-scoring 

behaviour using a genetic algorithm.  The analysis indicates that 

when human expertise and expert knowledge is injected into an 

evolutionary search algorithm via hand-coded innate skills, smart 

default actions and a composite fitness function to guide the 

search, the problem of learning goal-scoring behaviour for robot 

soccer is solvable.  That is, the genetic algorithm is able to evolve 

individuals which display goal-scoring behaviour to the extent 

that they are able to consistently score multiple goals in the tests 

conducted.   

The fitness landscape analysis further indicates that as human 

expertise and expert knowledge is removed from the algorithm by 

restricting the hand-coded innate skills and smart default actions 

available to the players, or by using a simple goals-only fitness 

function, at some threshold the problem becomes intractable for 

the evolutionary algorithm.  This suggests that while there may be 

gradient information in the fitness landscape, as the human 

expertise is reduced the density of solutions in the search space 

becomes very low the “mountain ranges” in the landscape begin 

to become isolated from each other, and the landscape begins to 

appear as a flat plain, sparsely populated by individual peaks – so 

the problem begins to resemble a needle-in-a-haystack problem.  

In this case since the genetic algorithm is not able to locate the 

sparsely distributed gradient information any way other than by 

randomly sampling the search space it performs little or no better 

than random search - confirmed by a small number of tests 

performed comparing genetic and random search.  This is an 

indication that the injection of human expertise and expert 

knowledge acts like a magnifying glass to the searcher - as more 

expertise and knowledge is injected the fitness landscape features 

conducive to search are magnified, and as the expertise and 

knowledge is removed those landscape features become less 

discernable.  As the granularity of the injected knowledge is 

increased (e.g. a richer set of skills) the modality of the landscape 

decreases and the gradients between peaks becomes smoother. 

This is one of the underlying causes of the difficulty of the robot 

soccer problem for evolutionary algorithms, and the analysis 

presented in this work suggests that with a difficult problem such 

as robot soccer an evolutionary algorithm will only find a 

reasonable solution if one of: 

• a rich skill set (placing the initial population closer to the 

desired solution) 

• a composite fitness function (providing a solution recipe) 

is present - if both of those components are absent the problem 

becomes very difficult for evolutionary algorithms.   

Further work to ascertain the best balance between the two 

components identified as being necessary for successful 

evolutionary search (a rich skill set or a composite fitness 

function) would be useful, as would work to determine if there is 

a limit in the level of initial skills at which a difficult problem 

becomes intractable. 

This work proposed a definition of the fitness landscape described 

by the combination of the genetic algorithm and the problem 

being investigated, but further work needs to be done to develop a 

consistent definition of the fitness landscape, or landscapes, 

described by the operation of an evolutionary algorithm.  With a 

consistent landscape definition, more work can be done to 

develop measures that will aid researchers in tuning algorithms 

and search methods based on landscape analysis. 
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