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ABSTRACT
This paper studies the effectiveness of multiobjective ge-
netic and evolutionary algorithms in multiscaling excited
state direct dynamics in photochemistry via rapid repara-
meterization of semiempirical methods. Using a very lim-
ited set of ab initio and experimental data, semiempirical
parameters are reoptimized to provide globally accurate po-
tential energy surfaces, thereby eliminating the need for full-
fledged ab initio dynamics simulations, which are very ex-
pensive. Through reoptimization of the semiempirical meth-
ods, excited-state energetics are predicted accurately, while
retaining accurate ground-state predictions. The results
show that the multiobjective evolutionary algorithm con-
sistently yields solutions that are significantly better—up to
230% lower error in the energy and 86.5% lower error in
the energy-gradient—than those reported in the literature.
Multiple high-quality parameter sets are obtained that are
verified with quantum dynamical calculations, which show
near-ideal behavior on critical and untested excited state
geometries. The results demonstrate that the reparameter-
ization strategy via evolutionary algorithms is a promising
way to extend direct dynamics simulations of photochem-
istry to multi-picosecond time scales.

Categories and Subject Descriptors
J.2 [Computer Applications]: Physical Sciences and En-
gineering; G.1.6 [Numerical Analysis]: Optimization;
I.2.8 [Computing Methodlogies]: Problem Solving, Con-
trol Methods, and Search
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1. INTRODUCTION
Many phenomena in science and engineering are inher-

ently multiscale and in the recent years there has been grow-
ing interest in developing effective modeling and simulation
methods to explain or predict their behavior. In essence,
there is a significant premium on cost-effective modeling
techniques that can simulate physical, chemical or biological
phenomena across multiple scales in both time and space,
even at the price of losing information at intermediate scales.
One multiscaling approach is to apply modeling methods of
a single scale and couple them by transferring key informa-
tion from the finer scale to a coarser scale. An important
and often daunting task in this multiscaling approach is the
development of proper coupling methods and evolutionary
algorithms can potentially play an important role [23, 24].
One such area of multiscaling where evolutionary algo-

rithms are very useful is in modeling excited-state dynam-
ics in photochemistry. Photochemical reactions, as well
as many spectroscopic measurements, involve electronic ex-
cited states of molecules and their concomitant structural
changes. Such excited-state reactions are fundamental in
many biological (for example, photosynthesis and vision)
and technological (for example, solar cells and LED displays)
settings. These reactions and the associated dynamics are
energetically subtle and require highly accurate descriptions
of the relevant interatomic forces. Thus, reliable predictions
are costly even for small molecular reactions but rapidly be-
come near impossible for reactions in complex environments,
such as in solvents (for example, water), in solid cages (for
example, zeolites), or with proteins.
The ab initio multiple spawning (AIMS) methods,

which simultaneously solve both the electronic and nuclear
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Figure 1: Ground state optimized geometries and important minimal energy conical intersections (MECIs)
for benzene.

Schrödinger equations [4, 5], while very flexible and accu-
rate, can be computationally expensive, especially for large
molecules. Hence, having substantially faster semiempirical
potentials that accurately reproduce higher-level quantum
chemistry results would make it possible to address crit-
ical biological processes and technologically useful chemi-
cal reactions. However, the semiempirical methods [11, 12,
25]—which neglect many two-electron integrals of ab initio
methods—while significantly less expensive than AIMS, of-
ten yield erroneous energetics and unphysical dynamics.
Therefore, in order to obtain globally accurate energetics,

the parameter sets—which replace the non-neglected two-
electron integrals of ab initio methods—have to be reopti-
mized for different classes of molecules using a very limited
set of ab initio and experimental data [19, 28]. The repa-
rameterization strategy is a promising way to extend direct
dynamics simulations of photochemistry to multi-picosecond
time scales. However, the reoptimization problem is mas-
sively multimodal and involves multiple objectives such as
minimizing the difference between calculated and predicted
energies, gradients of energies, and stationary point geome-
tries. Current methods, mostly based on a staged fixed-
weight single-objective optimization, fall quite short of yield-
ing globally correct PESs and thus can produce unphysical
dynamics. Evolutionary algorithms, on the other hand, are
robust search methods that simultaneously optimize multi-
ple objectives, and hence, are particularly suited for rapid
reparameterization of semiempirical parameters. Therefore,
the purpose of this paper is to use multiobjective evolution-
ary algorithms for rapid reparameterization of semiempirical
methods to obtain globally-correct excited-state dynamics.
This paper is organized as follows. In the next section, we

provide a brief introduction to reparameterization of semi-
empirical methods. We then describe the multiobjective
evolutionary algorithm used for reparameterization in sec-
tion 3 followed by results and discussion in section 4. We
outline future work followed by summary and conclusions in
sections 5 and 6 respectively.

