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ABSTRACT
In this paper we compare Mixed-Integer Evolution Strate-
gies (MI-ES) and standard Evolution Strategies (ES) when
applied to find optimal solutions for artificial test problems
and medical image processing problems. MI-ES are special
instantiations of standard ES that can solve optimization
problems with different objective variable types (continu-
ous, integer, and nominal discrete). Artificial test problems
are generated with a mixed-integer test generator. The prac-
tical image processing problem iss the detection of the lu-
men boundary in IntraVascular UltraSound (IVUS) images.
Based on the experimental results, it is shown that MI-ES
generally perform better than standard ES on both artifi-
cal and practical image processing problems. Moreover it is
shown that MI-ES can effectively improve the parameters
settings for the IVUS lumen detection algorithm.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods, and Search; G.1.6 [Numerical Analysis]: Opti-
mization

General Terms
Algorithms, Design, Experimentation

Keywords
Evolution Strategies (ES), Mixed-Integer Evolution Strate-
gies (MI-ES),IntraVascular UltraSound (IVUS)
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1. INTRODUCTION
We study Mixed-Integer Evolution Strategies (MI-ES) [6],

a variant of Evolution Strategies (ES) [11], as a solution
method for difficult (high-dimensional, non-linear) optimiza-
tion problems where different types of decision variables
have to be considered simultaneously. In particular we look
at problems where the decision vector consists of continuous,
ordinal and nominal discrete variables. Standard Evolution
Strategies only take into account homogeneously typed vari-
able vectors (typically continuous). MI-ES are extensions of
Evolution Strategies that, instead of simply truncating con-
tinuous variables, use specific operators for different types
of discrete variables. The MI-ES approach, adopted in this
paper, was proposed in [6] and combines variation opera-
tors for different variable types as introduced in [2] (binary
variables),[10] (integer variables) and [11] (continuous vari-
ables). For similar approaches in the domain of genetic algo-
rithms we refer to [5]. The results of our study will underpin
the benefit of the new approach. For studying the MI-ES an
artificial test problem with scalable ruggedness and a chal-
lenging real-world problem will be considered. As real-world
problem we will tackle a problem related to medical image
analysis, namely the optimization of algorithms for the de-
tection of features in intravascular ultrasound (IVUS) image
sequences.

IVUS images show the inside of coronary or other arteries
and are acquired with an ultrasound catheter positioned in-
side the vessel. An example of an IVUS image with several
detected features can be seen in Figure 1. IVUS images are
difficult to interpret which causes manual segmentation to
be highly sensitive to intra- and inter-observer variability[8].

In addition, manual segmentation of the large number of
IVUS images per patient is very time consuming. Therefore
an automatic system is needed. However, feature detectors
consist of a large number of parameters that are hard to
optimize manually and may differ for different interpreta-
tions. Moreover, these parameters are subject to change
when something changes in the image acquisition process,
and there are continuous as well as different types of dis-
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crete parameters involved. Encouraged by previous work
[4, 3] on optimization of image segmentation algorithms in
the medical domain, we consider Evolutionary Algorithms
(EA) as a solution method. However, unlike these previous
approaches we will use Evolution Strategies rather then Ge-
netic Algorithms, since they seem to be more suitable for
dealing with continuous parameters.

Figure 1: An IntraVascular UltraSound (IVUS) im-
age with detected features. The black circle in
the middle is where the ultrasound imaging device
(catheter) was located. The dark area surround-
ing the catheter is called the lumen, which is the
part of the artery where the blood flows. Above the
catheter calcified plague is detected which blocks the
ultrasound signal causing a dark shadow. Between
the inside border of the vessel and the lumen there
is some soft plague, which does not block the ultra-
sound signal. The dark area left of the catheter is a
sidebranch.

