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ABSTRACT
Wire routing in a VLSI chip often requires minimization of
wire-length as well as the number of intersections among
multiple nets. Such an optimization problem is computa-
tionally hard for which no efficient algorithm or good heuris-
tic is known to exist. Additionally, in a biobjective setting,
the major challenge to solve a problem is to obtain repre-
sentative diverse solutions across the (near-) Pareto-front.

In this work, we consider the problem of constructing
spanning trees of two geometric graphs corresponding to two
nets, each with multiple terminals, with a goal to minimize
the total edge cost and the number of intersections among
the edges of the two trees. We first design simple heuristics
to obtain the extreme points in the solution space, which
however, could not produce diverse solutions. Search al-
gorithms based on evolutionary multiobjective optimization
(EMO) are then proposed to obtain diverse solutions in the
feasible solution space. Each element of this solution set is a
tuple of two spanning trees corresponding to the given geo-
metric graphs. Empirical evidence shows that the proposed
evolutionary algorithms cover a larger range and are much
superior to the heuristics.

Categories and Subject Descriptors
I.2.8 [Artificial Intelligence]: Problem Solving, Control
Methods and Search—Heuristic Methods; J.6 [Computer-

Aided Engineering]: Computer-Aided Design.

General Terms
Algorithm, Design, Experimentation.
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1. INTRODUCTION
In physical design of VLSI circuits, the routing phase con-

sists of laying out the wiring paths on metal layers that elec-
trically interconnect all the terminals of each net. The rout-
ing task is usually divided into two phases global or loose
and local or detailed routing. In global routing the exact
geometric details are ignored and only the loose routes are
determined. It determines the open regions through which
each wire should run. Detailed routing completes the point-
to-point wiring by specifying geometric information such as
location and width of wires and their layer assignments.
Most of the optimization problems related to routing are
known to be NP-hard, therefore, approximation algorithms
or heuristics are generally used to solve them [24, 27].

For high performance chips it is important to route in such
a way that all the signals meet their timing constraints. One
of the typical optimization goals is to minimize the required
wire-length for each net. This may require determination of
a minimum rectilinear Steiner tree (RST), which is a compu-
tationally hard problem [12, 13]. Hwang [13] has shown that
the cost of a minimum RST is at most one-and-a-half times
the cost of a minimum spanning tree (MST). Thus finding
an MST often serves as an initial step in such heuristic algo-
rithms. An illustration of a MST from a set of eight points
in a 2-dim plane, and the corresponding minimum RST with
three additional Steiner points is included in Figure 1.

For routing multiple nets on a metal layer, minimizing to-
tal wire-length of the spanning trees is not the only criterion
for routing. Two geometrically crossing edges (belonging to
two distinct nets) cannot be routed on a single metal layer
preserving their embeddings, as they would cause an un-
desirable electrical short. To make use of another routing
layer, each crossing among the tree edges will need vias so
that the wires can change layers. Increase in the number of
vias may however decrease the yield and introduce parasitic
capacitances, which in turn, may affect the operating speed
of the chip. Thus, one should also minimize the number of
intersections among the tree edges that belong to different
nets. In this paper, our design strategy, therefore, is simul-
taneously minimizing the wire-length as well as the number
of intersecting points between two spanning trees.
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(a) Minimum Spanning Tree

Graph Points

Steiner Points

(b) Rectilinear Steiner Tree

Figure 1: A MST and the corresponding Minimum

RST with use of additional Stenier points.

