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ABSTRACT

In this paper we set the first steps towards the development
of a commercially viable tool that uses evolutionary compu-
tation to address the Product to Shelf Allocation Problem
(P2SAP). The problem is described as that of finding the
numbers and locations of modules to allocate to particular
products in a shop, fulfilling at the same time a number
of constraints. We first justify the use of evolutionary al-
gorithms in this problem in the bad scalability properties
shown by exact methods. Then we proceed, from simpler
to more complex versions of the problem, to describe differ-
ent encodings, fitness functions and evolutionary operators
that are suited to the problem. The variations described are
tested on five different problem configurations: three with
one shelf, one with two shelves and one with eight shelves.
In all cases acceptable results can be obtained in a very short
timescale, although there is much work to be done on the
subject.

Categories and Subject Descriptors: F.2.2 [Theory of
Computation]: Nonnumerical Algorithms and Problems

General Terms: Algorithms.

Keywords: Shelf-space allocation, evolutionary algorithms.

1. INTRODUCTION
The problem of allocating space to a particular product in

a shop is typically addressed in the literature as that of de-
ciding what combination of products will yield the maximum
profit. In general, the most commonly employed methods
try and measure the impact on the customer of the relation-
ship between allocated space and sales [1][2][5][7]. The aim
is to find the allocation of space that maximises the profit.
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In [9] we can find an extensive literature survey of both ex-
act methods and heuristics applied to the allocation of shelf
space to each product, although the authors point out the
lack of academic work on this subject. Also, the models
found are complex and have practical limitations. Further,
the simplifications used make retail application unrealistic.
All these methods face the problem of incorporating real
world cases, due to the existing complexity and the multi-
tude of variables.

In the real business case that we were presented with,
however, the maximisation of the profit and the actual al-
location of products to shelves were solved at different le-
vels. At the top level, the management determine what are
the optimal (profit-wise) lengths of shelves to allocate to
each product, called the category standards. The set of cate-
gory standards that configures a shop is termed the standard

shop. At the lower level, the shop planners must take this
“ideal” shop configuration and adapt it to the actual space
available. Their objective is to allocate lengths of shelves to
particular products, given a real shop layout and the stan-
dard shop requirements. The problem they face is the lack
of suitable tools to achieve this.

The aim of this paper is to present an evolutionary tool
that can precisely do this. On the one hand, the method can
handle realistic problems (both in terms of size and complex-
ity); on the other, it is at the same time operationally viable,
in that it can provide results within reasonable timescales.
At the same time, the tool can provide solutions that are
easily understandable to the shop planner.

The paper is laid out as follows. In Section 2 the pro-
blem is described, together with the exact and evolutionary
approaches to address it. In Section 3 the experiments are
detailed and Section 4 summarises the conclusions and fur-
ther work.

2. THE PRODUCT TO SHELF

ALLOCATION PROBLEM (P2SAP)

2.1 Problem description
In this paper we will concentrate on finding actual values

of lengths per product that are close enough to the ideal
values, and locating them so as to fulfill other requirements.
This we refer to as the Product to Shelf Allocation Pro-
blem (P2SAP), to distinguish it from the Shelf-Space Allo-
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cation Problem (SSAP) described in [9]. The P2SAP that
we describe here arose as part of the expansion process of
a Spanish supermarket chain, whose managers were inter-
ested in opening a significant number of new supermarkets
in a short period of time. When a new store is opened, the
shop planners are given the standard shop requirements. In
practice, this is a list of all categories (or products) plus
their corresponding category standards. A shelf is divided
into modules of given length, so the category standard can
be expressed as a length in metres or as an integer number of
modules, with a minimum of one. Some categories can also
have a specification of number of modules by which their ca-
tegory standard can be increased or decreased if necessary.
Because the size and layout of different premises can vary,
the standard shop requirements cannot be fulfilled exactly,
so for some categories the number of allocated modules have
to be increased or decreased.

There are also other constraints for the placing of cate-
gories. Firstly, categories are classified into groups (e.g.,
baby milk belongs to the generic group of baby products)
so categories in the same group must be placed together.
Groups should be kept as cohesive as possible; it does not
make sense to put a module containing tinned beans at the
end of a shelf full of toiletries, only because that is what the
standard number of modules for that category specifies.

