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ABSTRACT 
Two mathematical and two computational theories from the field of 
human and animal learning are combined to produce a more general 
theory of adaptive behavior. The cornerstone of this theory is an 
evolutionary algorithm for reinforcement learning that instantiates 
the idea that behavior evolves in response to selection pressure from 
the environment in the form of reinforcement. The evolutionary 
reinforcement algorithm, along with its associated equilibrium 
theory, are combined with a mathematical theory of conditioned 
reinforcement and a computational theory of associative learning 
that together solve the problem of credit assignment in a 
biologically plausible way. The result is a biologically-inspired 
computational theory that enables an artificial organism to adapt 
continuously to changing environmental conditions and to generate 
adaptive state-action sequences. 

Track: Artificial Life, Evolutionary Robotics, Adaptive Behavior 

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning; I.6 [Simulation and 
Modeling]; J.4 [Social and Behavioral Sciences] – Psychology. 

General Terms: Algorithms, Theory. 

Keywords: Evolutionary algorithms, reinforcement learning, 
adaptive behavior, adaptive agents, conditioned reinforcement, 
credit assignment, stimulus control, matching theory, delay-
reduction theory, Rescorla-Wagner rule. 

1. INTRODUCTION 
Learning may be viewed alternatively as acquiring knowledge or as 
behaving adaptively. The former view, which is common in 
artificial life and machine learning [12], leads to a focus on how and 
what rational agents learn about their environments. The latter view 
leads to a focus on how agents adjust their behavior to prevailing 
environmental conditions.  
The view of learning as behaving adaptively characterizes an 
approach to human and animal learning known as the experimental 

analysis of behavior [11]. Specific mathematical and computational 
theories in this field have advanced to an extent that they now can 
inform research on artificial life in useful ways. The purpose of this 
article is to combine four specific behavior theories into a more 
comprehensive computational theory of adaptive behavior. The 
centerpiece of this application of behavior theory is a computational 
reinforcement mechanism that is based on evolutionary principles 
[8]. We combine this mechanism, and its associated equilibrium 
theory, with two additional theories that solve the problem of credit 
assignment in a biologically plausible way. The additional theories 
are Mazur’s [6] hyperbolic delay theory of conditioned 
reinforcement and the Rescorla-Wagner theory of associative 
learning [1, 14]. The result is a biologically-inspired computational 
theory that allows an artificial organism to adapt continuously to 
changing environmental conditions, and to produce adaptive state-
action sequences. 
In the next section the reinforcement mechanism will be described, 
computational experiments testing the ability of the mechanism to 
generate behavior typical of live organisms will be summarized, and 
the mechanism’s ability to produce continuously adaptive behavior 
in an artificial organism will be illustrated. Following this, the 
reinforcement mechanism will be combined with the Mazur and the 
Rescorla-Wagner theories to produce a more comprehensive 
computational theory of adaptive behavior. 