Several theoretical results on minimizing the number of
intersections among the edges of multiple spanning trees
are well known. Tokunaga [28] addressed the problem of
finding geometric spanning trees of bi-colored point sets on
two simple geometric graphs1 such that they intersect in as
few points as possible. Bilo et al. [3] and Har-Peled and
Indyk [11] presented greedy/approximation algorithms for
crossing spanning trees. Recently, Kano et al. [17] solved
a problem similar to that of Tokunaga but with a larger
number of geometric graphs instead of two and suggested
an upper bound on the number of intersections of the tree
edges. Majumder et al. [22] studied a similar problem and
reported heuristics for rectilinear Steiner trees of bi-colored
point sets. Their heuristic first generates a geometric MST
and then converts it to a rectilinear one. There are many
other related studies too. For example, Abellanas et al. [1]
and Akiyama and Urrutia [2] addressed the problem of em-
bedding trees and alternating paths on bi-colored point sets,
and Dumitrescu & Kaye [9] studied matching problem on
colored point sets. For survey articles on related subjects,
see Pach [25] and Kaneko & Kano [16]. There are many
other spanning/Steiner problem instances having a bound
on degree/diameter, capacitated trees or bounds for two
parameters to be satisfied simultaneously, see Deo & Ku-
mar [8], Marathe et al. [23]. Using evolutionary algorithms
(EAs), Knowles & Corne [18] and Raidl & Julstrom [26]
attempted to solve similar constrained minimum spanning
tree problems.

We argue that use of heuristics may yield a single optimal
solution, one in each objective, and may not yield many
other equivalent solutions. With use of ε-constraint method,
most other solutions obtained are located near the minimal
region of the respective criterion of the Pareto-front, and
thus do not form the complete Pareto-front.

However, the design problem considered in this paper is
essentially multiobjective in nature. A multiobjective opti-
mizer yields a set of all representative equivalent and diverse
solutions; the set of all optimal solutions is the Pareto-front.
In this work, we use evolutionary multiobjective optimizer
(EMO) to obtain a (near-) optimal Pareto-front. However,
black-box optimizers, e.g. EMOs, in solving such hard prob-
lems, have their own challenges and difficulties. For exam-
ple, EMOs have been very effective for those problems for

1Geometric graphs G = (V, E) are the graphs whose nodes
(set V ) are a collection of points on a plane in general po-
sitions, i.e., no three points are on a line, and their edges
(set E) are a collection of straight line segments connecting
a pair of nodes in set V . A graph G is said to be simple if
two edges of G do not intersect except at their endpoints.

which one has a reference set of (optimal) solutions to assess
quality of the obtained solution front [4, 6].

Since the problem is hard and the Pareto-front is unknown,
the main issues in such problem instances are: how to as-
sess the convergence, and how to obtain many representa-
tive diverse solutions across the Pareto-front. Most of the
strategies to assess the convergence need a reference solution
front which is not known for this problem. Moreover, most
diversity preserving strategies attempt to find a uniformly
distributed solution front, which may not be the case with
an unknown problem.

In this work, we use two different multi-objective evo-
lutionary algorithms (MOEAs) and get the solution-front.
Then, in order to validate the solutions, we design two heuris-
tics to obtain the extreme points nearer to their location. We
observe that the solutions obtained by MOEAs for larger
graphs are much inferior and do not cover the entire range.
Therefore, we embed this knowledge in the solution evolving
strategy, and obtain diverse solutions in the entire range.
The solutions obtained by MOEAs are much superior to
those obtained by the heuristics.

The rest of the paper is organized as follows. In Section 2,
we describe the heuristics to obtain the solutions nearer to
the (approximated) extreme points. In Sub-Section 3.1, we
present a brief review of the issues and challenges in solving
multiobjective real-world applications. We describe, in Sub-
Section 3.2, the representation scheme for spanning tree and
the genetic operators and evolutionary algorithm used. We
include empirical results in Section 4 along with a compari-
son with different approaches. Finally, we draw conclusions
in Section 5.

2. HEURISTIC ALGORITHMS
Problem Definition: Given two geometric graphs G1 =

(V1, E1) and G2 = (V2, E2) such that V1∩V2 = φ and V1∪V2

are in general position. We need to find the spanning trees
T1 and T2 for G1 and G2, respectively, such that edges of the
trees have as few intersections as possible with costs as less
as possible. Thus, we have to simultaneously minimize both
the objectives, namely, edge-cost and intersection points for
the given geometric graphs.