Next, categories and groups can have affinities or dis-

parities between them. For instance, baby products are
disparate, or adverse, to pet food because, seemingly, cus-
tomers do not like seeing the two things together. Groups
containing food products are affine to each other, but indif-
ferent to housewares.

Finally, some groups must be placed near reference points.
For instance, bakery products must be placed near the oven
(even though they are not manufactured in store) or expen-
sive spirits must be placed near the checkouts, so that the
cashiers can keep an eye on them.

With all these constraints and the standard shop require-
ments, the shop planner can take several days to come up
(by hand) with a layout for the new shop. If many shops
have to be opened at the same time, this is not acceptable.
Also, for existing shops, there is the problem of new ca-
tegories being introduced everyday, which implies frequent
reorganisation.

2.2 Definitions
Given a set of K categories (or products) that can be

grouped into a set of G groups, and a set of S shelves, each
one divided into Mi, i = 1, . . . , S modules, with the total

number of modules M =
s

P

i=1

Mi ≥ K.

The P2SAP consists of finding a matrix X representing
an allocation of categories to modules,

xi,k =

(

1 if category ci is assigned to module mk

0 otherwise

subject to the following constraints:

• Space available. This is a hard constraint that can be
represented as
K
P

i=1

M
P

u=1

xi,u = M

• Standard shop requirements. We will capture these in
a matrix as follows

SS =

0

B

B

@

std1 min1 max1 p1

std2 min2 max2 p2

...
...

...
...

stdK minK maxK pK

1

C

C

A

(1)

where stdi, mini and maxi are the standard, mini-
mum and maximum number of modules to allocate to
unit i, respectively, (where a unit can be a category
or a group) and pi is the preference for the increase in
modules

• Affinity constraints. We will represent these by a K ×
K affinity matrix, A, where each component ai,j de-
notes the affinity between categories i and j, as follows:

ai,j

8

>

<

>

:

< 0 if ci and cj are adverse

= 0 if ci and cj are indifferent

> 0 if ci and cj are affine

• Location with respect to reference points

• Group cohesion. This and the previous one are softer
constraints and we will see how to handle them below.

The first two constraints relate to the number of modu-
les to allocate to each category, while the last three relate
to their relative position. So we have a dual objective to
achieve: on the one hand, to find the “ideal” number of mo-
dules (as opposed to the “standard” number); on the other
hand, to find the ideal allocation of categories to the modu-
les. However, in this first approach to the problem we will
use a simple heuristic to attain the first objective and will
concentrate on the second objective.

For this we will need a further definition: an M × M
distance matrix, D, where each component di,j denotes the
distance between units i and j, where a unit can be either
a category, a module or a group, depending on the problem
configuration.

2.3 Exact approaches to the P2SAP
The first approach we can take to this problem is the com-

plete enumeration of the solutions. Since essentially what
we are looking for is a permutation of the K categories, we
can find an algorithm that generates all the possible K! per-
mutations, evaluates them and chooses the best. However,
this is only feasible for really small versions of the problem.
For K = 16 and assuming a time of 1µs per operation, just
generating the solutions would take 8 months; for K = 17
the time would be above 10 years.

A second approach to the P2SAP is to model it as a Mixed
Integer Quadratic Assignment Problem (MIQAP) using an
objective function as follows:

f =
1

2

K
X

i=1

K
X

j=1

M
X

k=1

M
X

l=1

aij · dkl · xik · xjl, j > i, k 6= l (2)

The aim is to find combinations of the xik and xjl that
minimise f , subject to the constraints shown above. In our
experiments, for a simple problem (S = 1, M = 10, K = 5)
a solution was obtained in a few minutes. However, for a
more complex problem (S = 1, M = 17, K = 10) the run
time was of the order of 30 to 40 hours. For even more
complex problems we could not obtain a solution with the
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software employed1. In view of these figures and given that,
according to [10], an average supermarket of medium size
has between 5000 and 7000 categories, it seems obvious that
a different approach to their allocation must be taken. The
choice was an evolutionary approach.

2.4 The evolutionary approach to the P2SAP
For simplicity reasons we decided not work with the ma-

trix X and tried different codings instead. The coding varied
with each problem configuration and will be explained be-
low. The same goes for the fitness function employed.

The evolutionary process started by generating a random
population of individuals or chromosomes representing so-
lutions to the problem at hand. Then evolution proceeded
employing the following operators:

• reOrderXover : This is a variant of the standard cross-
over operator used when the chromosomes are permu-
tations of a series of natural numbers and therefore
each number can appear only once. Two parents are
selected. The genes (components) of each parent are
reordered from the (random) crossover point in the
same order as they appear in the other parent.