2. THE REINFORCEMENT MECHANISM 
The reinforcement mechanism is based on the idea that behavior 
evolves in response to selection pressure exerted by the environment 
in the form of reinforcement. The algorithm consists of a fitness 
rule, and rules of selection, reproduction, and mutation that govern 
the evolution of a population of potential behaviors in an agent, or 
artificial organism. At each moment, or time tick, a new generation 
of potential behaviors is produced and one behavior from the 
population is emitted. This generates a constant stream of behavior 
over time. As will be explained in more detail in the next section, 
selection pressure exerted by the environment operates in such a 
way that relatively successful behaviors, which are behaviors that 
either produce reinforcement or are similar to those that produce 
reinforcement, tend to become more frequent in the population of 
potential behaviors, whereas relatively unsuccessful behaviors tend 
to become less frequent. It is important to keep in mind that in this 
theory, evolution operates on a population of potential behaviors in 
a single agent, not on a population of agents. The specific details of 
the behavioral repertoire and of the evolutionary rules are described 
next. 
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2.1 Organism and Algorithm 
Let an artificial organism consist of a repertoire, or population, of 
100 potential behaviors, each of which is defined by an integer 
ranging from 0 through 1,023. The top panel of Figure 1 shows a 
repertoire of 100 behaviors selected at random from the permissible 
range, and arranged in arbitrary order along the x-axis. The integers 
that represent the behaviors may be thought of as the behaviors’ 
phenotypes, and the behaviors may be sorted into classes based on 
these phenotypes. For the present discussion we will consider just 
two classes, a target class that consists of phenotypes 0 through 40, 
and an extraneous class that consists of all other phenotypes. At 
each moment, or tick, of time the artificial organism emits a 
behavior from one of these classes, with probabilities equal to the 
relative frequencies of the phenotypes in the classes. For example, if 
the repertoire at a particular time tick consists of 20 behaviors that 
fall in the target class and 80 behaviors that fall in the extraneous 
class, then the probability that a behavior will be emitted from the 
target class at that moment is 20/100 or 0.20. 
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Figure 1. Top: Representation of a random initial repertoire 
consisting of 100 behaviors with integer phenotypes ranging 
from 0 through 1,023. Bottom: Repertoire after 433 generations 
during which phenotypes 0 through 40 were occasionally 
reinforced. In both panels the behaviors are arranged in 
arbitrary order along the x-axis. 
Suppose the organism is placed in an environment in which the 
emission of a behavior from the target class occasionally produces 
reinforcement, unpredictably, but with a known average rate, r. 
Emissions of behavior from the extraneous class are never 
reinforced. In behavior analysis this environment is said to arrange a 
random interval (RI) schedule of reinforcement. Reinforcing a target 
behavior identifies it as successful with respect to other behaviors in 
the repertoire. The computational theory uses this information to 
produce the next generation of potential behaviors by choosing 
“parent” behaviors from the population on the basis of their 
similarity to the reinforced behavior. Behaviors that are more 
similar to the reinforced behavior are more likely to be chosen as 
parents. These parents then produce the next generation of “child” 
behaviors. Selecting specific parent behaviors entails first 
calculating a fitness value for every behavior in the repertoire. This 
value represents the similarity of a specific behavior to the 
reinforced behavior. One way to define fitness is as the absolute 
value of the difference between a behavior’s phenotype and the 
phenotype at the midpoint of the target class. Defined in this way, 
smaller fitness values are associated with fitter behaviors, which are 
behaviors that are more like the reinforced behavior. Given fitness 
values for every behavior in the population, individual parent 
behaviors are selected using a probability density function that 

assigns higher probabilities of being selected to fitter behaviors, and 
lower probabilities of being selected to less fit behaviors.  
Once parent behaviors are chosen, they combine to produce child 
behaviors. If the integer value that defines a behavior is its 
phenotype, then the binary representation of this integer can be 
considered its genotype. Bits from binary representations of two 
parent behaviors can be combined in various ways to produce child 
behaviors. The child behaviors produced in this way then replace 
some percentage of the initial population of behaviors.  
After the new generation of behaviors is produced, a small amount 
of random mutation is added to the population by, for example, 
flipping a bit in the binary representation of a small number of 
randomly selected behaviors. The 100 potential behaviors in the 
new repertoire are then sorted into target and extraneous classes and, 
based on their relative frequencies as described earlier, a specific 
behavior is emitted from one of the classes. If the behavior is from 
the target class and it is reinforced, then the process of calculating 
fitness, selecting parents, producing a new population of behaviors, 
and adding random mutation is repeated. If the behavior is from the 
target class but is not reinforced, or if it is from the extraneous class, 
then parents selected at random produce the next generation, and a 
small amount of random mutation is added to the population of 
behaviors. 
This algorithm consists of a fitness rule, and rules of selection, 
reproduction, and mutation. The fitness rule specifies how the 
similarity between a specific behavior and the reinforced behavior is 
represented. The selection rule is constituted by the form and 
parameter values of the parental-selection density function. The 
reproduction rule specifies how parent behaviors combine to 
produce child behaviors. And the mutation rule specifies how and 
how many mutants are produced. Each of these rules can be 
implemented in various ways. For example, fitness can be 
calculated with respect to various properties of the target class. The 
parental selection function must assign higher probabilities of being 
selected to fitter behaviors, but its form could be linear, uniform, or 
exponential, among other possible forms. There is a similar variety 
of ways to implement the reproduction and mutation rules. To 
anticipate the results of computational experiments that will be 
summarized in the next section, it evidently does not matter how 
these rules are implemented, only that they are implemented. Within 
wide ranges, any set of fitness, selection, reproduction, and mutation 
rules generates the same pattern of equilibrium states. 

