
A Crossover Operator for the k-anonymity Problem

Monte Lunacek Darrell Whitley Indrakshi Ray

Department of Computer Science
Colorado State University

Fort Collins, CO 80521
{lunacek,whitley,iray}@cs.colostate.edu

ABSTRACT
Recent dissemination of personal data has created an impor-
tant optimization problem: what is the minimal transforma-
tion of a dataset that is needed to guarantee the anonymity
of the underlying individuals? One natural representation
for this problem is a bit-string, which makes a genetic al-
gorithm a logical choice for optimization. Unfortunately,
under certain realistic conditions, not all bit combinations
will represent valid solutions. This means that in many in-
stances, useful solutions are sparse in the search space. We
implement a new crossover operator that preserves valid so-
lutions under this representation. Our results show that this
reproductive strategy is more efficient, effective, and robust
than previous work. We also investigate how the population
size and uniqueness can affect the performance of genetic
search on this application.

Categories and Subject Descriptors
I.2.8 [Problem Solving, Control Methods, and Search]:
[heuristic methods]; G.1.6 [Optimization]: [global opti-
mization]

General Terms
Performance

Keywords
Genetic algorithms, problem representation, K-anonymity

1. INTRODUCTION
Recent dissemination of personal data has raised an im-

portant privacy concern: how can privately held data be re-
leased in a way that is useful, while protecting the identity of
the underlying individual? Unfortunately, simply removing
the attributes that explicitly identify a person, such as name
and social security number, does not always provide suffi-
cient privacy. Surprisingly, Sweewey discovered that 87%

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

of the United States population showed a high probability
of being uniquely identified based solely on their zip-code,
gender and data of birth [7]. These attributes, called quasi-
identifiers, can be used in conjunction with other publicly
available information to re-identify an individual.

Sweeney performed the following experiment, which ex-
emplifies the use of quasi-identifiers to re-identify an indi-
vidual [6]. First, Sweeney acquired a medical dataset from
the Group Insurance Commission (GIC) of Massachusetts
that contained patient’s zip code, date of birth, and gender.
This was assumed to be anonymous, since explicit attributes
were removed. Sweeney also obtained the voter registration
list for Cambridge Massachusetts. The governor of Mas-
sachusetts, William Weld, was one of only six people that
lived in Cambridge whose medical records where in the GIC
database. Surprisingly, only three of these people were male
and Governor Weld was the only person in his zip code area.

One way of protecting an individuals privacy is to ensure
that the released data adheres to the k−anonymity prop-
erty [6]. Each record in a k−anonymous dataset is indis-
tinguishable from at least k − 1 other records. In other
words, every unique record in the original dataset is trans-
formed such that it is identical to at least k−1 other records.
This ensures that there are at least k individuals that cor-
respond to the same record. Intuitively, a higher k value
provides a greater level of anonymity. In the previous ex-
ample, the GIC medical database of Massachusetts would
not be considered anonymous because the row containing
Governor Weld’s quasi-identifiers (zip code, date of birth,
and gender) is unique.

Generalization and suppression are two techniques used
to create k−anonymous datasets. Generalization takes an
attribute value and replaces it with a more general – less
specific – value. For example, an individual’s birth date
could be generalized from a specific day to a more general
form that only includes the month and year. When a specific
value is not released, it is suppressed (denoted by *). Ap-
plying generalization to the original dataset should decrease
the number of unique records.

Information is lost when values are generalized. Further-
more, datasets that contain more information are presum-
ably more useful. This creates the following optimization
problem: what generalization results in the least amount
of information loss, while satisfying the k−anonymity prop-
erty? While several methods have been proposed to answer
this question, there is currently no single best choice. This
is partly due to the amount of attention this problem has re-
ceived; there are only a few comparative studies and quality

1713

of empirical evidence is limited. Currently, only one practi-
cal benchmark function has been identified and used.

Problem representation is a key component in success-
ful genetic search. One natural representation for the k-
anonymity problem is a bit-string; ordered elements are gen-
eralized based on the position and value of a single bit. We
argue that it is realistic to constrain some of the general-
izations that exist under this representation. That is, not
all of the bit combinations represent solutions that are ac-
tually meaningful. Iyengar previously applied a genetic al-
gorithm to the k-anonymity problem using Booker’s reduced
surrogate 2-point crossover operator [4]. Each offspring was
potentially modified to ensure it was a valid solution.