• swap : The values of two genes selected at random in
a chromosome are swapped

• shift(n) : The genes in a chromosome are shifted n
(a random value) positions to the left if n < 0 or to
the right if n > 0

• shuffle(n): Given a random number n, select ran-
domly a segment of n genes within the chromosome
and shuffle their values.

3. EXPERIMENTS

3.1 One shelf ­ P2SAP1
This is the simplest version of the problem. We considered

three variants:

• P2SAP1.1 - The number of modules equals the number
of categories (M = K)

• P2SAP1.2 - The number of modules is greater than
the number of categories (M > K)

• P2SAP1.3 - As P2SAP1.2, but with a reference point

As said above, we did not work with the matrix X, but
rather collapsed it into a single vector chrom, the chromo-

some or individual. In general the chromosomes are vectors
of natural numbers which in the simpler versions of the pro-
blem represent the categories.

P2SAP1.1

For this simple case we did not consider groups, or rather,
we assumed that each category belongs to its own group. To
represent affinities between categories, the components of A
will take values of 1, −1 or 0.

We implemented an evolutionary algorithm in which the
chromosomes are coded as vectors of length M where each

1CPLEX version 9.1 running on a Pentium IV 3.0 GHz with
1 GB RAM.

Parameters of the evolutionary algorithm

Population size 100 (P2SAP1), 200 (P2SAP2),
400 (P2SAPn)

Selection method Tournament
Tournament size 5 (P2SAP1 & 2), 10 (P2SAPn)
Mutation probability 1/chromLength
Diversity preservation Restart + seeding with best
mechanism when 80% individuals are equal

Table 1: Parameters of the evolutionary algorithm
employed in the experiments. The values of the pop-
ulation and tournament sizes were chosen after ex-
perimentation. Following [6], the mutation proba-
bility equals the inverse of the chromosome length.

component i stores the category allocated to module i. Since
M = K we always have a one-to-one correspondence be-
tween modules and categories.

We considered modules of unit length and defined the dis-
tance between two consecutive modules as equal to 1. The
fitness function was defined as follows:

f =
1

2

K
X

i=1

K
X

j=1

(di,j · |ai,j |)
sgn(ai,j) (3)

where

di,j is the distance between modules mi and mj

ai,j is the affinity between the categories allocated to
modules mi and mj

sgn(ai,j) =

(

sign(ai,j) ∀ai,j 6= 0

0 ai,j = 0

and the objective was to minimise f .
We took M = K = 10 and used a randomly generated

affinity matrix, as follows

A =

0

B

B

B

B

B

B

B

B

B

B

@

− 1 -1 0 0 1 1 0 -1 1
1 − 0 0 1 1 1 -1 0 1
-1 0 − 1 0 1 -1 0 1 -1
0 0 1 − -1 -1 -1 0 -1 -1
0 1 0 -1 − -1 1 0 1 0
1 1 1 -1 -1 − 0 1 0 -1
1 1 -1 -1 1 0 − 1 1 -1
0 -1 0 0 0 1 1 − 1 0
-1 0 1 -1 1 0 1 1 − 1
1 1 -1 -1 0 -1 -1 0 1 −

1

C

C

C

C

C

C

C

C

C

C

A

This means that

c1 is affine to c2, c6, c7 and c10 and adverse to c3 and c9

c2 is affine to c1, c5, c6, c7 and c10 and adverse to c8

c3 is affine to c4, c6, and c9 and adverse to c1, c7 and c10

c4 is affine to c3 and adverse to c5, c6, c7, c9 and c10

and so on. We ran the evolutionary algorithm 20 times. Af-
ter 3 seconds, the best result obtained was always:

chrom =
`

4 3 6 8 9 7 5 2 10 1
´

or its symmetric:

chrom =
`

1 10 2 5 7 9 8 6 3 4
´
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Figure 1: The evolutionary algorithm employed in the experiments

resulting in a shelf layout as follows:

c4 c3 c6 c8 c9 c7 c5 c2 c10 c1

or, conversely,

c1 c10 c2 c5 c7 c9 c8 c6 c3 c4

Analysing the result, we can see that c4, which is adverse
to 4 categories, is placed at the end of the shelf, next to
the only other category it is affine to. In other cases, com-
promises must be reached. This is for instance the case of
c6, which wants to be close to c3 but far from c4. We must
point out that the affinity matrix was obtained at random
and in reality this kind of situation may not arise because
there are not so many affinities and disparities between ca-
tegories, most of them being indifferent to one other.