2.2 Computational Studies of the Algorithm 
The general effect of the evolutionary algorithm is illustrated in 
Figure 1. Beginning with a random initial repertoire (top panel), a 
target behavior (phenotypes 0 through 40) was occasionally 
reinforced. The bottom panel shows the repertoire after 433 
generations. Overall, the population of behaviors is now much fitter, 
that is, the phenotypes of the individual behaviors are closer to the 
midpoint of the target class, which is 20. 
When the evolutionary algorithm is run for many generations, the 
behavior of the artificial organism eventually reaches an equilibrium 
such that the momentary rate of behaviors from the target class 
varies around some mean value, R. Reinforcement tends to pull the 
population of behaviors into the target class while non-
reinforcement and mutation tend to return the population of 
behaviors to the baseline distribution of target and extraneous 
behaviors. 
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The behavior of many species of live organism also reaches an 
equilibrium state that varies around some mean rate, R, in 
environments that arrange occasional reinforcement for a target 
behavior. To evaluate the evolutionary algorithm as a theory of live 
behavior dynamics, it is necessary to summarize briefly what is 
known about the equilibrium states of behavior produced by live 
organisms. 

The relationship between R and r for live organisms has been 
studied extensively, and is known to be described by the hyperbolic 
equation, 

err
krR
+

= ,                                        (1) 

which expresses the steady-state rate of a specific target behavior, R, 
as a function of the steady-state rate of reinforcement obtained for 
the target behavior, r [3]. The quantities, k and re, are parameters of 
the hyperbola. This equation is part of a very successful family of 
equations known as matching theory [2, 9], which describes how 
steady-state behavior is related to environmental conditions such as 
the rate of reinforcement obtained for the behavior. Equation 1 is the 
fundamental equation of matching theory. According to the theory, 
the parameters, k and re, in Equation 1 are interpreted respectively 
as the maximum rate of the target behavior, and the aggregate rate 
of background reinforcement, which is reinforcement delivered for 
behaviors other than the target behavior, or delivered for free. 

Equation 1 has been extensively verified in dozens of experiments 
with many species, including humans, and many types of behavior 
and reinforcement [2]. It is now generally accepted as a 
fundamental, quantitatively accurate, statement of how 
reinforcement governs the behavior of biological organisms in the 
steady state. In an environment that arranges an average 
reinforcement rate, r, for a particular behavior, a human or animal 
will eventually come to emit that behavior at the average rate, R, 
specified by Equation 1, and will continue to do so until r changes. 
It is important to recognize that in most experimental environments, 
many instances of the target behavior are emitted but only a few 
actually produce reinforcement. Hence, Equation 1 is readily 
applicable to many naturalistic human and animal environments [7].  

The dynamics that specify how the steady state described by 
Equation 1 is achieved are not well understood. Much research has 
been devoted to this topic [e.g., 12], but none of the proposed 
solutions has been widely accepted. The evolutionary theory 
described here is a recent attempt to solve this problem. To be 
considered a reasonable candidate for a dynamic theory of behavior, 
its equilibrium states must be described by Equation 1. 

Computational studies have been conducted to investigate this 
requirement, and to determine whether the theory’s pattern of 
equilibrium states depends on the details of the algorithm’s 
implementation. To investigate the first issue, equilibria generated 
by the evolutionary algorithm over a wide range of average 
reinforcement rates, r, were analyzed [8]. Values of R in these 
environments were averages over 5,000 to 45,000 generations, 
which produced very small standard errors. Equation 1 was then 
fitted to the r-R data pairs by the method of least squares, and the 
residuals were examined for randomness. For 57 sets of equilibria, 
each of which consisted of 9 to 11 r-R data pairs, Equation 1 
accounted for, on average, 99% of the variance of the Rs (range: 
68% to 100%). Statistical tests of the residuals detected deviations 

from randomness in 12 (21%) of the 57 fits. These results indicated 
that Equation 1 provided a good description of the equilibrium states 
produced by the evolutionary theory. 

It is possible that function forms different from Equation 1, but with 
similar differential properties, might describe these equilibria just as 
well. To test this possibility, an asymptotic exponential, an 
asymptotic power function, and a ramp function, each having two 
parameters, were fitted to the 57 sets of equilibria generated by the 
evolutionary algorithm [8]. On average, the comparison forms 
accounted for, respectively, 96%, 91%, and 85% of the variance of 
the Rs. The differences between each of these percentages and the 
percentage of variance accounted for by Equation 1 (99%) were 
statistically significant. In addition, statistical tests of randomness 
applied to the residuals detected deviations from randomness in 44 
(77%), 42 (74%), and 51 (89%) of the 57 fits for the three 
comparison forms respectively. These results indicated that the 
equilibrium states produced by the evolutionary mechanism were 
specifically described by a hyperbola (Equation 1), as required by 
matching theory. 