In this paper, we implement a new crossover operator that
preserves valid solutions under this problem representation.
We show that this reproductive heuristic results in more
efficient, effective, and robust overall solutions than previ-
ous work. In Iyengar’s previous work, the performance of
his genetic algorithm was not the main objective [4]. We
extend and compliment this work by investigating how the
population size and uniqueness can affect performance.

The remainder of the paper is organized in the following
way. In the next section we review different approaches to
generalization and briefly discuss related algorithms. We ar-
gue that it is often necessary and sometimes desirable to con-
strain the number of valid generalizations associated with a
given attribute. In Section 3, we discuss how the parame-
ters of a genetic algorithm can affect its performance and
introduce our new crossover operator. Then, in Section 4,
we show that our crossover operator is both more effective
and efficient on the problem we tested. Finally, we conclude
the paper.

2. BACKGROUND
The exact way in which attributes are generalized is an

important factor in finding effective k-anonymous dataset.
Sweeney defines a value generalization hierarchy that maps
each unique value within an attribute domain to more gen-
eral value [6]. Consider the following example, where the do-
main of the country attribute is {us, can, peru, brazil}.
The next level of generalization could be the continent that
each country belongs to. This results in the more general do-
main {north America, south America}. Figure 1 shows
the resulting hierarchy. When the attribute is generalized
using this scheme, every attribute value is changed to a more
general domain.

Iyengar points out that forcing each attribute value to
have the same level of generalization is too restrictive and
can result in more information loss than is necessary [4]. As
an alternative, Iyengar proposes a more flexible model that
defines generalizations based on partitions of an imposed
ordering of the attribute values [4]. This method maps to
Sweeney’s approach, but is less restrictive. In the previous
example, Sweeney’s more general domain could be modeled
as {us, can}, {peru, brazil}, where a partition between
can and brazil separates the four countries into two dis-
tinct classes. However, there are no restrictions that prevent
us and can from being generalized while brazil and peru

remain individually partitioned. This has the advantage of
allowing a finer granularity of generalization that potentially
preserves more information. Unfortunately, the number of
generalizations significantly increases the search space.

Generalization can also be enforced at the cell level [6].
A cell is the intersection of an attribute and a row. Unlike
attribute level generalization, cell level generalization does
not guarantee a unique mapping between the original val-
ues and their more general form. This implies that some of
the brazil values in the country attribute can be mapped
to the south America label, while others cannot. Iyengar
argues that this creates confusing and complex relationships
within a given attribute [4]. Furthermore, the added flexi-
bility of cell level generalization dramatically increases the
search space. Meyerson and Williams showed that cell level
suppression (the original value or *) is NP-hard [5].

2.1 Measuring Fitness
In order to decide which generalization is best, it is neces-

sary to quantify how much information has been lost. The
assumption is that datasets that retain more information
will be the most useful. In this paper, we use the general
loss metric proposed by Iyengar [4]. Each cell associated
with a given attribute is assigned a penalty based on the ex-
tent to which it has been generalized. The penalty assigned
to each cell value is proportional to the size of its partition.
A non-generalized value belongs to a partition size of one.
When brazil and peru are generalized, the partition size
is two. Let Pa,r be the number of values in a partition as-
sociated with attribute a for a value in row r. Let Na be
the number of distinct values in the attribute domain. The
penalty for the information loss associated with this cell is:

loss =
Pa,r − 1

Na − 1

Subtracting one ensures that no penalty is assigned to a
non-generalized value. A suppressed attribute will have a
value of one because Pa,r = Na. Referring to the country
example in Figure 1, a cell that generalizes brazil to south

america will receive a penalty of (2−1)/(4−1) = 1/3. The
loss associated with a given attribute is the sum of all its
cells. The total loss for a given generalization is the sum of
all the attribute loss.