Our paper is organized as follows: Section 2 provides de-
tails about the application problem. Mixed-Integer Evolu-
tion Strategies (MI-ES) are introduced in section 3. Serials
of tests on artificial problems for MI-ES are the subject of
section 4. Both MI-ES and standard ES are applied to the
parameters optimization of lumen feature detector; the ex-
perimental results will be shown in section 5. The paper
closes with an outlook providing some ideas for the future.

2. IVUS IMAGE ANALYSIS
IntraVascular UltraSound (IVUS) is a technique used to

get real-time high resolution tomographic images from the
inside of coronary vessels and other arteries. To gain insight
into the status of an arterial segment a so-called catheter
pullback sequence is carried out. A catheter (� ±1mm) with
a miniaturized ultrasound transducer at the tip is inserted
into a patient’s artery and positioned downstream of the
segment of interest. The catheter is then pulled back in
a controlled manner, using motorized pullback (1 mm/s),
during which images are acquired continuously.

In [1] a state-of-the-art multi-agent system is used to de-
tect lumen, vessel, shadows, sidebranches and calcified pla-
gues in IVUS images. The system, shown in Figure 2, is

based on the cognitive architecture Soar (States, operators
and results) [9]. IVUS image processing agents interact with
each other through communication, act on the world by con-
trolling and adapting image processing operations and per-
ceive that same world by accessing image processing results.

Agents thereby dynamically adapt the parameters of low-
level image segmentation algorithms based on knowledge of
global constraints, contextual knowledge, local image infor-
mation and personal beliefs. The lumen-agent, for example,
encodes and controls an image processing pipeline which in-
cludes binary morphological operations, an ellipse-fitter and
a dynamic programming module, and it determines all rel-
evant parameters. Generally, agent control allows the un-
derlying segmentation algorithms to be simpler and to be
applied to a wider range of problems with a higher reliabil-
ity.

Image
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Image
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shadow
agent

lumen
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ActionPerception

vessel
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Agent Platform
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Figure 2: Global view of the multi-agent system
architecture.

Although the multi-agent system has shown to offer lu-
men and vessel detection comparable to human experts [1],
it is designed for symbolic reasoning, not numerical opti-
mization. Further it is almost impossible for a human ex-
pert to completely specify how an agent should adjust its
feature detection parameters in each and every possible in-
terpretation context. As a result an agent has only control
knowledge for a limited number of contexts and a limited
set of feature detector parameters.

In addition, this knowledge has to be updated whenever
something changes in the image acquisition pipeline. There-
fore, it would be much better if such knowledge might be
acquired by learning the optimal parameters for different
interpretation contexts automatically.

3. OPTIMIZATION ALGORITHM
One of the main reasons why standard optimization meth-

ods cannot be effectively used in our application, is that dif-
ferent types of parameters are involved in the lumen feature
detector. More precisely, those types can be classified as the
following:

• Continuous variables: These are variables that can
change gradually in arbitrarily small steps.
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Figure 3: Schematic version of Figure 1 as detected
by the multi-agent image segmentation system.

• Ordinal discrete variables: These are variables that
can be changed gradually but there are smallest steps
(e.g. integer quantities).

• Nominal discrete variables: These are discrete pa-
rameters with no reasonable ordering (e.g. binary de-
cisions, discrete choices from an unordered list/set of
alternatives).

Correspondingly, the optimization of lumen feature detec-
tor may be formalized in the following way:

f(r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd) → min (1)

subject to:

ri ∈ [rmin
i , rmax

i ] ⊂ R, i = 1, . . . , nr

zi ∈ [zmin
i , zmax

i ] ⊂ Z, i = 1, . . . , nz

di ∈ Di = {di,1, . . . , di,|Di|}, i = 1, . . . , nd

Here ri, i = 1, . . . , nr denote continuous variable, zi, i =
1, . . . , nz are integer variable and di are discrete variable
taken from pre-described sets Di, i = 1, . . . , nd, respectively.
f denotes the objective function to be minimized. In ad-
dition, a metric penalty approach [7] is introduced in the
objective function that grows proportional with the num-
ber of constraint violations and makes sure that infeasible
solutions are dominated by all feasible solutions.