First, we experiment with exact MSTs to get a represen-
tative solution for the minimum value of the total cost; such
an MST may have a higher number of intersections.

Algorithm 1 Search over Minimal Cost Spanning Trees

1: Input : G1 - graph 1, G2 - graph 2
2: Output : a singleton set consisting of a tuple (T1, T2) over

MSTs from G1 and G2, respectively
3: Algorithm:
4: Initialize PF as φ
5: for all nodes u1 of G1 do

6: Make T1 considering u1 as start node of the tree
7: for all nodes u2 of G2 do

8: Make T2 considering u2 as start node of the tree
9: compute objective vector of tuple (T1, T2)

10: Update the singleton set
11: end for

12: end for

13: Output Point on the Pareto Front (PF)
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2.1 Finding Minimal Cost Spanning Trees
We compute MSTs T1 and T2 for graphs G1 and G2, re-

spectively, using Prim’s algorithm [5]. Since, Prim’s algo-
rithm may give different MSTs for different start nodes, we
generate MSTs considering each node of the graph as the
start node and compute the number of intersections for each
MST. Thus, we do exhaustive search to look for minimal
number of intersections for the minimum cost tree; the so-
lution obtained thus is the optimal solution for the minimal
cost. Algorithm 1 includes pseudocode for the exhaustive
search over all the MSTs.

The solution thus obtained gives us one extreme solution,
which cannot be optimized further. We obtain the best pos-
sible value for the first objective - the total cost. It is not
possible to further improve upon this objective irrespective
of the value of second objective - the number of intersections.
Clearly, we have an associated value for the second objective
also with this optimum value of first objective. Now, if we
try to improve upon the value of second objective we would
have to trade-off with the value of the cost. Hence, it is not
possible to get any better solution than this with respect to
the minimal cost. Also, there wouldn’t be any other solution
superior in the number of intersections for this minimal cost.
This solution point is the extreme point in cost. In order
to get the other trade-offs solutions, we device the heuristic
given in Algorithm 2.

Algorithm 2 Heuristic for Fewer Intersection Points

1: Input : G1 - graph 1, G2 - graph 2
2: Output : a set of solution (Pareto-front (PF)) consisting

of tuples (T1, T2) from G1 and G2, respectively
3: Algorithm:
4: Initialize PF as φ
5: for all nodes v1 of G1 do

6: Initialize T1 = φ, C1 = φ and U1 = G1, where U1

is set of unconnected vertices and C2 is set of tree
(connected) vertices

7: Delete v1 from U1 and append to C1

8: for all nodes v2 of G2 do

9: Initialize T2 = φ, C2 = φ and U2 = G2, where U2

is set of unconnected vertices and C2 is set of tree
(connected) vertices

10: Delete v2 from U2 and append to C2

11: while U1 6= φ ∨ U2 6= φ do

12: if U1 6= φ then

13: Take u′ from C1 and v′ from U1 where number
of intersections is least among T1 ∪T2 ∪ (u′, v′)

14: Append the edge (u′, v′) to T1

15: Delete v′ from U1 and append to C1

16: end if

17: if U2 6= φ then

18: Take u′′ from C2 and v′′ from U2 where number
of intersections is least among T1∪T2∪(u′′, v′′)

19: Append the edge (u′′, v′′) to T2

20: Delete v′′ from U2 and append to C2

21: end if

22: end while

23: compute objective vector of tuple (T1, T2)
24: Update PF
25: end for

26: end for

27: Output PF

2.2 Heuristic for Fewer Intersections
Algorithm 2 produces solutions in the lower range of num-

ber of intersections. Within each iteration of the while loop
it considers an edge (u, v) to append to the partial tree that
minimizes the value of the second objective (number of in-
tersections) keeping the value of first objective optimum.
In each iteration, it selects an edge with least value of the
first objective that does not increase the value of second
objective; if it is not possible to select an edge that does
not increase the value of second objective it considers an
edge which increases the value of the first objective by least
amount for least increase in value of the second objective.