P2SAP1.2

When M > K we must also allocate the number of mo-
dules that correspond to each category and not only their
position. This will be given by an allocation vector, h. In or-
der to calculate h in a way that satisfies the requirements of
the standard shop, we will employ the category standards
(or standard shop) matrix SS defined in Equation 1. In
particular, we will work with the last three columns of this
matrix. The last column defines the preference of each ca-
tegory, the highest value corresponding to the category of
highest preference (i.e., the one that should be allocated
more modules). The second and third columns specify the
minimum and maximum number of modules per category
respectively.

The allocation procedure is as follows. First of all, we
allocate the minimum number of modules to each category.
Next we allocate the remaining modules using a variant of
the highest averages method (or d’Hondt method2). The
first spare module is allocated to the category with the high-
est preference. In the next round, the category that was
allocated a module gets its preference divided by 2. In ge-
neral, if a category has been allocated n spare modules, its
preference to get the next one (assuming its maximum has
not been reached) is p0

n+1
, where p0 is the initial preference.

The process ends when all the spare modules have been al-
located.
For our experiments we used M = 10 and K = 8 and a
category standard matrix as follows:

2This method is named after 19th century Belgian mathe-
matician Victor d’Hondt and is used in the European Union,
as well as several European countries, for the allocation of
seats in parliament; see, for instance, [4].

SS =

0

B

B

B

B

B

B

B

@

5 1 4
1 1 4
2 1 4
4 1 4
7 1 4
8 1 4
3 1 4
6 1 4

1

C

C

C

C

C

C

C

A

(4)

where the first column has been omitted because it was
not used. Hence, categories c6 and c5 have the highest pre-
ference and c2 and c3 the lowest. According to the highest
averages method, the allocation of modules to categories
would then be a vector h as follows:

h =
`

1 1 1 1 2 2 1 1
´

meaning all categories get allocated one module, except c5

and c6, which get two.
The affinity values will be given by

ai,j =

8

>

>

>

>

>

>

<

>

>

>

>

>

>

:

−1 if ci and cj belong to adverse groups
0 if ci and cj belong to indifferent groups
1 if ci and cj belong to affine groups
2 if ci and cj belong to the same group
3 if ci and cj belong to the same group

and are affine to each other

We chose the following combination of groups:

g1: categories c1, c2, c3 and c4

g2: categories c5 and c6

g3: categories c7 and c8

where groups g1 and g2 are adverse; group g3 is indifferent
to g2 and affine to g1. Within group g1, categories c1 and
c3 are affine and the rest are indifferent. This results in an
affinity matrix as follows:

A =

0

B

B

B

B

B

B

B

@

− 2 3 2 -1 -1 1 1
2 − 2 2 -1 -1 1 1
3 2 − 2 -1 -1 1 1
2 2 2 − -1 -1 1 1
-1 -1 -1 -1 − 2 0 0
-1 -1 -1 -1 2 − 0 0
1 1 1 1 0 0 − 2
1 1 1 1 0 0 2 −

1

C

C

C

C

C

C

C

A

(5)

The chromosome is encoded as a vector whose length
equals the number of categories, but in this case this is not
the same as the number of modules. The chromosome indi-
cates the order of the categories in the shelf and we will use
the allocation vector given by the highest averages method
to determine the layout of the actual shelf.
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We ran the experiment 80 times with a population size
of 100 and a tournament size of 5. The run time was 60
seconds, but typically within two seconds a minimum fit-
ness of 52.5845 was reached. This corresponds to 32 similar
solutions, some of which are given here:

chrom =
“

6 5 8 7 2 3 1 4
”

chrom =
“

5 6 7 8 1 3 2 4
”

chrom =
“

4 3 1 2 8 7 6 5
”

chrom =
“

4 2 3 1 8 7 6 5
”

where we have boxed those categories belonging to the same
group to show that the algorithm has placed them together.
Also, categories c1 and c3 are next to each other in all the
solutions, groups g1 and g2 are always apart and groups g1

and g3 are always together.