3.1 Representation and Selection
Mixed-integer evolution strategies (MI-ES) were first pro-

posed in Emmerich et al. for chemical engineering plant op-
timization with process simulators from industry [6]. Unlike
other Evolution Strategies, MI-ES can deal simultaneously
with continuous, integer, and nominal discrete variables and
therefore it is especially well suited for solving the given im-
age analysis problem.

In the MI-ES, individuals are represented as tuples taken
from the search space S

�a = (r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd ,

σ1, . . . , σnσ , ζ1, . . . , ζnζ , p1, . . . , pnp)

(r1, . . . , rnr , z1, . . . , znz , d1, . . . , dnd) are called object pa-
rameters. (σ1, . . . , σnσ , ζ1, . . . , ζnζ , p1, . . . , pnp) denote the
strategy parameters or step-size, and their explicit explana-
tions are that σ1, . . . , σnσ are average step-size for the con-
tinuous variables, ζ1, . . . , ζnζ are average step-size for the or-
dinal discrete variables, and p1, . . . , pnp are mutation prob-
abilities for the nominal discrete variables.

The generational loop of the MI-ES reads as follows: Af-
ter random initialization and evaluation of μ individuals 1,
λ offspring individuals are generated through a recombina-
tion and a mutation operator. Then the fitness function is
used to evaluate these λ offspring. Next, the selection oper-
ator chooses the μ best individuals among those λ offspring
individuals and μ parental individuals that do not exceed
the maximal life-span (age). Usually, life-span, or age is ex-
pressed using κ, and κ = 1 corresponds to a (μ, λ)-selection
and κ = ∞ to a (μ+λ) selection. As long as the termination
criterion2 is not fulfilled, the μ selected individuals form the
parental generation for the next iteration loop. The detailed
description of the main loop of the MI-ES can be found in
[6]. To allow for an automatic step-size adaptation it is rec-
ommended in [11] to set λ/μ � 7 and use a comma-strategy.

3.2 Mutation and recombination for different
variable types

An ad-hoc approach for using the continuous ES for in-
teger optimization is to just truncate the continuous values
after their mutation to the next integer value. However,
a conceptual drawback of this approach would be that the
step-size might reduce to a value that is too small to gener-
ate any improvement. Even worse, in case of nominal dis-
crete values the implicit assumption of a neighborhood could
cause the ES to converge to an artificial local optimum.

Thus, unlike the selection operator, the mutation operator
is different in the MI-ES than in the standard ES, because it
takes into account the different types of decision variables.
Noting, that there are similar approaches in the realm of ge-
netic algorithms [5], we here adopt and further investigate
an approach suggested by Emmerich et al. [6]. Algorithm 1
describes the mutation procedure in detail: For the local and

Algorithm 1 Mutation procedure in MI-ES

Ng = N(0, 1): normal distributed random variable
for i = 1, . . . , nr do

σ′
i ← σi exp(τgNg + τlN(0, 1))

r′i = ri + N(0, σ′
i)

end for
for i = 1, . . . , nz do

ζ′
i ← ζi exp(τgNg + τlN(0, 1))

z′
i ← zi + G(0, ζ′

i)
end for
p′

i := 1/[1 + 1−pi
pi

∗ exp(−τl ∗ N(0, 1))]

for i ∈ {1, . . . , nd} do
if U(0, 1) < p′

i then
d′

i ← uniformly randomly value from Di

end if
end for

global step-size learning rates τl and τg we use the recom-
mended parameter settings τl = 1√

2
√

nr
and τg = 1/

√
2nr

1uniform distribution within the corresponding ranges
2typically a maximal number of generations
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[6]. Note, that in case a single step-size is chosen, τl = 0.
In the algorithm N(0, 1) denotes a function that results in a
standard normal distributed random number. Accordingly,
U(0, 1) denotes a function returning a uniformly distributed
number in [0, 1] ⊂ R and G(0, q) returns a geometrically
distributed random value.

