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ABSTRACT
This paper presents a new parameterization method for the
Evolution Strategies (ES) field, and its application to a chal-
lenging real-life high-dimensional Physics optimization prob-
lem, namely Femtosecond Laser Pulse Shaping. The so-
called Complete-Basis-Functions Parameterization method
(CBFP), to be introduced here for the first time, is devel-
oped for tackling efficiently the given laser optimization task,
but nevertheless is a general method that can be used for
learning any n-variables functions. The emphasis is on di-
mensionality reduction of the search space and the speeding-
up of the convergence process respectively. This is achieved
by learning the target function by using complete-basis func-
tions as building blocks in an evolutionary search. The
method is shown to boost the learning process of the given
laser problem, and to yield highly satisfying results.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: ARTIFICIAL INTEL-
LIGENCE—Problem Solving, Control Methods, and Search

General Terms
Algorithms, Experimentation, Performance
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1. INTRODUCTION
Evolutionary Algorithms (EAs) are a set of general pur-

pose probabilistic search methods, which are based upon the
theory of natural evolution. Inspired by the genetic concepts
and motivated by the ”survival of the fittest” principle, the
basic idea in EAs is to generate an artificial environment
which encodes a search problem into biology-like terms. By
defining the appropriate artificial genetic operators, EAs im-
itate the natural evolution process, and let the artificial envi-
ronment evolve towards discovering near-optimal solutions.
EAs have three main streams [2]: Genetic Algorithms (GAs),
developed by J. Holland in the U.S. [8], Evolution Strategies
(ES), developed in Germany by I. Rechenberg [11] and H.P.
Schwefel [13], and Evolutionary Programming (EP), devel-
oped by L.J. Fogel et al. in the U.S. [4]. Whereas ES and EP
are close and share many basic characteristics [3], the princi-
pal difference between them and GAs is the encoding of the
genetic information - the traditional GAs use discrete val-
ues (similar to the DNA code in nature) versus continuous
real values used typically in ES and in EP. Another signifi-
cant difference has to do with the concept of self-adaptation,
which is typical only in ES, and in some variants of EP. Evo-
lution Strategies are a canonical way for real-valued function
optimizations, and obviously have the most natural environ-
ment among all the branches of EAs in the context of real-
valued variables. This is simply due to their straightforward
encoding, as well as to their successful performance in this
domain in comparison with other methods. The higher the
dimensionality of the search space, the more suitable a task
becomes for an ES (see, e.g., [2] pp. 149-159).
To investigate, and more importantly, to control the motion
of atoms or molecules by irradiating them with laser light,
one has to provide laser pulses with durations on the same
time scale as the motion of the particles. Recent techno-
logical developments have made lasers with pulse lengths on
the order of femtoseconds routinely available. Moreover, the
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time profile of these pulses can be shaped to a great extent.
In our research we focus on the alignment of molecules by
a laser pulse, and in particular on the optimization of the
pulse shape for the purpose of high alignment. From the
computer-science point of view, the task is learning a one-
variable phase function, which plays the key role in the shap-
ing of the laser pulse.
In this study we apply a new ES-based optimization method
to this so-called Femtosecond Laser Pulse Shaping problem.
The idea of the proposed method is to learn the target func-
tion by means of the coefficients of a complete set of func-
tions which will span it, rather than learning function values
to be interpolated. This method reduces the dimensional-
ity of the search space, and achieves the speeding up of the
convergence respectively.
The remainder of the paper is organized as follows. Section
2 presents briefly the Physics problem, namely Femtosec-
ond Laser Pulse Shaping. Section 3 introduces our proposed
method for optimizing the evolutionary search using a pa-
rameterization based on a set of complete-basis-functions.
A mathematical background is provided, followed by the
presentation of the method. In section 4 we briefly intro-
duce the core evolutionary mechanism in use, the Covariance
Matrix Adaptation Evolution Strategy (CMA-ES). This is
followed by the description of the experimental setup, the
preliminary tests and the results of the application of the
method to the problem. In section 5 we draw conclusions,
summarize our study and propose future directions in the
domain of our study.

2. THE PROBLEM:
LASER PULSE SHAPING

We provide a short introduction to the given Physics prob-
lem, limited to the scope and the framework of this paper.