2. REPARAMETERIZATION OF
SEMIEMPIRICAL METHODS

In this section we provide a brief background of current
computational methods for performing excited state dynam-
ics in photochemistry and a more detailed overview is given
elsewhere [27, 19, 28] and the references therein. As men-
tioned earlier, a comprehensive understanding of the pho-
tochemistry of molecules requires bridging the gap between
molecular dynamics and quantum chemistry, and quantum

dynamics simulations are required to simultaneously solve
both the nuclear and electronic Schrödinger equations [27].
Additionally, the potential energy surfaces (PESs) must be
of high quality and very robust because the portions of the
PES that are critical to the behavior of the molecule may
be far removed from the Franck-Condon region.
The ab initio multiple spawning (AIMS) method has been

developed in order to address such problems [4, 5]. While
the AIMS method is extremely flexible and can describe
quantum mechanical phenomena such as tunneling and non-
adiabatic transitions, it is computationally very expensive
because of a large number of ab initio electronic structure
calculations involved, making long time dynamics simula-
tions highly improbable, if not impossible.
In order to retain the flexibility of ab initio electronic

structure methods with less computational cost, semiem-
pirical methods—which ignore some two-electron integrals
and use parameters for others—were developed [11, 12, 25].
The semiempirical parameters which are different for each
element, have been optimized using ground state properties
for a set of molecules. Standard parameter sets, such as
MNDO [11], AM1 [12], and PM3 [25], yield useful informa-
tion concerning the locations of the minimal energy conical
intersections (MECIs) which often dominate photochemical
reactions. However, they often yield erroneous energetics,
resulting in unphysical dynamics. Therefore, the parameter
sets must be reoptimized using a very limited set of ab ini-
tio and experimental data to obtain an acceptable and an
accurate description of the photodynamics. Also, the repa-
rameterization strategy is a promising way to extend direct
dynamics simulations of photochemistry to multi-picosecond
time scales. It is also reasonable to expect transferability
of the parameter sets optimized on simple molecules such
as ethylene and benzene to other complex molecules such
as stilbene and phenylacetylene dendrimers. Furthermore,
the reparameterization approach opens up the possibility of
accurate simulations of photochemistry in complex environ-
ments such as proteins and condensed phases.
It should be noted that while the reparameterization pro-

cedure only fits energetics of a few important stationary
molecular geometries, much larger portions of the PESs will
be accessed during dynamics simulations. Therefore, the
semiempirical methods have to incorporate enough of the
fundamental chemical physics to generate at least qualita-
tively correct global PESs. While it is possible to include
geometries and energetics of the MECIs in the reparameter-
ization, the strategy of using relatively little ab initio data
is mandatory if reparameterization is to be applicable for
larger molecules, where ab initio data is extremely expen-
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sive to obtain. Therefore, we intentionally use a minimal set
of energies and gradients at ground state optimized geome-
tries in our reparameterization.
In this paper we will concentrate on reparameterizing two

simple molecules, which are fundamental building blocks of
organic molecules: ethylene and benzene. The small size of
ethylene has many advantages: First, semi-empirical calcu-
lations can be run very quickly so a large number of repa-
rameterization runs can be conducted. Second, the small
number of atoms, basis functions, and possible geometries
imply that the results may be less complex and more easily
interpretable. Lastly, the size and simplicity enables the re-
optimized parameter sets to be amenable for further analy-
sis of ethylene dynamics and for transferability to stilbene
or conjugated polyenes. Furthermore, despite its simplic-
ity, ethylene has an associated set of ethylidene geometries
than can be used to evaluate performance of the reoptimized
parameter sets in calculations for which they were not opti-
mized. Benzene plays an important role in photochemistry
and photophysics of aromatic systems and has been exten-
sively studied both experimentally and theoretically [28].
Similar to [19], for ethylene reparameterization, we use