It is possible that the hyperbolic form of the equilibrium states 
generated by the evolutionary algorithm depended critically on a 
specific feature of the algorithm. Of particular concern is the form 
of the parental selection function. The possibility that this form 
somehow determines the form of the equilibrium states was tested in 
experiments using linear, uniform, and exponential probability 
density functions to select parents for mating. All three forms were 
found to produce equilibrium states that were accurately and 
specifically described by Equation 1. In addition to different forms 
of the parental selection functions, two distinct methods of defining 
fitness, two methods of combining bits to produce child behaviors, 
two methods of mutation, and various combinations of these 
methods were also studied. In every case, the resulting equilibrium 
states were accurately and specifically described by Equation 1 [8].  

Taken together, these computational experiments showed that 
Equation 1, which is known to describe the behavior of live 
organisms, is a unique and robust emergent property of an 
evolutionary behavior dynamics. The evolutionary algorithm, then, 
appears to be a viable candidate for a theory of behavior dynamics 
in live organisms. 

2.3 Adaptive Behavioral Dynamics 
Live organisms are able to continuously adapt to changing 
environmental conditions. The evolutionary algorithm equips 
artificial organisms with a similar ability. One way to illustrate this 
is to change the selection pressure during an experimental run and 
observe how the artificial organism responds. The top panel of 
Figure 2 shows, for two experimental runs, the momentary 
probability of emission of a target behavior that had a baseline 
probability of 0.04. Recall that this momentary probability is just the 
relative frequency of potential behaviors that fall in the target class. 
The target behavior was occasionally reinforced on an RI schedule 
during 6000 generations, or time ticks. As explained earlier, an RI 
schedule arranges reinforcement unpredictably, but with a known 
mean rate. 
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Figure 2. Momentary probabilities (top panel) and cumulative 
counts (bottom panel) of a target behavior that was occasionally 
reinforced on an RI schedule. Two experimental runs are 
plotted in the top panel; the cumulative counts from one of the 
runs are plotted in the bottom panel. The mean of the linear 
parental selection function (LPFF) was changed from an initial 
value of 20 to a value of 80 at generation 2001, and then to a 
value of 600 at generation 4001. 
During the experimental runs, a one-parameter, linear 
parental-selection density function was used, namely, 

,
3
2

9
2)( 2 μμ

+−= xxp                                 (2) 

for 0 ≤ x ≤ 3μ, where the single parameter, μ, represented the mean 
of the density function.  In this equation x represents fitness and p(x) 
is the probability density associated with a behavior of fitness, x, 
being chosen as a parent. This is the simplest linear probability 
density function that depends only on its mean. When the mean is 
small, only highly fit behaviors can be selected as parents, and 
hence the selection pressure is strong; when the mean is large, less 
fit behaviors can be selected as parents and hence the selection 
pressure is relatively weak.  
During the first 2000 generations of the experimental runs shown in 
the top panel of Figure 2, the mean of the linear parental selection 
function (LPFF) was 20. The selection pressure exerted by this 
density function was reduced at generation 2001 by increasing the 
mean of the function to 80, and it was reduced further at generation 
4001 by increasing the mean to 600. As shown in the figure, the 
momentary probability of the target behavior increased over the first 
300 or 400 generations from its baseline level to a roughly stable 
probability of about 0.5. When the selection pressure was reduced at 
generation 2001, the momentary probability of the target behavior 
fell over the course of about 300 generations and reached a new 
equilibrium of approximately 0.25.  A similar decline and then 
stabilization of the momentary probability of emission of the target 
behavior occurred when the selection pressure was reduced further 
at generation 4001. 
The translation of the momentary probabilities into behaviors is 
shown in the bottom panel of Figure 2 for one of the experimental 
runs. The cumulative number of target behaviors is plotted against 
time. Whenever the cumulative number reached 100 it was reset to 