2.1 General
The advent of modern laser pulse shaping techniques in

the femtosecond regime has made it possible to control the
motion of nuclei and even electrons by a judicious choice
of the pulses shapes. The application to dynamic molecu-
lar alignment [15] is of considerable interest in this context
because of its many practical consequences: a multitude of
chemical and physical processes ranging from bimolecular
reactions [5] to high harmonic generation [7] are influenced
by the angular distribution of the molecular sample.
Furthermore, in many fundamental molecular dissociation
or ionization experiments the interpretation of the collected
data becomes much easier when the molecules are known to
be aligned with respect to a certain axis. Hence, techniques
to generate molecular alignment are much needed.
The goal of our research is thus to optimize the alignment
of an ensemble of molecules after the interaction with a
shaped laser pulse. There is currently a great interest in the
atomic and molecular physics community to align molecules
with laser pulses, since dealing with an aligned sample of
molecules simplifies the interpretation of experimental data.
By applying a self-learning loop using an evolutionary mech-
anism, the interaction between the system under study and
the laser field can be steered, and optimal pulse shapes for
a given optimization target can be found. In our work, the
role of the experimental feedback in the self-learning loop is
played by a numerical simulation [12].

2.2 Numerical Modeling
To calculate the time-dependent alignment, the Schrödin-

ger’s equation for the angular degrees of freedom of a model
diatomic molecule under the influence of the shaped laser
field is solved. Explicitly, the time-dependent profile of the
pulse, which completely determines the dynamics after the
transition to the rotating frame has been performed, is de-
scribed by:

E(t) =

∫ ∞

−∞
A(ω) exp(iφ(ω)) exp(iωt) dω, (1)

where A(ω) is a Gaussian window function describing the
contribution of different frequencies to the pulse and φ(ω),
the phase function, equips these frequencies, which are equally
distributed across the spectrum of the pulse, with different
complex phases. Hence, by changing φ(ω), the temporal
structure of E(t) can be altered. In a real life pulse shap-
ing experiment, A(ω) is fixed and φ(ω) is used to control
the shape of the pulses. We have used the same approach
in our numerical simulations, i.e. the search space is in the
frequency domain while the fitness evaluation is performed
in the time domain. To this end, we interpolated φ(ω) at
N frequencies ωN ; the N values φ(ωN ) are our decision pa-
rameters to be optimized. In order to achieve a good trade-
off between high resolution and optimization efficiency, the
value of N = 80 turned to be a good compromise.
The alignment’s quantity, i.e. the success-rate or fitness, is
defined as the expectation value of the cosine-squared of the
angle of the molecular axis with respect to the laser polariza-
tion axis. Moreover, since a high degree of alignment with a
peak intensity as low as possible was the desired result, an
additional constraint was introduced as a punishment term
for pulses that are too intense.
Explicitly, we have used

Ip =

∫ T

0

E2(t) · Θ
(
E2(t) − Ithr

)
dt (2)

where Θ(x) is the Heaviside step function. Hence, the fitness
function assigned to a pulse shape is given by

F = maxE(t)=0

〈
cos2 (θ)

〉 − λIp. (3)

By choosing λ large enough, Ithr can be used to effectively
operate the evolutionary algorithms only on a subset of
pulses whose maximum peak intensity approaches the thresh-
old intensity from below. We have used λ = 1 and Ithr was
0.36.
A typical phase function and a typical laser pulse, obtained
by an evolutionary optimization, are given for illustration
as Fig. 1 and Fig. 2, respectively.

It should be noted that this laser pulse shaping problem,
based on numerical simulations, has been tackled at several
levels. A recent work has studied the application of niching
methods to this problem [14].

3. THE COMPLETE-BASIS-FUNCTIONS
PARAMETERIZATION METHOD

We hereby propose a new method for learning a function,
based on a representation transformation, which can also
be referred to as parameterization. The so-called Complete-
Basis-Functions Parameterization Method was originally con-
structed for learning the target function of the laser shaping
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Figure 1: A phase function obtained by an evolu-
tionary search (frequency domain).
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Figure 2: A laser pulse, given an optimized phase
function (time domain).

problem, the phase φ(ω), but is a general method for learn-
ing a generic n-variables function. It reduces the dimen-
sionality of the search space and speeds up the convergence
respectively, as will be explained in detail.