generalization loss =
X

a

1

Na − 1

X

r

Pa,r − 1

Some rows in a database may be extremely unique and re-
quire a larger degree of generalization in order to achieve the
k-anonymity property. The loss associated with suppressing
these “outlier” rows is probably less than the overall loss due
to the excessive amount of generalization required. For this
reason, we use Bayardo and Agrawal’s model for row sup-
pression [1]. First, we construct a transformed dataset based
on a specific generalization. We then suppress all rows that
violate the k-anonymity property. Specifically, we suppress
any rows that do not belong to an equivalence class of size
k. A suppressed cell receives a penalty of one. Therefore,
all suppressed rows receive a penalty equal to the number
of attributes (assuming each row has N cells, where N is
the number of attributes). The overall information lost is
calculated by adding the loss due to generalization and the
loss due to suppression.

There is a subtle bias in the loss estimation that is more
pronounced as the distribution of domain values becomes
less uniform. Consider two domains. Assume the first has
five distinct values and the second has ten. One generaliza-
tion may combine the first two values from each domain into

1714

US CAN PERU BRAZIL US CAN PERU BRAZIL

US, CAN, PERU CAN, PERU, BRAZIL

ALL

SOUTH AMERICANORTH AMERICA US, CAN CAN, PERU PERU, BRAZIL

WORLD

L0

L1

L2

Figure 1: A value generalization hierarchy (left) requires every attribute value to be generalized to the same
level. For example, us and can are generalized to L1. This implies that brazil and peru must also be mapped
to L1. Iyengar’s more flexible generalization model (right) does not force this constraint. For example, us

and can may be generalized while brazil and peru remain individually partitioned.

a single partitions. Generalized values associated with the
first domain will be penalized (2 − 1)/(5 − 1) = 1/4 = 0.25,
while values from the second domain will receive a penalty
of (2− 1)/(10− 1) = 1/9 = 0.11. Under a uniform distribu-
tion, we would expect about 2/5 of the rows to be general-
ized from the first attribute and only 2/10 from the second.
However, when the distribution is not uniform, the second
attribute could be penalized significantly for essentially the
same amount of loss. This bias comes from the number of
distinct elements in each domain. Attributes with more ele-
ments will tend to receive a lower penalty for a similar level
of generalization independent of the underlying attribute
distribution. As a result, search may tend to focus more
on the attributes that have a greater affect on the overall
loss metric. Despite this concern, we use the standard met-
ric outlined above. For the remainder of the paper, we will
refer to the overall loss as fitness.

2.2 Algorithms for the k-anonymity Problem
Several practical algorithms have been proposed as a means

for finding effective solutions to the k-anonymity problem.
The µ-argus algorithm breaks the problem into smaller parts
that are constructed from different combinations of quasi-
identifying attributes [3]. The rows from these smaller com-
bined sets that do not meet the k-anonymity property are
marked as outliers. Sweeney asserts that not all the solu-
tions found by µ-argus are actually k-anonymous; there may
exist larger combinations of quasi-identifiers that are actu-
ally unique [6]. It is unclear how efficient or effective the
µ-argus algorithm would be if it were revised to address this
shortcoming.

Sweeney’s datafly algorithm looks at the frequency of each
distinct row and generalizes the entire attribute containing
the most distinct values. Although the algorithm is efficient,
Sweeney shows that it performs more generalization than is
actually optimal [6].

Iyengar used a genetic algorithm to explore the larger
search space that resulted from his more flexible generaliza-
tion model [4]. Iyengar’s paper is unique because it looked at
how useful transformed data sets actually are by comparing
their classification error with that of the original. However,
the performance of genetic algorithms was not the papers
main focus. Iyengar points out that, “For most applica-
tions, we do not see any real time requirements for the task
of transforming the data to satisfy privacy” [4]. While effi-
ciency may not be paramount, we are still concerned with
the effectiveness of the solutions we do find. And, finding
them quicker seems to be universally more desirable.

Bayardo and Agrawal comment that all of the above ap-
proaches are incomplete. Incomplete algorithms do not guar-
antee that the solutions they find will be optimal, or even
near optimal [1]. As a result, Bayardo and Agrawal pro-
pose a complete search method that iteratively constructs
more specific (less generalized) solutions starting from a
completely generalized dataset. In this way, each node in
their search tree represents a valid solution. In a depth-first
manner, they traverse the tree and prune away regions that
are determined to be sub-optimal. This algorithm is less
efficient for small k values [1].