Among these distributions, the geometrical distribution
deserves further attention, as it is rarely referred to in liter-
ature. Rudolph [10] proposed the geometrical distribution
for the mutation of integer vectors within the ES. He pro-
vided various reasons for choosing this distribution: Geo-
metrical distributed random variables are random variables
whose values are in Z. They have properties similar to nor-
mal distributed random variables in R. In particular, they
have infinite support in Z, are unimodal with a peak in 0,
and their probability function is symmetric in the origin.
Moreover, as pointed out by [10], multivariate extensions
are characterized by a rotational symmetry with regard to
the �1 norm3 and they belong to a family of maximal en-
tropy distributions. Finally, by increasing the value q the
standard deviation of the random variable can be gradu-
ally increased. All these characteristics make the geometric
distribution well suited for application within mixed-integer
evolution strategies.

The recombination operator we used is similar to the stan-
dard recombination in ES. For the object variables we used
uniform crossover (discrete recombination) and for the step-
size variables intermediate recombination. Since uniform
crossover is well defined for discrete variable types, no adap-
tations have been considered here.

A geometrically distributed random variable G can be
generated from two uniformly distributed random variables
u1 := U(0, 1); u2 := U(0, 1) via:

G = G1 − G2, p = 1 − q/nz

1+ 1+( q
nz

)2
,

Gi =
�

ln(1−ui)
ln(1−p)

�
, i = 1, 2 (2)

The mutation of the mutation probabilities is done by means
of a logistic distribution as described in [6].

To make sure that variables stay within their respective
boundaries we have added some routines for interval treat-
ment to the MI-ES. While for the continuous variables we
used reflection at the boundary, for the integer variables we
set the value to the bound, whenever the bound is exceeded.
The latter method is also used to keep the mutation proba-
bilities within bounds.

4. TESTS ON ARTIFICIAL PROBLEMS

4.1 Test functions
In order to select a favorable variant of the MI-ES for the

time-consuming runs on the IVUS image analysis problem,
we study the behavior of the MI-ES and standard ES (con-
tinuous variables are truncated to integer values) on barrier
problems using a new problem generator. We designed a
multimodal barrier problem generator that produces integer
optimization problems with a scalable degree of ruggedness
(determined by parameter C) by generating an integer array
A using the following algorithm:

3sum of absolute values

A[i] = i, i = 0, . . . , 20
for k ∈ {1, . . . , C} do

j ← random number out of {0, . . . , 19}
swap values of A[j] and A[j + 1]

end for

Then a barrier function is computed:

fbarrier(r, z,d) =

nr�
i=1

A[
ri�]2+

nz�
i=1

A[zi]
2+

nd�
i=1

Bi[di]
2 → min

(3)

nr = nz = nd = 5, r ∈ [0, 20]nr ⊂ R
nr ,

z ∈ [0, 19]nz ,d ∈ {0, . . . , 19}nd (4)

Here, Bi[0], . . . , Bi[19] denotes a set of i permutations of
the sequence 0, . . . , 19, each of which being randomly chosen
before the run. This construction prevents that the value of
the nominal value di is quantitatively (anti-)correlated with
the value of the objective function f . Such a correlation
would contradict with the assumption that di are nominal
values. Whenever a correlation between neighboring values
can be assumed it is wiser to assign them to the ordinal type
and treat them accordingly.

The parameter C controls the ruggedness of the resulting
function with regard to the integer space. High values of C
result in rugged landscapes with many barriers. To get an
intuition about the influence of C on the geometry of the
function we included plots for a two-variable instantiation
of the barrier function in Figure 4 for C = 20 and C = 100.