3.1 Mathematical Background
Here is a brief summary of the fundamental mathematical

concepts which are used for our method. This part is mainly
based on Abramowitz [1] and Kaplan [9].
Let f (x) be given in the interval a ≤ x ≤ b, and let

ξ1 (x) , ξ2 (x) , ..., ξk (x) , ... (4)

be functions all piecewise continuous in this interval. The
set {ξk (x)}∞k=1 is called complete if it can span any piecewise
continuous function, in particular f (x):

f (x) =
∞∑

k=1

ckξk (x) (5)

where the coefficients ck are given by:

ck =
1

Bk

∫ b

a

f (x) ξk (x) dx, Bk =

∫ b

a

[ξk (x)]2 dx (6)

The convergence is guaranteed by the completeness theorem.
Explicitly, the series

Rm =

∫ b

a

(
f(x) −

m∑
k=1

ckξk (x)

)2

dx (7)

converges to 0 for sufficiently large m:

lim
m→∞

Rm = 0 (8)

We note the sequence of partial sums as:

Sm(x) =
m∑

k=1

ckξk (x) (9)

By definition, the convergence of the series of functions is
equivalent to the convergence of Sm.

3.1.1 The Fourier (Trigonometric) Series
A trigonometric series is the expansion of a periodic func-

tion in terms of an infinite sum of sines and cosines, making
use of the orthogonality property of the harmonic functions.
Without loss of generality, let us consider from now on the
interval [0, L]. Given f(x), a single-valued function defined
on that interval, its trigonometric series or trigonometric
expansion is given by:

f̃(x) =
1

2
a0 +

∞∑
k=1

ak cos

(
2πk

L
· x

)
+

∞∑
k=1

bk sin

(
2πk

L
· x

)
(10)

If the coefficients ak and bk satisfy certain conditions, then
the series is called a Fourier series.
If f(x) is periodic with period L, and has continuous first
and second derivatives for all x in the interval, it is guar-
anteed that the trigonometric series of f(x) will converge
uniformly to f(x) for all x (this is known as the Dirichlet
conditions). We shall refer in this paper to the trigonometric
series as the Fourier series.
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Figure 3: The First 10 Legendre Polynomials.

3.1.2 Other Sets of Functions
If one is indeed interested in periodic functions, there is

no natural alternative but using the trigonometric series.
However, if one is concerned with other representations of
a general function over a given interval, a great variety of
other sets of functions is available:

• Introduce the Legendre polynomials, Pk(x):

Pk(x) = (2k−1)(2k−3)···1
k!

{
xk − k(k−1)

2(k−1)
xk−2+

+ k(k−1)(k−2)(k−3)
2·4(2k−1)(2k−3)

xk−4 − · · ·
} (11)

which can also be defined via Rodrigues’ formula:

P0(x) = 1 Pk(x) =
1

2kk!

dk

dxk

(
x2 − 1

)k
, k = 1, 2, ...

(12)
If f(x) satisfies the Dirichlet conditions mentioned ear-
lier, then there will exist a Legendre series expansion
for it in the interval −1 < x < 1.
For illustration, the first 10 Legendre polynomials are
plotted in Fig. 3.

• Introduce the Bessel Function of the First Kind
and of Order l, Jl(x):

Jl(x) =
∞∑

k=0

(−1)k xl+2k

2l+2k · k! · Γ (l + k + 1)
(13)

where Γ(α) is the Gamma function.
Given a fixed l ≥ 0, the functions {√xJl (λlkx)}∞k=1

form an orthogonal complete system on the interval
0 ≤ x ≤ 1.

• Introduce the Hermite polynomials, Hk(x):

Hk(x) = (−1)k exp
{
x2} dk

dxk

(
exp

{−x2})
, k = 0, 1, ...

(14)
The Hermite polynomials form a complete set of func-
tions over the infinite interval −∞ < x < ∞ with
respect to the weight function exp

{− 1
2
x2

}
.

3.1.3 Higher Dimensions
An expansion into a complete set of functions can be gen-

eralized for higher dimensions as well. For illustration, let
us consider shortly the two-dimensional case for the trigono-
metric series. The functions cos( 2πk

L
·x)·cos( 2πl

L
·y), sin( 2πk

L
·

x) · cos( 2πl
L

· y), cos( 2πk
L

· x) · sin( 2πl
L

· y) and sin( 2πk
L

· x) ·
sin( 2πl

L
·y) form an orthonormal complete system of functions

in the box [(0, 0), (0, L), (L, 0), (L,L)]. Given a function in
that domain, f(x, y), its expansion can then be written in
the form:

f(x, y) =
∑∞

k=0

∑∞
l=0 λkl ·

{
akl cos( 2πk

L
x) cos( 2πl

L
y)+

+bkl sin( 2πk
L
x) cos( 2πl

L
y) + ckl cos( 2πk

L
x) sin( 2πl

L
y)+

+dkl sin( 2πk
L
x) sin( 2πl

L
y)