The actual shelf layout corresponding to, say, the first so-
lution, given the allocation of modules to categories obtained
by the highest averages algorithm, would be as follows:

c6 c6 c5 c5 c8 c7 c2 c3 c1 c4

i.e. there are two modules for categories c5 and c6 and one
for the rest.

It is worth noticing that the problem could be greatly sim-
plified if instead of placing the categories we concentrated
on placing the groups. We will make use of this idea later on.

P2SAP1.3

In this problem a reference point is introduced, which we
will assume is placed at the header of the shelf, on the left
hand side. We simulate this as a fictitious module, m0,
plus a fictitious category, c0, that will always be placed in
that module. We introduce an extra row and column in the
affinity and distance matrices. The categories that must be
close to the reference point will have an affinity value of 2 to
the fictitious category. This is similar to the affinity value
between categories belonging to the same group. The affin-
ity matrix in this case was the same as in Equation 5 but
modified adding one new row and column for the fictitious
category. In these, all the values are zero except those cor-
responding to c7 and c8, which equal 2, meaning categories
c7 and c8 must be placed close to the reference point.

A =

0

B

B

B

B

B

B

B

B

B

@

− 0 0 0 0 0 0 2 2
0 − 2 3 2 -1 -1 1 1
0 2 − 2 2 -1 -1 1 1
0 3 2 − 2 -1 -1 1 1
0 2 2 2 − -1 -1 1 1
0 -1 -1 -1 -1 − 2 0 0
0 -1 -1 -1 -1 2 − 0 0
2 1 1 1 1 0 0 − 2
2 1 1 1 1 0 0 2 −

1

C

C

C

C

C

C

C

C

C

A

(6)

The problem can then be reduced to the previous case,
with the restriction that c0 will always be located in m0.

For this example we chose M = 20 and two values of K,
K = 8 and K = 10. For M = 20 and K = 8 and a prefe-

rence matrix as given by Equation 4, the highest averages
algorithm provides a module allocation h as follows:

h =
`

3 1 2 3 3 3 2 3
´

which means c2 gets one module, c3 and c7 get 2 modules
each and the rest get 3 modules each. We ran the evolution-
ary algorithm 30 times with a population size of 100 and
a tournament size of 5. The run time was 15 seconds (in-
creasing the time does not provide better results). When
the diversity is low (80% of individuals are the same), the
population is reinitialised and seeded with the best result so
far (see Figure 1). The best results obtained were as follows:

chrom =
`

0 8 7 4 2 3 1 6 5
´

chrom =
`

0 8 7 4 2 3 1 5 6
´

the former resulting in an actual shelf layout as follows:

c8 c8 c8 c7 c7 c4 c4 c4 c2 c3 c3 c1 c1 c1 c6 c6 c6 c5 c5 c5

with categories c7 and c8 placed next to the header of the
shelf, as was required.

For M = 20 and K = 10 we add two extra categories, c9

and c10, to group g3. The category standards matrix was
the same as in Equation 4 adding two rows at the end to
represent that c9 and c10 have now the highest preference.
This gives a module allocation vector h of :

h =
`

2 1 1 2 2 3 1 2 3 3
´

The affinity matrix was modified adding two new rows and
columns for the new categories, but also the affinity values
of c7 and c8 to the reference point were increased to 3.

The best results obtained after 50 runs were

chrom =
`

0 8 7 9 10 2 3 1 4 6 5
´

chrom =
`

0 8 7 10 9 2 3 1 4 6 5
´

which differ only in the positions of c9 and c10. The first
one gives a shelf layout of:

c8 c8 c7 c9 c9 c9 c10 c10 c10 c2 c3 c1 c1 c4 c4 c6 c6 c6 c5 c5

In this case, to keep categories c7 and c8 next to the header
we had to increase their affinity to it, because keeping it as in
the previous experiment did not achieve the desired result.
This shows the sensitivity of the results to the selection of
the affinity values.

3.2 Two shelves separated by an aisle ­ P2SAP2
We will consider now the case of two face-to-face shelves

consisting of 10 and 13 modules of length 1 and separated by
an aisle of width 3. There is also a reference point located
at the left end of the aisle.

The chromosome is now a vector consisting of two parts.
The first S − 1 components indicate the number of catego-
ries to be placed in a shelf (with S equal to the number of
shelves). The remaining components indicate the order in
which the categories will be placed in the shelves. Hence the
length of the chromosome will be S − 1 + K.