There is no empirically obvious best approach. While Ba-
yardo and Agrawal’s algorithm appears to be very efficient
and complete for large k, it is unclear how useful datasets
constructed with large k are. That is, large k values may
require significantly more generalization (and information
loss), potentially render a transformed dataset less useful.
Our work extends Iyengar’s paper by directly addressing the
performance of a genetic algorithm applied to this problem.
We focus on a small k value of 15.

2.3 Constrained Value Generalization
Iyengar’s generalization method is a reasonable compro-

mise between search space size and the granularity at which
each value can be generalized. Furthermore, some attribute
domains have a logical ordering, which make this method a
natural choice for representing generalizations. For exam-
ple, consider an age attribute with domain values {20, 30,
40, 50, 60, 70, 80}. The way in which these values may
be generalized is constrained in two ways. First, the im-
posed ordering prohibits two non-adjacent values from ever
appearing exclusively in a generalization. That is, 50 cannot
be generalized with 70 unless 60 is included. Second, valid
generalizations force a unique mapping between each value
and its generalization. Therefore, 30 cannot be mapped to
both of the more general nodes {20-30} and {30-40}. Be-
cause a logical ordering exists, the constraints imposed by
this method generalize these values in a meaningful way.

Categorical data may not always have a logical ordering.
In this case, the user must specify how the data should be
ordered. Consider the work-class attribute displayed in Fig-
ure 2. In this example, if federal, state and local were
to be generalized, the least generalized value would be the
government label. There is a subtle inefficiency here. Not
all the partitions defined under this categorical ordering are
valid. For example, although not inc and federal are ad-
jacent neighbors, there does not exist a node in the tree that
generalizes these two values. The only way to make these

1715

0 1 011 1 1

INC
NOT WITHOUT

PAY
NEVER
WORKED

SELF
EMPLOYED

INC FED STATE LOCAL PRIVATE

GOVERNMENT UNEMPLOYED

WORK−CLASS

Figure 2: The taxonomy tree for the workclass at-
tribute. Not all partitions are valid.

values indistinguishable is to generalize all the values in the
attribute to the work class label. Although the number
of possible generalizations is 27 = 128, the actual number of
valid partitions is only 9. This type of constrained general-
ization can dramatically reduce the search space of possible
solutions. In this example, the search space decreases 93%.

One drawback to this representation is that an imposed
ordering for some attribute values can be arbitrary or bias.
In other words, some domain values exhibit a higher di-
mensional relationship and there is not a fair and unbiased
way to map them to a one dimensional ordering. To make
this point more clear, consider the following countries, viet-

nam, laos, cambodia and thailand, that belong to the
country attribute. Figure 3 shows a map of these coun-
tries the corresponding two dimensional graph representa-
tion, where an edge indicates that two nodes border each
other. The question we ask is: how can we order these coun-
tries such that neighboring countries can be generalized to-
gether? Unfortunately, we cannot. If we order the countries
{thailand, cambodia, laos, vietnam}, then neighboring
countries thailand and laos cannot be generalized unless
cambodia is included. Arguably, the most fair and unbiased
way to generalize these countries is to impose a constraint
such that the least generalized value is a label that groups
all these countries together.

Even when a logical ordering of values exists, it may be
desirable to apply additional constraints such that search
spends more time exploring the generalizations that are ac-
tually useful. For example, the education attribute is cat-
egorical, yet it has a logical ordering based on grade level.
However, distinguishing between 9th and 10th grade may be
undesirable if 11th and 12th grade are generalized together.
In this case, we may want to constrain the valid partitions so
that high school is the least generalized label. This forces
the transformed data to be produced in a constrained way
based on what we predetermine to be meaningful. The loss
associated with this additional constraint may allow other
attributes, that we are less certain about, to have more spe-
cific values.

In summary, it is often necessary to constrain the values
of categorical data. This happens when either the taxonomy
tree for the attribute is sparse, or when there is no fair and
unbiased way of determining a logical ordering. Sometimes
it may even be desirable to constrain numeric or categorical
values even when a logical ordering exists.