zero. One advantage of a cumulative plot of behavior is that its 
slope gives the behavior’s time rate of occurrence. The cumulative 
plot in Figure 2 shows that the target behavior was emitted at a 
roughly constant momentary rate, which decreased with decreasing 
selection pressure. Roughly constant momentary rates of behavior 
are widely observed in experiments with live organisms on RI 
schedules [11]. The artificial organism’s adaptive response to 
changes in selection pressure is not limited to the linear parental 
selection function used in this example, or to any other detail of the 
evolutionary algorithm. Every instantiation of the algorithm 
evidently exhibits this property. 
In addition to enabling an artificial organism to change the rate of a 
targeted behavior in response to changes in selection pressure, the 
evolutionary mechanism also enables an artificial organism to 
respond adaptively when the environmental requirements change so 
as to favor a different behavior. Figure 3 shows one experimental 
run of an artificial organism with two classes of behavior having 
baseline probabilities of 0.04 (Behaviors 1 and 2), and two classes 
of behavior having baseline probabilities of 0.46. During the first 
2000 generations of the experimental run, Behavior 1 (solid line in 
the figure) was occasionally reinforced on an RI schedule. At 
generation 2001, Behavior 1 was put on extinction, that is, 
reinforcement was withdrawn, and Behavior 2 was occasionally 
reinforced using the same RI schedule. At generation 4001 the 
original conditions were reinstated. 
The momentary probabilities in Figure 3 show that the probability 
of emission of Behavior 1 increased over the course of about 400 
generations from its initial low value to a roughly stable probability 
of about 0.4. When reinforcement was withdrawn at generation 
2001, the probability of Behavior 1 decreased over about 300 
generations to its initial low value, and when reinforcement was 
resumed at generation 4001 the probability of Behavior 1 again in-
creased to a steady-state value of about 0.4. Similar changes were 
evident for Behavior 2, beginning with a low initial probability, 
followed by a transition to a higher equilibrium probability when 
the behavior was reinforced, followed by a return to the lower 
probability when reinforcement was withdrawn. 

 
Figure 3. Momentary probabilities of two behaviors for one 
experimental run where Behavior 1 (solid line) was occasionally 
reinforced on an RI schedule during generations 0 through 2000 
and generations 4001 through 6000, and Behavior 2 (dotted line) 
was occasionally reinforced on an RI schedule during 
generations 2001 through 4000.  
Other examples of the artificial organism’s adaptive behavior could 
be adduced. For example, smooth transitions from one equilibrium 
condition to another occur when the mean rate of reinforcement, r, 
is changed. In fact, the organism responds with more or less smooth 
transitions between equilibria when any detectable feature of the 

178



environment changes, including qualitative changes such as the 
form of the parental selection function. 

3. THE GENERAL THEORY 
The approach to reinforcement learning presented here is different 
from approaches that are commonly found in the machine learning 
and artificial intelligence literature. More familiar approaches 
include those based on the expected utility or value of different 
courses of action [4, 14], and those focused on finding, often by 
using evolutionary algorithms, the best action or policy in particular 
sets of circumstances [10]. 
One of the distinguishing features of the evolutionary mechanism 
described in this article is that it does not entail a performance 
criterion, and in that sense the organism it animates is not a rational 
agent. In utility-based reinforcement learning, maximization of 
expected utility is the performance criterion. In action-based 
reinforcement learning, policies that optimize some benefit to the 
organism are typically sought. In contrast, our evolutionary 
mechanism operates without information about the longer term or 
overall benefits associated with different courses of action. Like 
organic evolution, which is not an optimizing process, behavioral 
evolution simply acts from moment to moment in a way that causes 
behavior to change in response to changes in environmental 
conditions. 
A second distinguishing feature of our approach is that learning 
occurs continuously in time rather than on a trial-by-trial basis. 
Consider, for example, a rat in a T-maze that is learning to turn left 
or right at the end of a runway. After making a turn, the rat is put 
back in the start box, has another go at the maze, and so on. Many 
reinforcement learning algorithms follow this paradigm. In contrast, 
consider a rat in an experimental chamber with a lever protruding 
from one wall. The rat may press the lever at any time, or explore 
the chamber, or rear, or preen, and so on. Consequences that are 
arranged for lever pressing must control that behavior in real time 
and in the context of other behaviors. Our approach models this 
more naturalistic, “free-behavior”, situation. 

3.1 Mechanics of Conditioned Reinforcement 
Combining the evolutionary reinforcement mechanism and its 
associated equilibrium theory (Equation 1) with the Mazur and the 
Rescorla-Wagner theories produces a computational account that is 
applicable to more complicated situations. For example, learning 
algorithms in artificial life research often deal with state-action 
sequences [13]. An agent in a given state has a set of possible 
actions, each of which puts it in a new state with a new set of 
possible actions, and so on. Consider, for example, a grid world with 
an agent in one state (i.e., a box in the grid) and a reinforcer 
available in another state. The task might be to move through the 
grid world to get to the reinforcer, perhaps in the fewest number of 
steps. Each trip through the grid world constitutes a series of state-
action sequences, or a policy. Once the reinforcer is encountered, 
credit must be assigned to each step in the trip, or to the policy as a 
whole, to make that specific trip more or less likely to occur in the 
future. The agent is then put back into the grid world, takes another 
trip, and so on. 
A state in artificial learning is comparable to a discriminative 
stimulus (usually abbreviated SD) in the experimental analysis of 
behavior. A discriminative stimulus may signal the opportunity to 
obtain reinforcement, or it may signal the opportunity to obtain a 
new discriminative stimulus, that is, to change state. For example, in 