This algorithm starts with a start node v1 for T1 from
G1 and a start node v2 for T2 from G2. Further to make
the trees, in each iteration, it chooses a least cost edge suc-
cessively from G1 and G2 such that it is optimum for first
objective and minimum for second objective.

We experiment with the other variants of the greedy cri-
terion by changing the edge selection process. First, we
experimented with selecting a random node from C (set of
connected tree vertices) and finding a node from U (set of
unconnected vertices) that makes it the best possible edge
to append to the partial tree. Second, we experimented
with changing roles of C and U , i.e., we selected a random
node from U and find the best possible node from C. The
rational behind these experiments is to convert this deter-
ministic algorithm into a somewhat stochastic algorithm and
find out (i) whether the complete greediness (the determin-
istic) is misleading, and (ii) whether it is possible to find a
stochastic greedy heuristic that provides superior solutions.
But none of these experiments yield good results. We found
that selecting best possible edge deterministically yields bet-
ter results compared to an edge whose endpoint is selected
stochastically either from C or from U . We are currently
investigating with other variants of the greedy criteria.

With these two heuristic algorithms we get two sets of ex-
treme solutions; Algorithm 1 produces only a single solution
at one extreme and Algorithm 2 produces a set of solutions
at the other extreme. It not only provides best extreme so-
lutions at either ends but also gives a fair idea of the range of
solutions by which the Pareto-front is bounded. We’ll show
in Sub-Section 4.3 that this knowledge of the solution-space
helps us to get superior quality solutions by the EMO.

3. EVOLUTIONARY OPTIMIZATION

3.1 Issues & Challenges
EAs have emerged as powerful black-box optimization

tools to approximate solutions for NP-hard combinatorial
optimization problems. In the multiobjective scenario, EAs
often find effectively a set of mutually competitive solutions
without needing much problem-specific information. For a
wide-ranging review, a critical analysis of evolutionary ap-
proaches to multiobjective optimization (MOO) and many
implementations of multiobjective EAs, see [6], and for var-
ious applications, see [4]. However, achieving proper diver-
sity in the solution-set while approaching convergence is a
challenge in MOO, especially for unknown problems.

3.1.1 Achieving Diversity
Many techniques and operators have been proposed to

achieve diversity. The commonly used techniques for pre-
venting genetic drift and promoting diversity are: sharing,
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mating restrictions, density count (crowding), clustering and
pre-selection operators. These approaches can be grouped
into two classes: parameter-based sharing and parameter-
less sharing. The niching/sharing techniques have been com-
monly employed to find a diverse set of solutions although
such techniques work best when one has a priori knowledge
of the solution. It is a common experience of many re-
searchers that sharing can be beneficial, but can also prove
surprisingly ineffective if parameters are not properly tuned.
Also, it is the experience of almost all researchers that proper
tuning of sharing parameters is necessary for effective per-
formance. In recent years, much work has been done on
parameter-less diversity preserving approaches. Most of the
newer MOEAs, (e.g., NSGA-II [6] and SPEA2 [6]) have now
dispensed away or new MOEAs (e.g., PCGA [20]) do not
use explicit parameters for diversity preserving. (The re-
vised NSGA-II and SPEA2 use parameter-less crowding and
clustering, respectively.)

3.1.2 Monitoring Convergence
A common metric for convergence is the distance metric,

which finds distance of the obtained solution front from the
true Pareto front; this is trivial for known problems. Such
a metric is based on a reference front. In real-world search
problems, location of the actual Pareto-front, by definition,
is unknown. A commonly practiced approach to determine
the reference front for unknown problems is to extract the
reference front from the best solutions obtained so far, and
the reference is incrementally updated with every generation
in iterative refinement based algorithms.