3. GENETIC ALGORITHMS
Genetic algorithms are population-based search methods

that use an evolution-like heuristic to find competitive so-
lutions within a search space. Most genetic algorithms rep-
resent individuals using finite bit strings, called genotypes.

Thailand

Cambodia

Vietnam

Laos

Thailand

Cambodia

Vietnam

Laos

Figure 3: A map of vietnam, laos, cambodia and
thailand (left) and the corresponding graph (right).
There is no fair way to create a one dimensional
ordering.

Through a process of selection and reproduction the current
population of individuals is transformed into a new gener-
ation. Selection decides which individuals in the current
population will have a chance to reproduce. Reproduction
usually involves both crossover (recombination) and muta-
tion. In most genetic algorithms, the crossover rate is set
much higher than the mutation rate, making the crossover
operator responsible for more of the transformation. The
crossover operator combines two selected parents by split-
ting their strings and concatenating specific pieces back to-
gether. Mutation randomly changes part of an individual as
a means of exploration and diversification.

Each component in the above description can effect the
performance of a genetic algorithm. Specifically, selection,
reproduction, and the population can all have a dramatic
impact on the effectiveness of genetic search. The effect
of reproduction on performance is the most intuitive of the
three. If the crossover operator fails to construct more ef-
fective solutions, it will be difficult for a genetic algorithm
to be very efficient or effective. The way in which selection
and population alter performance is less obvious.

The goal of selection is to allocate more reproductive op-
portunities to above average individuals in the population.
The bias selection exhibits is called selective pressure. When
selective pressure is too strong, highly fit individuals are se-
lected more often, which can cause the population to prema-
turely converge. That is, high selective pressure tends to ex-
ploit the best individuals in the population. Over time, this
focuses search in a restricted, and potentially sub-optimal,
region of the search space. On the other hand, selective pres-
sure can be too low and cause search to stagnate. In this
case, genetic algorithms tend to explore the search space
too much and cannot decide which regions of the search
space tend to have most effective solutions. Unfortunately,

1716

maintaining a consistent selective pressure is difficult when
parents are selected with a probability that is proportional
to their fitness. Whitley shows that allocating reproductive
trials according to an individuals rank is one way of control-
ling the variability in selective pressure that occurs when
fitness proportional selection is used[8].

The size of the population can also effect search perfor-
mance. Smaller populations tend to have less genetic diver-
sity. That is, it is difficult for a small population to ade-
quately sample the search space. Having less genetic diver-
sity can cause a bias in where a genetic algorithm will con-
verge. On the other hand, larger populations tend to have
more genetic diversity and a lower selective pressure. These
two properties tend to encourage exploration in a larger por-
tion of the search space. However, large populations are not
necessarily diverse; too much selective pressure can cause an
initially diverse population too converge to quickly.

GENITOR is one of the more successful variations of the
traditional genetic algorithm [8]. GENITOR is different
from the canonical GA in that it only selects two parents
at a time according to rank. This helps control selective
pressure. Instead of creating an intermediate population, a
newly created offspring is immediately placed back into the
current population if its fitness is better than that of the
worst individual. As a result, offspring must compete with
the current population in order to survive. This also implies
that the best individuals found during search will remain in
the population.

3.1 Crossover and Mutation
The crossover operator is responsible for most of the ex-

ploration that occurs during search. Booker noticed that
crossover often becomes less effective as the population of
bit strings become more similar[2]. As a result, Booker pro-
posed using 2-point crossover on reduced surrogates instead
of the entire parent strings. The parent strings are reduced
in the sense that the crossover points only fall on bits where
the two parents disagree. For example, consider the follow-
ing two parents:

1 0 1 1 0 1 0 1 1 1 and 1 0 0 0 1 0 0 1 1 1

If we cross out the bit segments where the two parents agree,
we are left with their reduced surrogates. Choosing two
crossover points from these reduced parents, denoted by a
dot (·), results in the following new child. For clarity, x and
y are substitute for 0 and 1 in the second string.