energetics for the ground state planar and ethylidene geome-
tries, twisted geometry on the excited state as well as the
gradients on the excited and ground states. The ab initio re-
sults used for reparameterization are taken from previously
reported calculations [3]. As in [28], for reparameterization
of benzene, we use four important local minima on S0: pla-
nar, Dewar benzene, prefulvene and benzvalene (see figure 1)
and use ab initio calculations and experimental results re-
ported in and used by [28]. The semiempirical calculations
are performed with a developmental version of MOPAC2000
[26], while the ab initio results are performed with MOL-
PRO [29] and MolCas [2], details of which are beyond the
scope of this paper. For both ethylene and benzene, 11 para-
meters for carbon—Uss, Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp,
Gp2 , and Hsp—are reoptimized. Following earlier studies
[19, 28], the core-core repulsion parameters—α, ai, bi, and
ci are not reoptimized.
With this general overview of reparameterization of semi-

empirical methods, we describe the multiobjective genetic
algorithm used in reparameterization in the next section.

3. MULTIOBJECTIVE GENETIC
ALGORITHMS

Many practical problems are inherently multiobjective in
nature and evolutionary algorithms are particularly suited
to handle multiple objectives as they can process a number
of solutions in parallel and find all or majority of the solu-
tions in the Pareto-optimal front. Based on Goldberg’s [13]
suggestion of implementing a selection procedure that uses
the non-domination principle, many multiobjective evolu-
tionary algorithms have been proposed [7, 6]. In this study,
we used NSGA-II [10] and provide the details of the algo-
rithm in the following paragraphs.
As mentioned earlier, reparameterization of semiempirical

methods involves optimizing the semiempirical parameters
based on a very limited set of ab initio and/or experimen-
tal data. We use a real-valued encoding to represent the 11
parameters—Uss, Upp, βs, βp, ζs, ζp, Gss, Gsp, Gpp, Gp2 ,
and Hsp—of the semi-empirical potentials. The two fitness
functions involve minimizing the absolute error in energies

and energy-gradients for a very limited set of excited-state
and ground-state configurations either calculated by ab ini-
tio methods or obtained by experiments and those predicted
by semiempirical methods. That is,

f1 (x) =

ncX

i=1

[|∆E0,i −∆ESE,i (x)|+∆G0,SE,i(x)] (1)

f2 (x) =

ngX

i=1

|∇E0,i −∇ESE,i(x)| (2)

where x represents the semiempirical parameters to be op-
timized, nc is the number of configurations, and ng is the
number of gradient-energy data used in reparameterization.
∆E0,i and ∆ESE,i are the differences in energy between the
geometry i and the reference structure (planar ethylene and
benzene) calculated by ab initio and semiempirical methods
respectively. It should be noted that in the first objective
we also include geometry difference between the reparame-
terized semiempirical geometries and the ab initio geome-
tries, ∆G0,SE,i, by calculating the sum-squared differences
between the corresponding atoms after the molecules have
been rotated and translated such that they are in maximum
coincidence. ∇E0,i, and ∇ESE,i represent the excited-state
energy gradients using ab initio and semiempirical methods
respectively.
We use a population size of 800 in accordance with

population-sizing models [15, 17, 18], the verification of
which is provided in section 4. The initial population is
randomly generated within a certain percentage (20–50%) of
the PM3 parameter values [25]. We restrict the parameter
bounds around the PM3 set so as to maintain a reasonable
representation of the ground-state potential energy surface.
In our implementation of NSGA-II for reparameterization
of semiempirical methods, we use a binary (s = 2) tour-
nament selection without replacement [16, 22], simulated
binary crossover (SBX) [8, 9]—which models the behavior
of single-point crossover in binary genetic algorithms—with
ηc = 5, and crossover probability pc = 0.9, and a polyno-
mial mutation [7] with ηn = 10 and mutation probability
pm = 0.1.

4. RESULTS
We demonstrate the effectiveness of using multiobjective

genetic algorithm in rapid reparameterization of semiem-
pirical methods for ethylene and benzene. We begin with
estimating population-sizing and run-duration requirements
and then compare the performance of the evolutionary ap-
proach in predicting globally accurate PESs—specifically on
critical and untested excited states—with previously pub-
lished results.
Since the fitness calculations for ethylene are reasonably

fast—about 2 seconds per evaluation on a 1.7 GHz AMD
Athlon XP workstation—we first verify the population-
sizing and run-duration requirements using limited number
of NSGA-II runs. In order to verify population-sizing re-
quirements, we ran 5 independent runs of NSGA-II with a
population size of 2000 for 200 generations and used the best
non-dominated set out of those 5 runs as an approximation
of the true Pareto-optimal front, which contains 61 distinct
solutions. Using the population-size model for niching [18],
we compute that the population size required to maintain
at least 1 copy of each of the Pareto-optimal points with
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Figure 2: Effect of different population sizes on the convergence and coverage of the multi-objective GA. The
results are shown for ethylene and are averaged over 10 independent runs. The results show that population
sizes below 800 are not capable of converging onto the entire Pareto-front. The empirical results agree with
the population size estimate of 750 predicted by Mahfoud’s population-sizing model [18]. Points denoted by
crosses are obtained with a population of 2000 run for 200 generations and the points represented by circles
are the best non-dominated solutions at population sizes of 100, 200, 400, and 800.