4.2 Experimental Results
We used the following MI-ES settings for the experiments

on the barrier problems: {(μ = 3, λ = 10), (μ = 4, λ =
28), (μ = 15, λ = 100)} for the population and offspring sizes
and {(nσ = nζ = np = 1), (nσ = nr, nζ = nz, np = nd)} for
the step-size mode.

From Figures 5 and 6, it turns out that the (μ = 4, λ =
28) setting performs best on the more difficult problems.
However, the plots on the barrier problem show that for
long runs with t � 2000 a strategy with a larger population
size might be favorable. We also observed that it is less risky
with regard to the performance of the strategy to use a single
step-size per parameter type (nσ = nζ = np = 1), instead
of individual step-sizes (nσ = nr, nζ = nz, np = nd)} for all
of the variables. This corresponds to the findings in [6].

We also compared MI-ES to standard ES. The results dis-
played in Figure 7 (C = 20) and Figure 8 (C = 100) show
that the (μ = 4, λ = 28) MI-ES perform better than stan-
dard (μ = 4, λ = 28) ES for the multimodal barrier problem.

5. EXPERIMENTAL RESULTS ON IMAGE
ANALYSIS PROBLEM

MI-ES are now used to find optimal parameter settings
for the IVUS lumen detection algorithm. We focused on
the lumen detector of the IVUS system, because it can
produce good results in isolation without additional infor-
mation about sidebranches, shadows, plagues and vessels.
The settings used for the MI-ES and ES algorithms were
(μ = 4, λ = 28) in combination with a single step-size per
parameter type as found with the artificial test problem in
the previous section.
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name type range dependencies default
maxgray integer [2, 150] > mingray 35
mingray integer [1, 149] < maxgray 1
connectivity nominal {4,6,8} 6
relativeopenings boolean {false,true} true
nrofcloses integer [0, 100] used if not relativeopenings 5
nrofopenings integer [0, 100] used if not relativeopenings 45
scanlinedir nominal {0,1,2} 1
scanindexleft integer [-100, 100] < scanindexright -55
scanindexright integer [-100, 100] > scanindexleft 7
centermethod nominal {0,1} 1
fitmodel nominal {ellipse, circel} ellipse
sigma continuous [0.5 10.0] 0.8
scantype nominal {0,1,2} 0
sidestep integer [0, 20] 3
sidecost continuous [0.0, 100] 5
nroflines integer [32, 256] 128

Table 1: Parameters for the lumen feature detector.
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Figure 4: Surface plots of the barrier test function
for two variables and C = 20 (upper) and C = 100
(lower). All other variables were kept constant at a
value of zero, two integer values were varied in the
range from 0 to 20.

Table 1 contains the parameters for the lumen feature
detector together with their type, range, dependencies and
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Figure 5: Median and quartiles for the best found
function value of the barrier function (C = 20, 20
repeated runs) for different settings of μ and λ.

the default settings determined by an expert. As can be
seen the parameters are a mix of continuous, ordinal discrete
(integer) and nominal discrete(including boolean) variables.

For the experiments we use five disjoint sets of 40 im-
ages which had been used previously in[1]. The images
were acquired with a 20 Mhz Endosonics Five64 catheter
(see Figure 9) using motorized pullback (1 mm/s). Image
size is 384 × 384 pixels (8 bit greyscale) with a pixel-size of
0.02602 mm2.

The fitness function used in the experiments is based on
the difference between the contour c found by the lumen
feature detector and the desired lumen contour C drawn by
a human expert. The difference measure is defined as the
sum of the distances of the points of contour c that are more
than a threshold distance away from contour C. The reason
to allow for a small difference between the two contours is
that even an expert will not draw the exact same contour
twice in a single IVUS image. The fitness function itself is
the calculated average difference over the 40 images in the
dataset.
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Figure 6: Median and quartiles for the best found
function value: Single and multiple step-size MI-ES
on the barrier function (C = 20, 20 repeated runs).
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Figure 7: Median and quartiles for 20 repeated runs
with single step-size MI-ES and standard ES on the
barrier function (C = 20, 20 repeated runs).
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Figure 9: A 20 Mhz Endosonics Five64 catheter such
as was used to produce the IVUS images used in the
experiments. Courtesy of Jomed/Endosonics.