1 0 1 · 1 0 · 1 0 1 1 1

x y y · y x · y y x x x

1 0 1 · y x · 1 0 1 1 1

Whitley points out that reduced surrogates tend to focus
search towards those regions where the two parent strings
disagree [8].

Notice that crossover points occurring in four rightmost
bit positions will render the child string identical to either
of the parents. In other words, the child cannot be different
from one of its parents when crossover exchanges identical
segments. There are two important implications if this were
to happen. First, crossover has failed to explore any new
areas of the search space. This is inefficient because the
crossover operator has used up an evaluation, but the pop-
ulation has not gained any new information. Second, and

perhaps more serious, the new child string will replace a
lower fitness individual and create a duplicate in the popu-
lation. This will increase selective pressure and also reduce
the diversity in the population. As discussed previously, this
can lead to premature convergence.

When a population begins to converge, there tends to be
less difference between the individual bit-strings in the pop-
ulation. In the extreme case, each member may agree on
a single bit position. For example, every individual could
have a one in the rightmost position (**...**1). When this
happens, crossover is confined to exploring half of the search
space defined under this instance. Adding a small degree of
mutation can restore some of the diversity lost by conver-
gence.

3.2 Constrained Generalization
Valid partitions of an attribute value ordering can natu-

rally be represented by a bit string, where a single bit divides
the ordered elements. If the bit value is equal to zero, then
the two elements are generalized together. A one bit value
implies that no generalization occurs. This representation
also forces each value to have a unique mapping between
itself and its generalization. That is, under this represen-
tation, it is impossible for any path extending from a leaf
node to the root of the tree to pass through more than one
generalized node[4].

A bit-string generalized representation also makes defin-
ing an overall solution easy; the bit-strings from each in-
dividual attribute are simply concatenated together. The
result is a bit-string that exactly represents the generalized
solution. Unfortunately, when an ordered generalization is
constrained, not all bit combinations represent valid solu-
tions (e.g. the work class attribute). The implication here
is that crossover and mutation will likely create invalid solu-
tions. As a result, Iyengar adds an additional step that re-
places invalid offspring with the closest valid solution. In our
implementation, we define closest to mean minimal Ham-
ming distance.

To clarify this point, consider the following work class ex-
ample. For simplicity, we have replaced the leaf nodes with
single letters. For instance, inc = A, not inc = B ect.
Given the following two valid parent solutions, reduced sur-
rogate crossover proceeds to identify the bit segments that
are different. In this example, the crossover point occurs
between the fourth and fifth bit and produces the following
offspring.

AB–C–D–E–F–GH = 0 1 1 · 1 1 1 0

AB–CDE–F–G–H = 0 1 0 · 0 1 1 1

= 0 1 1 · 0 1 1 1

= AB–C–DE–F–G–H

Notice the offspring contains the segment C–DE. Looking
at the work class taxonomy tree in Figure 2, it is clear that
D = state and E = local cannot be generalized together
without C = federal. As a result, this solution must be
transformed into the closest valid solution. The two valid
solutions that are Hamming distance one from the offspring
are: AB–C–D–E–F–G–H, and the original parent AB–CDE–
F–G–H. Consequently, the effectiveness of crossover is some-
what random. Either crossover has no affect, or it creates a
new offspring in an unintended way.

1717

We implemented a crossover operator that preserves valid
solutions when generalizations are constrained. It differs
from the reduced surrogate two point operator in some counter
intuitive ways. First, instead of choosing crossover points
that fall on the bits that disagree, we specify that crossover
must occur in places where the bits are same and are equal to
one. Second, not all crossover points are accepted under the
previous definition. We constrain the number of crossover
points in the following way. We identify segments in each of
the parents where the bits agree and disagree. This is similar
to reducing the parent strings. Only crossover points that
occur after a segment of agreement followed by a segment
of disagreement are considered. This ensures that crossover
will combine different blocks from each parent. Using the
previous example, our crossover operator would produce the
following valid offspring.