the presence of a 1000-Hz tone, a particular behavior may 
occasionally turn on a yellow light, and then in the presence of the 
yellow light, a particular behavior may occasionally produce 
reinforcement. In this example, the tone signals the opportunity to 
change state, and the yellow light signals the opportunity to obtain 
reinforcement. In the experimental analysis of behavior, this 
sequence of discriminative stimuli and their signaled behaviors is 
referred to as a chained schedule of reinforcement. Each 
discriminative stimulus identifies one link in the chain. A chained 
schedule with three links is illustrated in Figure 4.  
A trip through a grid world is comparable to an organism behaving 
on a chained schedule of reinforcement. In the presence of an initial 
discriminative stimulus or state, one class of behavior turns on a 
new discriminative stimulus, that is, causes a change of state. A 
class of behavior in the presence of this new discriminative stimulus 
turns on yet another discriminative stimulus, and so on, until one 
class of behavior in the presence of a final discriminative stimulus 
produces reinforcement. This is a sequence of state-action mappings 
that ends with reinforcement. 
The evolutionary reinforcement mechanism described in this article 
can be applied to a chained schedule by associating a distinct 
repertoire of behaviors with each discriminative stimulus. Each 
repertoire evolves only in the presence of its discriminative 
stimulus. This association of distinct repertoires with different 
discriminative stimuli is consistent with the known effects of 
discriminative stimuli on the behavior of live organisms [11].  
Consider now the chained schedule illustrated in Figure 4, 
beginning with the final link (Link 1) in the chain. In the presence of 
SD

1, the organism can emit behavior from, say, three classes, which 
are represented by arrows in the figure. Suppose behavior from one 
of the classes, the target class (thick arrow), produces reinforcement 
on a random interval schedule. As long as SD

1 is present, the 
repertoire of behavior associated with it evolves according to the 
evolutionary algorithm. Now suppose we turn on SD

2. In the 
presence of this discriminative stimulus, the organism again can 
emit behavior from three classes, represented by arrows in the 
figure, and behavior from one of the classes turns on SD

1 according 
to a random interval schedule. As long as SD

2 is present, its 
associated repertoire of behavior evolves according to the 
evolutionary algorithm. But what provides the selection pressure in 
this link of the chain? In the case of live organisms, the onset of SD

1, 
the discriminative stimulus that signals reinforcement, provides the 
selection pressure. 
We know from research with live organisms that discriminative 
stimuli that are associated with reinforcement themselves acquire 
reinforcing properties. In other words, they become conditioned 
reinforcers, which organisms will work to produce. Specifically, 
Mazur [6] showed that the steady-state reinforcing value, V, of a 
discriminative stimulus is a hyperbolic decay function of the time 
between its onset and the moment of reinforcer delivery, 

bx
aV

+
=

1
,                                            (3) 

where x is the latency of reinforcement following the onset of the 
discriminative stimulus, and a and b are parameters of the equation. 
The longer the delay to reinforcement after the onset of the 
discriminative stimulus, the lower is its reinforcing value. Equation 
3 applies to simple situations where one reinforcement latency is 
repeatedly associated with a discriminative stimulus. On a random 
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interval schedule, however, many latencies are associated with the 
discriminative stimulus because reinforcement occurs at 
unpredictable times. The onset of each latency is the moment that 
responding resumes after reinforcement. Mazur [5] showed that in 
the case of many latencies, the overall or total reinforcing value of a 
discriminative stimulus, VT, is the average of the reinforcing values 
of the individual latencies, Vi, 

∑
=

=
n

i
iiT VpV

1

,                                   (4) 

where pi is the probability of the ith latency. But on a random 
interval schedule, latencies are exponentially distributed such that 
that the probability of a latency of magnitude, x, is 

rxrexp −=)( ,                                   (5) 

where r is the mean rate of reinforcement arranged by the schedule. 
It follows from Equation 4 that the overall or total reinforcing value 
of a discriminative stimulus associated with a random interval 
schedule is 

∫
∞ −=

0
VdxreV rx

T ,                                (6) 

which evaluates to 

( ) ( )brebraV br
T /,0/ / Γ= .                     (7) 

Equation 7 expresses the steady-state or equilibrium reinforcing 
value of a discriminative stimulus associated with a random interval 
schedule, as a function of the average rate of reinforcement, r, 
delivered by the schedule, and the fixed Mazur parameters, a and b. 
This equation asserts that the reinforcing value of the discriminative 
stimulus is a monotonically increasing function of r that approaches 
an asymptote, a, with rapidity governed by b.  