As to on-line convergence metric (e.g., [7]) evaluates con-
vergence towards a reference set, and is akin to monitoring
hyper-volume measure; this may not be used effectively for
unknown problems. Kumar and Rockett [20] proposed use
of rank-histograms to assess movement of solution-front to-
wards convergence.

3.1.3 Avoiding Local Convergence
For solving unknown problems there is a common con-

cern whether or not the obtained solution set is close to the
true Pareto-front. Apparently, it seemed that the EA had
converged to the Pareto front but conceivably it may have
got stuck at some sub-optimal point. Such a local minima
cannot be detected for unknown problems, by most of the
known metrics because a local front obtained may give excel-
lent numerical values for both diversity and convergence [21].

3.1.4 Performance Assessment
Many metrics have been proposed for quantitative evalu-

ation of the quality of solutions. Essentially, these metrics
are used for the following three characteristics:

• Extent: Coverage of the solutions across the front;

• Diversity : Sampling of the solutions across the front;

• Convergence: Distance of the obtained solution-front
from the reference front.

Some of these metrics are only applicable where the solu-
tion is known. In the case of unknown nature, the metrics
are sensitive to the choice of the reference front. Some EA
researchers (e.g., Knowles and Corne [19], Zitzler et al. [30])
gave detailed critical review of these measures. They have

also shown the sensitivity of some of the metrics with respect
to the arbitrary choice of the reference point/front.

3.2 Algorithm & Operators
From the viewpoint of EMO, the optimization problem

attempted in this paper is characterized by the following
features:

• No a priori knowledge of the solution space is available.

• There exists no information regarding a reference front.

• No experimental result from any polynomial time good
approximation algorithm is available.

There are many MOEAs and their implementations. See-
ing the hardness of the problem, we select those MOEAs,
which are steady-state algorithms and use archives that can
be updated with the genetic evolutions. For this, among the
many such algorithms, we select NSGA-II [6] and Pareto
Converging Genetic Algorithm (PCGA) [20]. Both these
algorithms do not need much of problem-dependent knowl-
edge. PCGA has an added advantage that it monitors con-
vergence for unknown solution space through rank histograms,
and thus, avoids wastage of CPU time in unnecessarily schedul-
ing a particular run of the algorithm to a pre-determined
number of iterations. A brief pseudocode of the algorithm
is given in Algorithm 3, see [20] for details of the algorithm.

Algorithm 3 Pareto Converging GA

1: Input : N - size of initial population and GA parameters
2: Output : a set of (near-) optimal solutions
3: Algorithm:
4: Generate an initial population of size N

5: Compute individual’s objective vector
6: Pareto-rank the population and generate rank-

histogram
7: while Intra-island rank-ratio histogram does not satisfy

stopping criteria do

8: Select two parents using roulette wheel selection
scheme

9: Perform crossover and mutation to generate two off-
spring

10: Compute objective vectors of offspring
11: Pareto-rank the population including offspring
12: Remove the two least fit individuals (with tie resolu-

tion) to keep the size N
13: Generate rank-ratio histogram
14: end while

15: One while-loop for Inter-island rank-histogram satisfy-
ing stopping criterion

16: Output set of solutions

Algorithm 3 is a steady-state algorithm and can be seen
as an example of (µ + 2) – Evolutionary Strategy (ES) in
terms of its selection mechanism. In this algorithm, individ-
uals are compared against the total population set accord-
ing to the Pareto-ranking scheme [10], and the population
is selectively moved towards convergence by discarding the
lowest ranked individuals in each evolution. In doing so, we
require no parameters. A pair of mates is randomly cho-
sen biased in the sizes of the roulette wheel segments and
crossed-over and/or mutated to produce offspring. The off-
spring are inserted into the population set according to their
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ranks against the whole population and the lowest ranked
two individuals are eliminated to restore the population size
to N . For a meaningful comparison of two real numbers
during ranking, the floating-point precision of the objective
values is restricted to a few units of precision. The process is
iterated until a convergence criterion based on Intra-island
rank-ratio and Inter-island rank histogram is achieved [20].