}
(15)

3.1.4 Corollary
An infinite series of complete basis functions converges

to any “reasonably well behaving” function. Hence, it is
straightforward to approximate a given function with a fi-
nite series of those functions, i.e. by cutting its tail from
a certain point. In principle, the sum Sm can always be
found to a desired degree of accuracy by adding up enough
terms of the series. For practical applications, the corollary
is that every function can be approximated using a series
of complete basis functions, to whatever desired or practical
accuracy. Moreover, this corollary can be easily generalized
to any desired dimension.

3.2 Proposed Method: Learning a Function
using a Set of Complete-Basis-Functions

3.2.1 Preliminary: Expansion of a Known Function
As we will demonstrate here, finding the expansion of a

known function with respect to a given set of complete basis
functions, i.e. finding the coefficients of the functions in this
base, is an easy task for a simple evolutionary algorithm,
and in particular for the standard ES. For simplicity, and
without loss of generality, let us assume that the task is to
approximate a one-variable function using a trigonometric
series. This task can be generalized to functions of higher
dimensions, and by using other expansions.
Consider the expansion coefficients of the cosine and sine
functions, {ak}∞k=0, {bk}∞k=1, as the decision parameters to
be optimized in the evolutionary search. As a preliminary
task in this research, we found that the standard ES con-
verged easily and fast to the right coefficients, where this
basic fitting problem was simply defined as minimizing the
square error (fitness was defined respectively as the root-
mean-square error function between the original function
and its evolving approximation).
Fig. 4 shows the result of learning the triangle function with
a standard Evolution Strategy, using only the first 20 fre-
quencies (n = 40) of a Fourier series as building blocks for
a given discretization of N = 100.

3.2.2 Learning a Function
The idea of spanning a function using a set of complete

basis-functions can also be used for the task of learning an
n-variables function, and in particular when its profile is un-
known apriori, as in our laser pulse shaping problem. The
inspiration for this method was the Physicists’ intuition to

1772



0 20 40 60 80 100
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
The Triangle Function and its Approximation using 20 Frequencies

Original Triangle
Fourier Approximation

Figure 4: Learning the triangle function using the
first 20 Fourier frequencies. The plot shows the orig-
inal triangle function and its Fourier approximation.

the laser problem, which claimed that the function to be
learned, φ(ω), should be periodic. Motivated by this intu-
ition, we started to run experiments in which an Evolution
Strategy was trying to learn φ(ω) using the harmonic func-
tions as building blocks. Rather than learning the values of
the target function, in a naive manner so to say, the idea was
then to learn the coefficients of the harmonics (Fourier com-
ponents). Following the success of those experiments, we ex-
panded the method to other sets of complete basis functions,
and in particular to the sets of functions which were intro-
duced earlier: the Legendre Polynomials, the Bessel Func-
tions and the Hermite Polynomials.
Assuming that the desired discretization is up to a resolution
of N points in the interval, we limit the number of elements
in the expansion series to n, where preferably n � N . By
that we can achieve a dramatic dimensionality reduction of
the search space, aiming to achieve a speeding-up of the con-
vergence. The idea then is to apply an evolutionary search
for the n coefficients of the building functions, where a sim-
ple transformation is applied for every fitness evaluation. In
practice, the time for additional computation of this trans-
formation is negligible with respect to the time for objective
function evaluation in every real-world problem. Since the
ES is a natural algorithm to handle the optimization of those
real-valued coefficients, we use it here.

An Evolution Strategy using a Fourier auxiliary function
has been proposed in the past, known as the FES method
[10]. The FES aims to approximate the fitness landscape,
in particular its small attraction basins, using the Fourier
series.
However, the careful reader should notice that our method
is based on a different principle. It uses complete-basis func-
tions for the approximation of the decision parameters them-
selves, rather than the fitness landscape, which is left un-
touched. It strongly relies on the fact that these decision
parameters represent a continuous function - and this func-
tion is due to be approximated.

4. EXPERIMENTAL RESULTS
In this section we provide the reader with the essential

information regarding our experimental setup and our ex-
perimental results. We begin by giving a brief summary of
our evolutionary approach, namely the CMA-ES method,
and continue with the description of the set of experiments.