SD
1

SR+

SD
2

SD
3

Link 3

Link 2

Link 1

 
Figure 4. A chained schedule of reinforcement with three links. 
Each link is identified by a different discriminative stimulus, SD. 
In the presence of an SD, one class of behavior (thick arrows) 
turns on the next SD, or produces reinforcement (SR+). This is a 
sequence of state-action mappings that ends with reinforcement. 
A separate repertoire of behaviors is associated with each 
discriminative stimulus, and evolves only in the presence of that 
SD. 
According to our extension of Mazur’s theory, Equation 7 must give 
the reinforcing value of SD

1 in the chained schedule illustrated in 
Figure 4 at equilibrium, that is, after sufficient exposure to the 

schedule. But how does this equilibrium develop? We propose that 
discriminative stimuli acquire reinforcing value through a process of 
associative learning that can be described by the well-known 
Rescorla-Wagner theory. This theory has been applied successfully 
to associative learning in both live and artificial organisms [1, 14]. 
To apply the theory to discriminative stimuli, the associative 
strength or reinforcing value, V, of a discriminative stimulus at time 
step, t, is written as a function of its associative strength on the 
previous time step, t-1, its salience, α, the salience of the reinforcing 
stimulus, βλ, and the ultimate level of associative learning that the 
reinforcing stimulus will support, λ,:  

( )11 −− −+= ttt VVV λαβλ .                        (8) 
This equation describes the momentary reinforcing value of a 
discriminative stimulus which, according to the equation, is 
principally a function of its reinforcing value on the previous step 
and the salience of the stimulus and of the reinforcer. As examples 
of salience, a dim light is probably a less salient discriminative 
stimulus than a bright light; food reinforcement is likely to be more 
salient when an organism is food deprived than when it is not. 
Lambda, the maximum reinforcing value, is conventionally assigned 
a numeric value of 1 when reinforcement occurs on a time step and 
0 when it does not. This is because no reinforcing value can accrue 
to the discriminative stimulus when reinforcement does not occur. 
The salience parameters, α and β, are typically set to values 
between 0 and 1, and the value of β may differ when reinforcement 
occurs than when it does not because the former condition is likely 
to be more salient than the latter. Using these conventions, the 
reinforcing value, V, of the discriminative stimulus varies between 0 
and 1. At each time step V is incremented if reinforcement occurs 
and decremented (because λ = 0) if it does not. 
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Figure 5. Change in associative strength (reinforcing value), 
using the Rescorla-Wagner rule, of an SD where 
reinforcement occurs on a random 5% of the time steps. Top: 
Ten experimental runs with α = 0.75, β1 = 1 and β0 = 0.006.  
Bottom: Average of the 10 runs. 
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The acquisition of reinforcing value by a discriminative stimulus on 
an RI schedule can be illustrated by applying Equation 8 to ex-
perimental runs where reinforcement occurs on, say, 5% of the time 
steps. Ten such experimental runs are shown in the top panel of 
Figure 5, for which α = 0.75, β1 = 1 and β0 = 0.006. The salience of 
reinforcer absence (β0) is much smaller than the salience of its 
presence (β1) because the reinforcer is absent 95% of the time. The 
average associative strength for the ten runs is plotted in the bottom 
panel of the figure. These plots show that the associative strength of 
a discriminative stimulus under these conditions increases to a final 
value over about 100 generations, and then varies around it. This is 
an example from ongoing research in our laboratories, which 
indicates that on RI schedules, Equation 8 produces stable 
reinforcing-value equilibria that are directly proportional to the 
average reinforcement rates arranged by the schedules. This 
outcome is qualitatively consistent with our extension of the Mazur 
theory, Equation 7. Studies of the quantitative agreement between 
Equation 7 and the reinforcing-value equilibria generated by 
Equation 8 are currently underway. 
Notice that Equations 7 and 8 are theories of the statics and 
dynamics of conditioned reinforcement, just as Equation 1 and the 
evolutionary reinforcement algorithm are theories of the statics and 
dynamics of reinforcement learning. In our more general theory, the 
mechanics (that is, the statics and dynamics) of reinforcement 
learning governs behavior in each link of the chained schedule 
illustrated in Figure 4. The mechanics of conditioned reinforcement 
governs how the changes of state in links two and three acquire 
reinforcing value. According to this mechanics, the reinforcing 
value of SD

1 as a consequence for behavior in the second link of the 
chain depends on its association with the reinforcer in the first link, 
and the reinforcing value of SD

2 as a consequence for behavior in 
the third link of the chain depends on its association with SD

1 in the 
second link. This theory of conditioned reinforcement is a solution 
to the problem of credit assignment that is consistent with the 
known effects of conditioned reinforcement in live organisms. 
There are other ways to model chains of behavior. For example, 
Touretzky and Saksida [15] have discussed a knowledge-based 
method and have applied it to an experimental task known as 
delayed matching to sample. 