Chromosome Encoding. The efficiency of the evolution-
ary search depends how a problem (in this case, a spanning
tree) is represented in a chromosome and the reproduction
operators work on the encoding. There are many encoding
schemes to represent spanning trees – see [15] for a detailed
review and comparison. Raidl & Julstrom [15] proposed
spanning trees to be represented directly as sets of the edges
and have shown locality, heritability and computational effi-
ciency of the edge sets for evolutionary search. In this work,
we use edge-set scheme for representing spanning trees to
exploring the search space.

Initial Population. Instead of using MSTs as individual
solutions in initial population we generate random trees. We
start with a random start node and select a random edge
from the eligible list of edges to complete the tree. This
is done to un-bias the randomly generated population from
the links found in a MST. A procedure to generate initial
population is given as Algorithm 4.

Algorithm 4 Initial Population

1: Input : G - graph
2: Output : T - spanning tree
3: Algorithm:
4: Initialize T = φ, C = φ and U = G, where U is set of

unconnected nodes and C is set of tree nodes
5: Select a node w randomly from U , delete it from U and

append to C

6: while tree is not complete do

7: Select a node v randomly from U and a node u ran-
domly from C

8: Append this edge (u, v) to T , delete v from U and
append to C

9: end while

10: Output T

Genetic Operators. We select crossover operator to pro-
vide strong habitability such that the generated trees con-
sist of the parental edges as far as possible. We use roulette
wheel selection to select two parents. Crossover operator is
a variant of the crossover scheme proposed in [26]. With-
out using any other information, we select an edge that is
common in both parents to start with. In each iteration we
choose an edge that is common to both parents and incident
to either of the endpoints of start/recently added edge. If
no common edge is available we chose an edge from either
of the parents. We chose a random edge to complete the
tree if it is still not complete. Algorithm to crossover two
edge-sets is given in Algorithm 5.

The mutation operators used in this work are again the
variants of the operators defined by Raidl & Julstrom to
work for edge-set encoding [26]. They designed all the four
mutation operators based on the diameter information. In

Algorithm 5 Crossover operator

1: Input : Parent1 and Parent2
2: Output : T - Offspring
3: Algorithm:
4: Initialize T = φ, C = φ and U = G, where U is a set

of unconnected nodes and C a set of connected (tree)
nodes

5: Initialize set A1 consisting of edges appearing in both
parents and A2 with edges appearing in only one parent

6: Select an edge randomly from A1
7: while tree is not complete do

8: Select an edge randomly from A1; if A1 is empty select
from A2

9: If A2 is also empty, select an edge randomly joining a
random node in C and a random node in U

10: Append the edge to T
11: end while

12: Output T

our case, we do not need diameter values, therefore, we
adapted their mutation operators to work for our work.
Edge-delete mutation deletes an edge randomly and rebuilds
the tree as in crossover scheme and takes a new edge when
necessary (Algorithm 6).

Algorithm 6 Edge Delete Mutation

1: Input : T - tree
2: Output : T ′ - tree
3: Algorithm:
4: Delete an edge randomly from T
5: Build T ′ as in crossover using edges from T when possi-

ble and new edges when necessary
6: Output T ′

Algorithm 7 Greedy Edge Replace Mutation

1: Input : T - tree
2: Output : T ′ - tree
3: Algorithm:
4: Delete an edge randomly from T

(it disconnects a subtree rooted at node v)
5: Compute a set S that consists the nodes of this subtree

including v
6: Reconnect the tree with lowest weight edge (u, v), where

u is from V − S
7: Output T ′

Our greedy-edge-replace mutation is similar to the original
operator except depth information. The greedy-edge-replace
mutation also deletes an edge from the tree. Deleting an
edge disconnects the tree in two subtrees. The two subtrees
are reconnected with a lowest weight edge (Algorithm 7).
Another subtree-optimize mutation operator is illustrated
in Algorithm 8.