a probability of 0.98 to be 750. To verify this estimate we
ran 10 independent runs of NSGA-II with population sizes
between 50–800 with a fixed number of function evaluations
of 80,000 for each run. The performance of NSGA-II with
different population sizes are shown in figure 2. As shown in
figure 2, while NSGA-II with population sizes below 800 are
unable to converge to the approximate Pareto-optimal front,
NSGA-II with a population size of 800 discovers almost all
the Pareto-optimal points.
We now look at the convergence rate of NSGA-II and the

run-duration requirements for reparameterization. Specifi-
cally, we considered 10 independent runs of NSGA-II with
a population size of 800 and looked at the evolution of the
best non-dominated front at different generations of the evo-
lutionary process as shown in figure 3. The results show that
reasonably good quality solutions start appearing as early
as 10th generation and the solution quality improves at a
steady pace till about 25 generations and gradually up to
about 100 generations. We found that after about 100 gen-
erations the improvement in solution quality was minimal.
Based on population-sizing and run-duration require-

ments in the remainder of the results we used a population
size of 800 and ran NSGA-II for 100 generations. Moreover,
the number of decision variables (semiempirical parameters)
remain the same with different molecules involving carbon
and hydrogen and the population-sizing and run-duration

estimates should hold for reparameterization for those mole-
cules as well. However, we note that the evaluation time
increases with the complexity of the molecule under consid-
eration.
We begin with comparing the solution qualities provided

by the best non-dominated front of NSGA-II over the cur-
rent published results of Owens [19] for ethylene in figure 4.
As shown in the figure, the solutions obtained through the
genetic algorithm is significantly superior, both in terms
of error in energy and energy-gradient, than those previ-
ously reported. Specifically, we obtain solutions that are
226% lower error in the energy and 32.5% lower error in
the energy gradient. Additionally, one of the best points
reported in [19] actually yields an inaccurate potential en-
ergy surface. In contrast, all 45 distinct solutions in the best
non-dominated set with error in energy lower than 1.2 eV
yield globally accurate PESs. All the unphysical points ob-
tained through evolutionary approach have an error in en-
ergy greater than 1.23 eV.
We now consider solutions obtained through the GA and

that of Owens with error in energy less than 2 eV, and eval-
uate their results on energetic calculations for a set of ethyli-
dene geometries for which they were not reoptimized. Before
comparing the results of GA with those of Owens, we pro-
vide certain salient properties of cis-trans isomerization of
ethylene. The ground state for ethylene is a planar structure
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Figure 3: Convergence of NSGA-II for reparame-
terization of semiempirical parameters for ethylene.
The best non-dominated front out of 10 independent
runs are shown at five different generations. Solu-
tions of reasonable quality start appearing in about
25 generations and high-quality solutions are discov-
ered somewhere between 50–100 generations.

as shown in figure 5. When it is excited, the carbon-carbon
bond twists 90◦ and decreases in the energy gap from 7.8 eV
to 2.5 eV. The twisted geometry, however is not an excited
state minimum but a saddle point with respect to pyrami-
dalization of one of the carbon atoms. However, as shown in
figure 5, the PM3 and AM1 parameter sets incorrectly indi-
cate that the twisted geometry is excited state minimum.
Therefore, we consider the above two important energet-

ics, the results of which are shown in figure 6:

• Energy differences between planar ethylene (ground
state, S0 minimized D2h) and twisted geometry (S1

minimized D2d), ideal value for which is 2.28 eV as
calculated by ab initio methods [3]. If the energy dif-
ference between the planar and twisted geometry is
less than zero, than the excited state minimum would
be the planar structure, which is erroneous. In other
words, for good parameter sets, the energy difference
between the planar and twisted geometry should be
greater than zero, preferably around 2.28 eV.