For instance, let us assume S = 2 and K = 8. A chromo-
some such as:

chrom =
`

3 8 5 1 3 2 6 4 7
´

indicates that there will be 3 categories in the first shelf (c8,
c5 and c1) and the remaining 5 (c3, c2, c6, c4, and c7) will
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be placed in the second shelf. The vector h indicating the
number of modules per category will be determined indepen-
dently for each shelf following the highest averages method.
We will also calculate a vector hg, which indicates the num-
ber of modules that would be allocated per category if all
the modules were grouped in a single shelf, i.e., the global

h.
We will assume that:

• A category cannot be distributed over two shelves

• It is preferable to place two affine categories on the
same shelf rather than split into two shelves, even when
the Euclidean distance between modules of different
shelves is less than between modules of the same shelf.

After trying different variations of the fitness function, we
settled for:

f =
1

2

K
X

i=1

K
X

j=1

“

(di,j · |ai,j |)
sgn(ai,j) · pi,j

”

+β·||hg−h||2 (7)

where

di,j , ai,j and sgn(ai,j) are as defined for Equation 3
the affinity matrix A is as for Equation 6
||hg − h||2 is the quadratic distance between h and hg

and the penalty, pi,j , is defined as follows

pi,j =

8

>

>

<

>

>

:

P

(

if ci and cj are on different shelves and ai,j > 0
or if ci and cj are on the same shelf
and ai,j < 0

1 otherwise

Different values of P and β were tried and finally we set-
tled for P = 100 and β = 50. We run the algorithm 30
times, with a population size of 200 and a time limit of 50
seconds per run, obtaining the following best solutions

chrom =
`

2 5 6 7 8 2 3 1 4
´

chrom =
`

2 5 6 8 7 2 3 1 4
´

chrom =
`

2 6 5 7 8 2 3 1 4
´

chrom =
`

2 6 5 8 7 2 3 1 4
´

with a value of h as follows:

h =
`

3 1 1 3 5 5 2 3
´

while the value of hg is:

hg =
`

3 1 2 3 4 4 3 3
´

which differs from h in four values. The actual shelf layout
for the first result is:

c5 c5 c5 c5 c5 c6 c6 c6 c6 c6

AISLE

c7 c7 c8 c8 c8 c2 c3 c1 c1 c1 c4 c4 c4

which achieves the objectives of

• placing c7 and c8 close to the reference point (located
in (0, 0), to the left of the shelves),

• all categories belonging to the same group are together
and on the same shelf

• the allocation of modules is relatively close to the “ideal”
obtained by the highest averages method

3.3 A more complex topology ­ P2SAPn

We will address here the problem with a more complex
topology: eight shelves in different positions, as shown in
Figure 2. The approach we will take is to concentrate on the
placing of groups instead of categories. This brings about
two simplifications, namely:

• The components of the affinity matrix can take one of
three values: −1, 0 and 1.

• A group can be distributed over more than one shelf.

As a consequence of the above, the matrices A, SS and
D now refer to groups and not categories. So, ai,j and di,j

are the affinity and distance, respectively, between groups
gi and gj . And the columns of SS contain the standard,
minimum and maximum number of modules per group.

The distance between groups is going to be taken now as
the distance between their centres of gravity. We define the
centre of gravity (c.o.g.) of a group as the module in the
group for which the sum of the distances of itself to every
other module in the group is minimal; if several modules
fulfill this condition then the first one encountered will be
taken as the c.o.g.

Another major difference between this and previous ver-
sions of the problem is that now the allocation of number of
modules per group is going to be done as part of the evo-
lutionary algorithm, rather than using a separate algorithm
to calculate it. Also, because a group can be spread on
different shelves, we must ensure that the group maintains
sufficient cohesion, in other words, we have to control the
group dispersion.

We will introduce a different encoding for the chromo-
some. Instead of a vector, we will employ a MATLAB cell
array structure, which is a matrix in which the rows can
different lengths. In our case each row i stores the modules
allocated to group gi. The restrictions are, as before, that
the total number of elements must equal the total number of
modules in the shop and that each chromosome represents
a permutation of the modules’ indices.

For instance, for G = 3 and M = 10 a possible chromo-
some would look like this:

chrom =

0

@

9 7
10 8 5 1 3
2 6 4

1

A

meaning group 1 gets modules 9 and 7, group 2 gets modules
1, 3, 5, 8 and 10, and so on.