4. RESULTS & DISCUSSIONS
We tested generation of dual objective spanning tree us-

ing the heuristics and evolutionary algorithms and selected
benchmark data taken from Beasley’s OR library2. The

2http://mscmga.ms.ic.ac.uk/info.html
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Algorithm 8 Subtree Optimize Mutation

1: Input : T - tree
2: Output : T ′ - tree
3: Algorithm:
4: Select a node v randomly
5: Compute a set S consisting nodes of the subtree includ-

ing v

6: Optimize this subtree rooted at v as in random greedy
heuristic (RGH)

7: Output T ′
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OR-Library is a collection of test data sets for a variety
of Operations Research (OR) problems. We considered the
Euclidean Steiner problem data of 50 and 100 nodes for this
work.

4.1 Results from Heuristic Algorithms
First, we include, in Figure 2, results for 100 node data

using both the heuristic Algorithms 1 and 2. As discussed
in Section 2, we get a single solution for minimal cost region
from Algorithm 1; this solution is the minimum edge-cost
solution with the least number of intersections in comparison
to other minimum cost solutions. From Algorithm 2, we
obtain a set of solutions in the lower range of intersections.
This heuristic is fine-tuned to yield solutions in the range
of smaller number of intersections, thus we get one solution,
which has the minimum number of intersection points; this
solution is shown by a dark filled square in Figure 2. It can
be seen that we are able to get solutions in the extreme range
of each of the objectives, heuristics could not find a spread of
solutions in the entire range of the objective values. Similar
are the results for 50 node data.

4.2 Results from EMO
Next, we generated results from MOEAs for 50 and 100

node data. For this, first we generated random initial pop-
ulation, as discussed in Section 3.2. A representative set of
randomly generated population is shown in Figure 3. Since,
we have not generated initial population from the deriva-
tives of MSTs, it can be seen from this figure that none of
the points are located in the lower cost region. Though all
the initial population is clustered in a narrow region, this is
an indication of the hardness of the problem. For MOEA,
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we have taken population of 100 individuals, and probability
of crossover and mutation is taken to be 0.8 and 1.0, respec-
tively. We run the experiments for ten times each; in the
rest of the section, we include on the average poorer results
obtained by MOEA.

We include results obtained from MOEA using randomly
initialized population for 50 and 100 node data in Figures 4
and 5. Few observations can be made from these two fig-
ures. Looking at solutions form 50 node data, one can see
a good distribution of solutions between two extreme solu-
tions. Thus, one can conclude that MOEA could effectively
obtain good diverse solutions. Though nothing much can
be said about the optimality of the obtained front, yet one
can infer that both the extreme solutions have also been
discovered by MOEA, indicating the fact that the obtained
solution front is very close to the true Pareto-front.

However, this is not exactly the case with the solutions
obtained by MOEA for 100 node data (Figure 5). On com-
paring this figure with the randomly generated population
in Figure 3, MOEA has done a great job and the points
have moved a lot during population evolution. The solu-
tions obtained in low-cost, higher-intersection region are well
distributed. However, there does not exist any solution in
the other extreme of the solution space, i.e., the high-cost,
lower-intersection region. The plot included for this result
is the poorest among all the ten results obtained for this
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Figure 5: Solutions obtained form MOEA using a

randomly initialized population from 100 node data.

Extreme solutions are also shown.

experiment; however, in general, quality of overall solutions
is poorer for 100 node data.

In this case, we could appreciate the poorer quality of so-
lutions in this region because we know the extreme solutions
obtained by Algorithm 2. Had we not developed the heuris-
tic and the solutions, we could not have any clue about the
poorer quality of the obtained solution front in one part
region of the solution space.