4.1 The Core Mechanism: CMA-ES
The covariance matrix adaptation evolution strategy [6],

is a variant of ES that has been successful for treating cor-
relations among object variables. This method tackles the
critical element of Evolution Strategies, the adaptation of
the mutation parameters. We provide here only a short de-
scription of the principal elements of the (1, λ)-CMA-ES.
The fundamental property of this method is the exploitation
of information obtained from previous successful mutation
operations. Given an initial search point x0, λ offspring are
sampled from it by applying the mutation operator. The
best search point out of those λ offspring is chosen to become
the parent of the next generation. The action of the muta-
tion operator for generating new samples of search points in
generation g + 1 is defined as follows:

%xg+1 = %xg + δ ·B · %z (16)

where δ is the global step size, which is adaptive with respect
to the optimization process, and z is a vector of random vari-
ables drawn from the multivariate normal distribution. The
matrix B, the crucial element of this process, is composed
of the eigenvectors of the covariance matrix with the appro-
priate scaling of the eigenvalues - defining the distribution
of a sequence of successful mutation points. It is initialized
as the unity matrix and is updated according to cumulative
data from the evolution process itself.
We omit most of the details due to the framework of this
paper, and refer the reader to [6].

4.2 Experimental Setup
We provide some information about the experimental setup

of the laser shaping numerical simulation:

• The cosine-squared alignment yields a real value in the
interval [0, 1], subject to maximization, as was intro-
duced earlier.
A random feasible solution should yield on average a
value of 0.333, due to the isotropic 3D space, and the
best result known to us in the given temperature is
around 0.7.

• The punishment term, which was introduced earlier in
Eq. 2 and Eq. 3, can yield negative fitness values. The
probability of a randomly generated pulse to obtain
this punishment is extremely low.

• Given the default discretization of N = 80, we apply
our method with n = 40 coefficients for each one of
the functions. This configuration is fixed.

• Every fitness evaluation call requires approximately
35 seconds of computation time on a Hyper-threaded
Pentium-4 of 2.6GHz.

• Due to the heavy computational cost of a single fitness
evaluation, in practice we are limited in function eval-
uations and obliged to apply minimal settings. There-
fore, we chose to use the (3, 12)-CMA strategy as our
default algorithm in our experiments.
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Figure 5: Sampling Quadratic Phase Functions.

4.3 Preliminary Experiments

4.3.1 Quadratic Phase Functions: The α-Test
Given representations based on low-order polynomials, we

wanted to check whether there exists a trivial local optimum
which would become an attractor for such phase functions.
Hence, we tested the fitness of quadratic phase functions,
centered around the central frequency.
Explicitly, we tested the family of the functions

φ(ω)α = α · (ω − ωcentral)
2 (17)

where the real-valued α is sampled systematically in the
interval [0, 20]. The results of this so-called α-test are pre-
sented in Fig. 5. As can be clearly seen in the given plot,
most of the quadratic phase functions get extremely low fit-
ness values, due to large punishment terms, and they never
exceed the fitness value of 0.4. This eliminates the existence
of a trivial quadratic solution for the problem.

4.3.2 The Initial States Density Test
The following preliminary experiment is meant to com-

pare the natural initial quality of the different parameteri-
zations. We applied a so-called initial states density test, a
statistical fitness measurement of the initialized phase func-
tions in the different parameterizations. For each parameter-
ization in use, i.e. the direct 80-dimensional random phase
vector, or the random 40-dimensional coefficient vector for
the various polynomials in use, we initialized 1000 phase
functions and calculated the mean fitness and the standard
deviation respectively.

4.4 Numerical Results
In this subsection we present the results of the runs of the

different parameterization methods - the direct parameteri-
zation versus the polynomial-based methods. Our runs were
based on the (3, 12)-CMA mechanism, limited to 5, 000 func-
tion evaluations per run. We performed 20 runs per method.
We consider the performance criteria of the various methods
as the following:

• The mean and the standard deviation of the fitness
values averaged per method over the 20 runs.
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Figure 6: Typical runs of the Fourier param. versus
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• The averaged number of evaluations per method until
the fitness value of 0.6 was reached during the runs,
with the standard deviation. We consider the value of
0.6 as the lower bound of the regime of good solutions.

• The results of the initial states density test, as was
introduced earlier: the averaged initial fitness values
per method, with the standard deviation.

We provide a table of results, which consists of the numer-
ical values of the specified performance criteria per method.
It is given as table 1.