When defining the fitness function we must take into ac-
count three different objectives:

• group affinity,

• deviation from the standard shop in terms of number
of modules, and

• dispersion of the modules belonging to a group.

The last two objectives are specific of this version of the
problem. The dispersion refers to how far apart the mo-
dules allocated to a group are located. To measure this, we
introduce two penalty coefficients in the evaluation function:
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Figure 2: Shop layout for P2SAPn, with 5 aisles,
8 shelves and 60 modules; the numbers represent
the module identifiers, mi. The dashed lines repre-
sent the accessible side of the shelf; the shaded areas
represent shelf headers, used as reference points.

• Inter -group penalty, P : to penalise the situation in
which modules belonging to the same group are lo-
cated in different corridors, and

• Intra-group penalty, δ: to penalise the dispersion of
the modules belonging to a group.

Notice how for this problem the module allocation vector h
is given by the evolutionary algorithm and not calculated
beforehand, as in previous Sections. The resulting fitness
function is as follows:
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where:
di,j is the distance between the centres of gravity of groups
gi and gj ;
ai,j is the affinity between groups gi and gj ;
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||std − h||2 measures the difference between the number of
modules per group assigned by the algorithm and that given
by the first column of the standard shop matrix SS. It is
calculated as a quadratic distance between vectors;
PG

i=1 dispgi
is the total dispersion of the modules within all

groups, where dispgi
is calculated as follows:

dispgi
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+ δ (9)

Sgi
is the number of different shelves occupied by gi

Mgi
is the number of modules allocated to gi

δ penalizes disperse modules as follows:

δ =

8

<

:

R
if all the group modules are not
placed in the same aisle,

0 otherwise

Finally, evolutionary operators have also been modified to
accommodate the new representation. The following muta-
tion operators were implemented:

• Number of modules mutation: the number of modu-
les of a group is increased or decreased

• Modules mutation: two groups exchange a random
number of modules

• Groups mutation: all the modules corresponding to
two groups are exchanged

All other parameters of the evolutionary algorithm remained
the same.

For the experiments we defined six groups, g1 to g6, and
two reference points (located at the headers of the shelves),
which were modeled as two extra groups, g7 and g8. The
affinity matrix (now storing group affinity values) was as
follows:
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(10)

In Equation 10 it can be seen that g1 is affine with groups
g7 and g8, i.e., it is preferable to place this group in the
shelves closer to the reference points.

The standard shop requirements (now referring to group
standards rather than the category standards) employed in
the experiments are given by Equation 11, where the last
column of the matrix indicates that all the groups have the
same preference.
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(11)

We ran the algorithm 50 times, with a termination cri-
terion of 30,000 iterations (approximately 25 minutes per
run). Most runs (78%) obtained good solutions; seven of
them (14%) obtained the best chromosome:
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Figure 3: Allocation of groups to modules for two solutions of equal fitness

depicted in Figure 3, right, or a similar solution of equal
fitness, depicted in Figure 3, left, in which groups 2 and 3
swap positions:
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For both solutions the numbers of modules assigned to
each group were:

h = ( 6 6 4 12 12 20 )

which is “close enough” to the group standards, expressed
in the first column of Equation 11:

std’ = ( 6 6 6 12 10 19 )

Notice the contribution to the result of the three compo-
nents of the fitness function. First, the restrictions imposed
by group affinities are accomplished: group 1 is close to
the reference points, groups 2 and 3 are close to each other
and groups 1 and 4 apart from each other. Second, all the
modules belonging to the same group are placed together
(thus minimising the dispersion). And finally, the number
of modules assigned to each group is similar to the standard
values.

4. CONCLUSIONS AND FURTHER WORK
We have shown that our evolutionary algorithm can be

used as a time-efficient tool to obtain solutions for the P2SAP.
Future work will involve:

• More complex topologies with higher number of shelves
and more reference points.

• Studying the contribution of the different components
of the fitness function; also considering the possibility
of addressing the problem as multi-objective.

• Selecting a unique representation that can be applied
to all versions of the problem. Also, studying how to
address it with Genetic Programming rather than a
Genetic Algorithm.

• Employing an efficient algorithm to calculate the affin-
ity matrix. Associating complementary products, be-
cause costumers need them at the same time to achieve
a specific goal, is the most commonly employed method
[3][8][11][12].
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