4.3 Improving upon the EMO results
We analyze the above experiment, and note that the poorer

solution quality is attributed to the larger data set (100 node
data) and in the smaller data set (50 node data). Also, the
initial population was clustered much away from the lower-
cost region, the final solutions have all been shifted to the
lower-cost region. This indicates that, perhaps, the genetic
operators were biased towards evolving minimal spanning
tress. The other possible region to this phenomenon can be
attributed to genetic operators becoming weak in shifting
the individuals towards smaller-intersections region. There
may be some other possible reasons too.

In an attempt to find solutions in the entire region, we in-
jected a couple of individuals belonging to the higher-cost,
lower-intersection region in the randomly generated popu-
lation. Surprisingly, results were very encouraging; this re-
sults in spread of solutions. A plot showing the results for
100 node data set is included in Figure 6. It can be observed
that the solutions obtained in Figure 6 are much superior to
Figure 5, and cover the entire range of the feasible region.

The other possible strategy may be to re-design the ge-
netic operators. However, since the quality is much im-
proved simply by injecting a few selected individuals, we do
not further investigate how to improve the solution quality
as obtained by total randomly generated population. This
is an area of future research.

Finally, we quantitatively evaluate the solution fronts ob-
tained from each of the algorithms. We compute conver-
gence [7], spread [6], hypervolume (S measure) [29], and
coverage [29] measures. The convergence metric measures
the convergence of the obtained solution set against a ref-
erence set. In the case of unknown problems, approxima-
tion sets of all the considered algorithms are combined and
non-dominated approximation set is computed to act as a
reference set. A lower value of the matrix indicates better
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Figure 6: Solutions obtained form MOEA from 100

node data using an initial population which includes

a few individuals from heuristic algorithm 2.

Table 1: Metrics computed for 100 node data.

Algorithm Convergence Spread S Measure

Heuristics 0.0984 0.8791 23.0374
MOEA 0.0000 0.2414 54.2940
MOEA+ 0.0000 0.0082 68.8504

convergence. Ideally, this should be zero. The spread metric
also uses a reference set to measure the average distribution
of points in obtained solution set and the distance between
the extreme solutions in obtained solution set in compari-
son to extreme solutions in reference set. Here also, a lower
value of the metric indicates better spread. The hypervol-
ume metric provides the volume of search space covered by
the obtained set of solutions with reference to a reference
point. Hence, a higher value indicates superiority of solu-
tion (better solution). The coverage metric does not require
a reference set rather it compares two set of solutions di-
rectly and provides the information that the solution set of
one algorithm dominates the solution set of another algo-
rithm, although it does not tell how much superior is one
to the other. For a typical case, computed values are shown
in Table 1; MOEA+ indicates MOEA strategy with a few
special individuals injected during population initialization.
The coverage metric gives good values too. These observa-
tions are similar to the visual inspection of the plots.

5. CONCLUSIONS
In this work, we have attempted to solve a biobjective

computationally hard problem having applications to VLSI
chip design using evolutionary multiobjective optimizer. Since
the problem is hard, and there do not exist any experimental
results about the Pareto-front, we developed two heuristics,
which give an indication about the extreme points in each
objective space.

First, we obtained results from EMO without using much
problem specific information. Results thus obtained are di-
verse and quite promising. However, on comparing with the
extreme solutions obtained by heuristics, we observed that
the EMO did not yield the complete Pareto-front. There-
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fore, we embed this information in problem solving strat-
egy, and the results obtained are seemingly close to the true
Pareto-front. This is a paradox in itself that for solving a
problem per se we need to know the solution space before
hand. In some recent work done independently, Ishibuchi
and Narukawa [14] and Kumar et al. [21] observed that good
solutions are not always obtained by MOEAs.

Therefore, apart from solving a hard problem, the other
spin-off research from this work is: can we effectively solve
unknown problems using black-box optimization technique
of EA, especially in a multi-objective setting? How can one
trust on the solutions obtained for real-world applications
(RWAs) by such black-box optimization? Can we effectively
approximate the quality of solutions?
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