Let #points denote the total number of points of contour
C, then the contour difference is defined as:

difference(c, C) =

#points�
p=1

d(cp, C), if d(cp, C) > threshold

On each of the 5 datasets we trained our (4, 28) MI-ES
and ES algorithms. We limited our number of iterations to
25 resulting in 704 fitness evaluations because fitness eval-
uations are very time consuming. The results are displayed
in Table 2. (MI-)ES solution 1 was trained on dataset 1 by
the (MI-)ES algorithm, (MI-)ES solution 2 was trained on
dataset 2 by the (MI-)ES algorithm, etc . . . .

Table 2 shows that for most cases the MI-ES parameter so-
lutions result in lower average contour differences when ap-
plied to both test- and training data than the default para-
meters. Only parameter solution 3 applied to dataset 5 has
a higher average contour difference (444.2 vs 446.4). To de-
termine if the best results obtained by the MI-ES algorithm
are also significantly better than the default parameter re-
sults, a paired two-tailed t-test was performed on the (40)
difference measurements for each image dataset and each so-
lution using a 95% confidence interval (p = 0.05). The t-test
shows that all differences are significant except for the dif-
ference between MI-ES solution 3 applied to dataset 5 and
the default parameters and the difference between MI-ES
solution 5 applied to dataset 3 and the default parameters.
Therefore we conclude that the MI-ES solutions are signifi-
cantly better than the default parameter solution in 92% of
the cases (23 out of 25) and equal in the other two cases.

When we look at the results of the ES parameter solutions
compared to the default parameter solution we see that all
the differences are statistically significant meaning that the
ES solutions are significantly better than the default para-
meter solution in 23 out of 25 cases but worse in the other
2 cases (ES solutions 3 and 4 applied to dataset 5).

If we look at the performance of the MI-ES and ES algo-
rithms when trained on a dataset we see that on Dataset 1
the ES solution is a little better, but the difference is not
statistically significant. On all other datasets the MI-ES
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Dataset 1 Dataset 2 Dataset 3 Dataset 4 Dataset 5
Fitness S.D. Fitness S.D. Fitness S.D. Fitness S.D. Fitness S.D.

Default Parameters 395.2 86.2 400.2 109.2 344.8 66.4 483.1 110.6 444.2 90.6
MI-ES Solution 1 151.3 39.2 183.6 59.0 201.0 67.1 280.9 91.9 365.5 105.9
MI-ES Solution 2 160.3 45.9 181.4 58.7 206.7 70.3 273.6 74.5 372.5 99.2
MI-ES Solution 3 173.8 42.1 202.9 69.1 165.6 47.2 250.7 80.2 446.4 372.8
MI-ES Solution 4 154.0 51.7 243.7 67.7 198.8 80.1 186.4 59.0 171.3 57.8
MI-ES Solution 5 275.7 75.6 358.4 76.9 327.7 56.7 329.1 82.0 171.8 54.5
ES Solution 1 149.8 46.0 185.1 60.1 203.1 66.6 270.2 69.8 358.1 100.1
ES Solution 2 157.8 45.2 183.0 57.3 202.8 68.1 270.7 69.4 364.2 98.5
ES Solution 3 212.6 46.3 243.3 72.3 182.3 49.7 252.9 58.4 756.8 734.4
ES Solution 4 247.2 143.0 255.7 85.4 176.4 49.2 232.9 62.4 941.0 795.2
ES Solution 5 217.0 51.6 225.3 68.5 292.8 73.6 330.7 78.0 324.7 96.0

Table 2: Performance of the best found MI-ES and ES parameter solutions when trained on one of the five
datasets ((MI-)ES solution i was trained on dataset i). All parameter solutions and the (default) expert
parameters are applied to all datasets. Average difference (fitness) and standard deviation w.r.t. expert
drawn contours are given.

solution trained on that dataset is significantly better than
the ES solution trained on the same dataset. On Dataset 5
MI-ES solution 4 has a slightly lower fitness than MI-ES so-
lution 5 that was trained on the dataset but the difference is
not statistically significant. On Dataset 3, ES solution 4 has
a lower fitness than ES solution 3 but again the difference
is not significant.