• Energy differences between the twisted geometry (S1

minimized D2d) and pyramidalized structure, ideal
value for which is 0.88 eV as calculated by ab initio
methods [3]. As shown in figure 5 the standard semi-
empirical parameter sets do not capture this feature,
and therefore, this energetics is one of the critical phe-
nomena in determining the quality of the reoptimized
parameter sets. If the energy difference between the
twisted geometry and the pyramidalized structure is
less than zero, then the excited state minimum would
be the twisted geometry (as predicted by standard pa-
rameter sets) which is inconsistent with ab initio and
experimental results. Therefore, for good parameter
sets, the energy difference between the twisted and
pyramidalized geometries must be greater than zero,
preferably around 0.88 eV.
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Figure 4: The best non-dominated front after 100
generations for ethylene compared to the published
results [19]. The GA results are for population size
n = 800, and are averaged over 30 independent runs.
The results obtained through GAs are significantly
better—226% lower error in the energy, and 32.5%
lower error in the energy gradient—than existing
reparameterized sets.

The energy differences between planar and twisted geom-
etry, and twisted geometry and pyramidalized structure, for
both the best non-dominated set are shown in figure 6 along
with the corresponding solutions. As shown in figure 6, the
best non-dominated solutions with error in energies lower
than 0.8 eV yield near ideal energies for both excited-state
transitions. Indeed, during the evolutionary process, we find
about 1,247 distinct parameter sets other than the best non-
dominated ones that demonstrate near-ideal energetics. In
essence, the genetic-algorithm reoptimized parameter sets
correctly identify the lowest-energy excited state as the pyra-
midalized structure as opposed to standard semiempirical
parameter sets and some of the previously reported repara-
meterized sets. In contrast, the energetics of the solutions
reported in [19] deviate significantly from the ideal values.
It should be noted that for the unphysical points in both so-
lutions sets, the energy difference between the twisted and
pyramidalized geometries was greater than -0.034 eV, which
is well within the error bars of the ab initio methods.
To verify the effectiveness of NSGA-II, we tested repa-

rameterization on benzene which is a more complex than
ethylene. The results for benzene reoptimization are shown
in figure 7. Similar to the results obtained for ethylene,
we observe that the GA provides significant improvement—
46% lower error in the energy and 86.5% lower error in the
energy gradient—over previously reported results [28]. Fur-
thermore, 75 out of 82 distinct best non-dominated solu-
tions with error in energy less than 8 eV yield physically
accurate dynamics. Similar to ethylene, while the standard
semiempirical parameter sets yield unphysical dynamics, the
genetic-algorithm reoptimized parameter sets yield results
consistent with experiments and ab initio computations. For
example, the newly optimized parameter sets predict an S2

lifetime of 100 fs, in agreement with experiment[21].
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Figure 5: Energy levels of ethylene at various geometries: Planar, twisted, and pyramidalized (left) from ab
initio calculations and (right) from PM3 and AM1 calculations. Reproduced with permission from [19].

We have also conducted dynamics simulations using a lim-
ited set of most distinct and best non-dominated parameter
sets for both ethylene and benzene, results of which are be-
yond the scope of this paper. In essence, the dynamics sim-
ulations indicate that for each of the reoptimized parameter
sets, the results are in accord with ab initio and experi-
mental results. The results demonstrate the effectiveness
of evolutionary search in providing multiple parameter sets
for semiempirical methods that yield globally correct PESs
even on untested and potentially critical reaction paths.

5. FUTURE WORK
We have taken the first step towards multiscaling excited

state direct dynamics of photochemistry. Our main goal is
to obtain high-quality reoptimized semiempirical parameters
that are transferable to other complex molecules containing
similar properties as ethylene and benzene and our limited
tests so far have shown that this is indeed the case. We
are now in the process of systematically testing the trans-
ferability of the reoptimized parameter sets of ethylene and
benzene to other molecules.
In this study we used an fixed evolutionary operators that

do not adapt linkage, and the evolutionary algorithm might
not be scalable in reparameterizing semiempirical methods
for other complex molecules. One class of evolutionary al-
gorithms that might be particularly effective—especially for
complex molecules—might be the so called competent ge-
netic algorithms [14, 20].
The multiple reoptimized parameter sets of semiempirical

methods all yield globally correct potential energy surfaces.
Therefore, the interactions between the parameters contain
important information about the molecules. Understanding
these key interactions are central to developing a robust mul-
tiscaling method. We have used traditional clustering tech-
niques, the model-building process of Bayesian optimization
algorithm [20, 1], and symbolic regression via genetic pro-
gramming to understand the parameter interactions.