3.2 The Synthesis 
The last piece of our theory is a connection between the mechanics 
of conditioned reinforcement and the mechanics of reinforcement 
learning. We must specify how the conditioned reinforcing values 
of the discriminative stimuli that are produced by behavior in the 
second and third links of the chain affect reinforcement learning in 
those links. To accomplish this, we need to know how reinforcing 
value is represented in the evolutionary theory in the first place. 
McDowell [8] proposed that the value, or magnitude, of a reinforcer 
is represented in the theory by the mean of the parental selection 
function. Recall that a parental selection function is used to select 
parent behaviors for mating based on their similarity to the 
reinforced behavior. As one example, Equation 2 is a linear parental 
selection function that depends only on its mean. It is possible to 
construct single-parameter density functions of any form that 
depend only on their means [8]. As illustrated in Figure 2, the mean 
of the function determines the selection pressure exerted by the 
reinforcer. When the mean is small, very fit behaviors are likely to 
be chosen as parents and hence the selection pressure is relatively 
strong; when the mean is large, less fit behaviors can be chosen as 

parents and hence the selection pressure is relatively weak. Notice 
that changes in the momentary probability of the target behavior 
illustrated in Figure 2 occur even though the rate of reinforcement is 
constant. The rate of reinforcement determines how often a selection 
event occurs; the mean of the parental selection function determines 
the impact of each selection event. Both variables affect the overall 
fitness of the population of potential behaviors, and hence the rate of 
the target behavior. 
If the mean of the parental selection function represents reinforcing 
value, then as reinforcing value accrues to a discriminative stimulus 
in a link of a chained schedule, the mean of the parental selection 
function that entails that stimulus as a consequence must decrease. 
The simplest way to represent this is with the reciprocal function, 

1

1

−

−=
i

i
i V

μμ ,                                           (9) 

where μ represents the mean of the parental selection function 
operating in a link, and V represents the reinforcing value of the 
discriminative stimulus associated with a link. The subscripts 
identify the link to which the quantities refer. Recall that the 
numerical value of V is conventionally taken to vary from 0 to 1. 
Using this convention, and the notation of Equation 9, μ0 represents 
the mean of the parental selection function for the terminal 
reinforcer, the value (V0) of which is 1. To understand Equation 9, 
consider as an example, μ2, the mean of the parental selection 
function used in the second link of the chained schedule illustrated 
in Figure 4. This mean is updated during the first link of the 
schedule according to Equation 9. This is because during the first 
link, μ1 is constant, while V1 is updated according to the Rescorla-
Wagner theory (Equation 8). Similarly, during the second link of the 
schedule, μ3 is updated because μ2 is constant while V2, the 
reinforcing value of SD

2, is being updated. 
In our theory, Equation 9 synthesizes the mechanics of 
reinforcement learning and the mechanics of conditioned 
reinforcement. It states that the selection pressure exerted by a 
discriminative stimulus in a link of a chained schedule is a function 
of the reinforcing value of that stimulus as determined by the 
Rescorla-Wagner equation. 

4. CONCLUSION 
Our biologically-inspired computational theory of adaptive behavior 
consists of four components and a synthesizing equation.  The four 
components are a statics and dynamics of reinforcement learning 
(Equation 1 and the evolutionary algorithm), and a statics and 
dynamics of conditioned reinforcement (Equations 7 and 8). The 
synthesizing equation (Equation 9) connects the dynamic 
components of the theory. The static components describe known 
properties of the steady-state behavior of live organisms. The 
dynamic components are theories about how those steady-state 
properties develop. Computational experiments [8] have shown that 
the evolutionary reinforcement mechanism, which is the cornerstone 
of our theory, produces equilibria that are accurately described by 
Equation 1. Ongoing research in our laboratories indicates that the 
Rescorla-Wagner dynamics produces equilibria that are at least 
qualitatively consistent with Equation 7. Their quantitative 
agreement with the equation is currently being assessed.   
The next step in our research program is to study in detail the 
behavior of an artificial organism that is animated by our theory, as 
it works on chained schedules of reinforcement. 
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