Visual inspection of the results of the application of MI-ES
parameter solution 4 to the other datasets shows that this
solution is a good approximator of the lumen contours in the
other datasets, but that the particular solutions trained with
those datasets follow the expert contours more closely. Per-
haps dataset 4 contains features of the other datasets (1,2,3
and 5) which may explain this behavior. However, visual
inspection of the the image datasets does not show any ap-
parent differences. When we compare the contours detected
by the MI-ES and ES algorithms to the expert drawn con-
tours we see that they are very similar and in some cases
the (MI-)ES contours actually seem to follow the lumen
boundary more precisely. Besides being closer to the ex-
pert drawn contours, another major difference between the
(MI-)ES found contours and the default parameter settings
is that the ES solutions are more smooth.

Apart from looking at the average contour difference (or
fitness) of the different parameter solutions we can also com-
pare the performance between the MI-ES and ES algorithms
by looking at their ability to “learn” the dependencies be-
tween the variables as displayed in Table 1. In Figure 10 the
total number of illegal solutions evolved by both the MI-ES
and ES algorithms are displayed. As can be seen the MI-ES
algorithm manages to “learn” the dependencies much faster
than the ES algorithm.

In Figures 11 and 12 we have plotted the fitness and best
fitness for both the MI-ES and ES algorithms on Dataset
2. Invalid solutions were given a very high fitness penalty
and are omitted from the plots to improve readability. In
the case of the MI-ES algorithm the spread of the entire
population decreases as the population reaches the best so-
lution, which indicates that the step-size adaptation works
properly.

6. CONCLUSIONS
In this paper we studied Mixed-Integer Evolution Strate-
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ES (dotted line) algorithms. As can be seen the MI-
ES algorithm manages to “learn” the dependencies
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Figure 12: The fitness and best values fitness during
the run of the ES algorithm. As can be seen the
population does not converge on the best fitnes.

gies for the optimization of medical-image analysis prob-
lems. The Mixed-Integer Evolution Strategy uses specific
variation operators for different types of decision variables
(continuous, integer, and nominal discrete). All operators
support automatic adaptation of the mutation strength and
avoid biased sampling. Different instantiations of the MI-ES
are tested on artificial test problems to determine favorable
default settings. Moreover, on these problems we compare
the MI-ES to the standard (continuous) ES using simple
truncation of continuous variables. It turns out that the
MI-ES approach has a higher convergence reliability than
the standard ES.

A similar result is obtained for the medical image analysis.
Here the MI-ES always produced better or equal results than
the default settings chosen by an expert. The standard ES
failed to do so in some of the cases. Moreover, on all five
data sets the results of the MI-ES were significantly better
(four times) or equal (one time) than those obtained with
the standard ES, trained on the same data set.

In summary, the results show that the MI-ES is a valuable
technique for improving the parameter settings of the lumen
detector. The results encourage further studies on extended
image sets and for other feature detectors. The results of
this study suggest also its use in other mixed-integer opti-
mization problems.

However, we do not expect to find one optimal solution
for each feature detector to work in all possible contexts and
for all possible patients. Therefore we are going to apply the
methods outlined in this paper to different image interpre-
tation contexts which should result in a set of optimal image
feature detector solutions rather than in a single solution.
The aim is then to let an agent in the multi-agent system
decide which particular solution to use based on its current
knowledge of the situation.

We also intend to further study the mixed-integer evolu-
tion strategy algorithm both in theory and practice to get
more insight into its strengths and weaknesses.
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