AB–C–D–E–F–GH = 0 1 1 1 1 · 1 0

AB–CDE–F–G–H = 0 1 0 0 1 · 1 1

= 0 1 1 1 1 · 1 1

= AB–C–D–E–F–G–H

Notice that crossover occurs at the first position where 1)
the two strings agree, 2) have a value of one, and 3) the pre-
vious blocks have agreement and disagreement. To under-
stand why this preserves valid solutions, consider the char-
acter strings in the previous example. Assuming we have
a valid solution, a partition break, indicated by a dash (–),
implies that generalizations on either side are also valid. Be-
cause the constraints are ordered, and generalizations must
include adjacent values, we know that the generalizations
on one side of the partition have no effect on the other side.
This means that combinations occurring at partition points
shared by both character strings will always create valid so-
lutions.

Mutation on a constrained generalized attribute often has
no effect or is very disruptive. If flipping a single bit on a
valid solution renders the offspring invalid, the closest valid
solution is the original string. However, this may not be the
only valid solution that is Hamming distance one from the
invalid offspring. If the original solution is chosen, mutation
has effectively done nothing. If another valid solution is
chosen, it must be Hamming distance two from the original
string, which means that we have applied more mutation
than desired. We perform crossover on a random individual
as a way of introducing diversity and still preserving solution
validity.

4. EMPIRICAL RESULTS
We have argued that constrained generalizations are nec-

essary and often desirable. The advantage of our crossover
operator will be more pronounced when a greater number
of attributes are constrained. If none of the attributes are
constrained, then all bit strings are valid and crossover and
mutation do not disrupt solution validity at all. In order
to demonstrate the advantage of our crossover operator, we
constrained half of the eight attributes in the adult cen-
sus database (described by Iyengar [4]). In particular, we
constrained the work class, education, marital sta-

tus, and country attributes in a logical and meaningful
way. The age, race, gender, and occupation attributes
were left unconstrained. Each solution required 92 bits (24
unconstrained and 68 constrained). The constraints reduced

the search space from 292 to a size on the order of 242. We
prepared the adult database as described by both Iyengar
[4] and Baryardo and Agarwal [1]. That is, we removed any
rows with missing values, which left 30,162 unique records.
Because the experiments take a considerable amount of time,
we randomly selected 15,000 rows to be our test database.

We ran two versions of GENITOR: one used our new
crossover operator and the other used the traditional 2-point
reduced surrogate operator. We refer to these as new and
trad respectively. Each version ran for 15 trials on our test
database using three population sizes: 200, 500, and 1,000.
Every trial was allocated exactly 30,000 evaluations. Du-
plicate values were excluded from the population. We also
tested our new crossover operator on the test database, but
did not explicitly exclude duplicates.

Figure 4 compares the new and trad crossover opera-
tors for the various population sizes. In each case, the new

crossover operator converges faster to more effective solu-
tions. The box plots on the right indicate that the new

crossover tends to find the same local optima, independent
of population size. On the other hand, trad crossover con-
verges to a wider range of local optima. When the popu-
lation sizes are 200 and 1,000, the trad crossover operator
often converges to a local optima that are similarly in qual-
ity to those found by the new crossover operator. That is,
the median solution values are fairly close. The key distinc-
tion here is that our new crossover operator is more robust.
Then the population size is 500, the median value is much
closer to the average. We do not have an explanation for
this.

Figure 4 also compares the effects of population size. No-
tice as the population size increases, the convergence time
also increases. One explanation for this is that larger popu-
lations tend to have lower selective pressure that results in
more exploration of the search space. However, there is no
relationship between population and the solution effective-
ness. The the new crossover operator converges to nearly
the exact same solution each time, independent of the pop-
ulation size. While the solutions vary using trad crossover,
there does not appear to be an obvious pattern between
population size and the effectiveness of the solution.

Excluding duplicates from the population helps prevent
selective pressure from increasing. Figure 5 shows the effects
of duplicates on the convergence properties for various pop-
ulation sizes. When duplicates are not explicitly excluded,
the convergence properties are somewhat expected; smaller
populations converge faster to less effective solutions. This
is because higher selective pressure in smaller populations
tends to exploit the less diverse population. One of the tri-
als with a population size of 200 converged to a solution
outside the range of the box plot on the right. Disallowing
duplicates in the population appears to result in a faster
convergence to solutions of similar quality.