6. SUMMARY AND CONCLUSIONS
In this study, we investigated the use of genetic and evo-

lutionary algorithms in multiscaling simulations of excited
state dynamics in photochemistry. Specifically, we used

multiobjective genetic algorithms to rapidly reparameterize
semiempirical methods to produce globally accurate poten-
tial energy surfaces based on very limited ab initio and/or
experimental data. Such reparameterization not only elimi-
nates the need for a full-fledged ab initio dynamics simula-
tion, which is prohibitively expensive for large molecules,
but also eliminates drawbacks of semiempirical methods
that use standard parameter sets and can yield unphysical
dynamics. The results show that the evolutionary approach
provides significantly better results—with up to 230% lower
error in the energy and 86.5% lower error in the energy
gradient—than those reported in literature. Furthermore, it
also provides a large number of parameter sets, all of which
yield globally accurate PESs and physical dynamics.
In the spirit of semiempirical methods, it is reasonable to

expect transferability to ethylene- and benzene-containing
molecules, such as stilbene and phenylacetylene dendrimers.
Our initial tests on transferability shows that this is indeed
the case—that is, parameter sets optimized for ethylene are
applicable to benzene, and vice versa. This is an ultimate
goal of this work, since it would allow direct simulation of
photoinduced cis-trans isomerization in molecules such as
stilbene and azobenzene, as well as energy transfer in den-
drimeric molecules. Furthermore, this opens up the possi-
bility of accurate simulations of photochemistry in complex
environments such as proteins and condensed phases.
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error bars of the ab initio methods.
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[17] G. Harik, E. Cantú-Paz, D. E. Goldberg, and B. L.
Miller. The gambler’s ruin problem, genetic
algorithms, and the sizing of populations.
Evolutionary Computation, 7(3):231–253, 1999. (Also
IlliGAL Report No. 96004).

[18] S. W. Mahfoud. Population size and genetic drift in
fitness sharing. Foundations of Genetic Algorithms,
3:185–224, 1994. (Also IlliGAL Report No. 94005).

[19] J. M. Owens. Theoretical studies of the solvation,
dynamics, and photochemistry of ethylene, retinal
protonated schiff base, oligocellulose, and Gd(III)
clusters. PhD thesis, University of Illinois at
Urbana-Champaign, Department of Chemistry,
Urbana, IL, 2004.

[20] M. Pelikan. Hierarchical Bayesian optimization
algorithm: Toward a new generation of evolutionary
algorithm. Springer Verlag, Berlin, 2005.

[21] W. Radloff, V. Stert, T. Freudenberg, I. V. Hertel,
C. Jouvet, C. Dedonder-Lardeux, and D. Solgadi.
Internal conversion in highly excited benzene and
benzene dimer: Femtosecond time-resolved
photoelectron spectroscopy. Chemical Physics Letters,
21(1–3):20–26, 1997.

[22] K. Sastry and D. E. Goldberg. Modeling tournament
selection with replacement using apparent added
noise. Intelligent Engineering Systems Through
Artificial Neural Networks, 11:129–134, 2001. (Also
IlliGAL Report No. 2001014).

[23] K. Sastry, D. Johnson, D. E. Goldberg, and P. Bellon.
Genetic programming for multiscale modeling. Int. J.
of MultiScale Comput. Eng., 2(2):239–256, 2004.

[24] K. Sastry, D. Johnson, D. E. Goldberg, and P. Bellon.
Genetic programming for multi-timescale modeling.
Physical Review B, 72:085438, 2005.

[25] J. J. P. Stewart. Optimization of parameters for
semiempirical methods 1. Method. Journal of
Computational Chemistry, 10(2):209–220, 1989.

[26] J. J. P. Stewart. MOPAC 2000, 1999. Fujitsu Limited,
Tokyo, Japan.

[27] A. Toniolo, B. Levine, A. L. Thompson,
J. Quenneville, M. Ben-Nun, J. Owens, S. Olsen,
L. Manohar, and T. J. Martinez. Photochemistry from
first principles and direct dynamics. In
A. Kutateladze, editor, Computational methods in
organic photochemistry. Marcel-Dekker, New York,
NY, 2005.

[28] A. Toniolo, A. L. Thompson, and T. J. Martinez.
Excited state direct dynamics of benzene with
reparameterized multireference semiempirical
configuration interaction methods. Chemical Physics,
304:133–145, 2004.

[29] H.-J. Werner et al. MOLPRO, version 2002.2, a
package of ab initio programs.
http://www.molpro.net.

1752