5. CONCLUSIONS AND FUTURE WORK
Constrained generalizations are often necessary when us-

ing Iyengar’s more flexible generalization model. Even when
a logical ordering of values exists, it is often desirable to ap-
ply additional constraints. Sometimes adding constraints is
the least biased way of representing more complex relation-
ships that do not directly map to a one dimensional ordering.

In this paper, we have looked at the factors that affect ge-
netic algorithm performance on the k-anonymity problem.

1718

0

0

0

5000

5000

5000

10000

10000

10000

15000

15000

15000

2
0
.5

2
0
.5

2
0
.5

2
1
.0

2
1
.0

2
1
.0

2
1
.5

2
1
.5

2
1
.5

2
2
.0

2
2
.0

2
2
.0

new

new

new

new

new

new

trad

trad

trad

trad

trad

trad

Populaton size = 200

Populaton size = 500

Populaton size = 1000

Figure 4: Fitness (x1000) vs. Evaluations: The effects of crossover for different populations sizes. On
average, our new crossover operator finds more effective solutions than the standard 2-point reduced surrogate
crossover operator. The box plots on the right contain the best solutions from all 20 trials. The flat nature of
the box plot for the new crossover operator suggests that finding solutions to this problem is not very difficult.
Larger populations converge to the nearly the same solutions when using the new crossover operator.

1719

Evaluations

2
0
.5

2
0
.5

2
1
.0

2
1
.0

2
1
.5

2
1
.5

2
2
.0

2
2
.0

0

0

5000

5000

10000

10000

15000

15000

200

200

200

200

500

500

500

500

1000

1000

1000

1000

Duplicates

No Duplicates

Figure 5: Fitness (x1000) vs. Evaluations: The effect of population size and duplicate values. Duplicate
values increase selective pressure resulting in convergence to less effective solutions.

Specifically, we showed that the way in which new solu-
tions are constructed can have a significant impart when
generalizations are constrained. The size of the population
also plays an important role. We have shown that smaller
populations tend to converge more quickly. Using our new
crossover operator, this does not effect the solution qual-
ity on the benchmark function we used. Furthermore, dis-
allowing duplicates from the population resulted in faster
convergence to and more effective solutions.

Future work will explore other potential benchmark prob-
lems. Hopefully, our crossover operator will behave sim-
ilarly on problems with different underlying distributions.
This will allow our empirical work to be more meaningful,
robust and convincing. Until new benchmark problems are
identified, our work, and other empirical work in this area,
remains extremely preliminary.

Iyengar used a population of 5,000. We believe that this
results in a much slower convergence time than necessary.
Duplicating his results, and comparing these with smaller
populations will help shed some light on this issue.

6. REFERENCES
[1] R. J. Bayardo and R. Agrawal. Data privacy through

optimal k-anonymization. In Proceedings of the
International Conference on Data Engineering, pages
217–228, Washington, DC, USA, 2005.

[2] L. Booker. Improving Search in Genetic Algorithms.
Pitman, London, and Morgan Kaufman: Los Altos.,
1987.

[3] A. Hundepool and L. Willenborg. Mu and Tao Argus:
Software for statistical disclosure control. In In
Proceedings of Third International Seminar on
Statistical Confidentiality, 1996.

[4] V. S. Iyengar. Transforming data to satisfy privacy
constraints. In Proceedings of the International
Conference on Knowledge Discovery and Data Mining,
pages 279 – 288, 2002.

[5] A. Meyerson and R. Williams. On the complexity of
optimal k-anonymity. In In Proceedings of the
Symposium on the Principles of Database Systems,
pages 223–228, 2004.

[6] L. Sweeney. Achieving k-anonymity privacy protection
using generalization and suppression. International
Journal on Uncertainty, Fuzziness, and
Knowledge-based Systems, 10:571–588, 2002.

[7] L. Sweeney. k-anonymity: A model for protecting
privacy. International Journal on Uncertainty,
Fuzziness, and Knowledge-based Systems, 10:557–570,
2002.

[8] D. Whitley. The GENITOR algorithm and selection
pressure: Why rank-based allocation of reproductive
trials is best. In Proceedings of the International
Conference on Genetic Algorithms, San Mateo, CA,
1989. Morgan Kaufman.

1720

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