4.5 Analysis and Discussion
An important result that should be noted is that all the

runs in the various parameterizations have converged into a
highly fit phase function. There was not even a single run
of a non-convergence.
Furthermore, we would like to analyze shortly the experi-
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Table 1: Parameterizations: Performance Results

Parameterization Averaged Best-Fitness Evaluations for 0.6 Initial States Density

Direct-Param 0.6603 ± 0.02 834 ± 476.7 0.4063 ± 0.01

Fourier 0.6595 ± 0.01 255.15 ± 115.5 0.4601 ± 0.03
Legendre 0.6232 ± 0.03 600 ± 517.8 0.4364 ± 0.02
Bessel 0.6167 ± 0.02 1790 ± 1932 0.4633 ± 0.03
Hermite 0.6781 ± 0.01 438.6 ± 188.4 −10.387 ± 0.40
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mental results of the various parameterizations with respect
to the phase function optimization, as presented in table 1.

1. Fitness values. Some of the polynomial-based pa-
rameterizations obtained fitness values as high as the
direct parameterization method, and in particular the
Hermite parameterization, which obtained the best re-
sults among all the methods. As far as we know, the
obtained values are the highest cosine-squared align-
ment values which were ever achieved. Hence, from
the optimization perspective, the proposed method is
not harmed at all by the transformation and the re-
duction of dimensionality.

2. Convergence speeding-up. An immediate conclu-
sion from the table is that the proposed method achiev-
ed a s̆ignificant speeding-up of the convergence for the
Fourier as well as for the Hermite parameterizations.
Fig. 6 provides the typical runs of the Fourier param-
etrization versus the direct parameterization, up to
1500 fitness evaluations.

3. Initial state. The Fourier and the Bessel parameteriz-
ations have the most natural initial representations
for the phase function in our given problem, as re-
flected from the initial states density test results. How-
ever, as the other measures show, the Bessel parame-
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terization fails to obtain satisfying final results, whereas
the Fourier succeeds dramatically in that. Moreover,
the Hermite parameterization, due to large punish-
ment values, has a negative initial state, but obtains
nonetheless highly satisfying final results. It should
be noted that the standard deviations of the different
fitness distributions are reasonably low. A comparison
between the initial states density of the Fourier pa-
rameterization versus the density of the direct param-
eterization, presented in a histogram, is given as Fig.
7.

4. Physics interpretation. Aiming to get some physics
insights into the nature of highly-fit phase functions
with respect to the laser shaping problem, we exam-
ined the nature of good solutions in the different pa-
rameterizations. The idea was to calculate the dis-
tributions of the coefficients, and try to identify the
dominance of certain components (frequencies in the
Fourier case).
Unfortunately, such dominance could not be identified
within the results. A typical plot of the coefficients val-
ues for a highly-fit solution for the Hermite parameter-
ization is given as Fig. 8. Moreover, Fig. 9 provides a
visualization of the mean and the standard deviations
of the 40 coefficients of the Fourier parameterization
over the 20 runs.

5. Best solution. The highest cosine-squared alignment
value ever found was obtained by the Hermite param-
eterization. This best solution has an alignment value
of F = 0.7038. The time-dependent pulse intensity for
the best solution is shown in Fig. 10 together with the
time-dependent

〈
cos2(θ)

〉
.

5. CONCLUSIONS
Being inspired by the physicists’ intuition to the given

laser pulse shaping problem, which suggested a periodic na-
ture of the solutions, we developed a general method for the
learning task of any n-variables function.
We have studied and introduced in this paper the mathemat-
ical background for this method. Furthermore, we applied
a couple of preliminary tests with respect to the application
of the method to the given physics problem. The so-called
α-test has succeeded in justifying this method and did elim-
inate the possibility of convergence into a trivial attractor.
The initial states density test contributed a perspective of
the nature of the various parameterizations with respect to
the given laser pulse shaping problem. The analysis of its re-
sults shows that it does not necessarily reflect the potential
of a given parameterization to obtain satisfying final results.
By performing a series of numerical simulations, with a fixed
number of coefficients n = 40, we managed to show that
our method qualified as a robust optimization method, and
in particular achieved a significant speeding-up the conver-
gence process of the given problem. The obtained solutions
were at least as good as any other solutions known to us,
but were achieved faster.

Future Research
We would like to outline possible directions for further study
with respect to our work. We consider the following main
directions:

1. The Complete-Basis-Functions Parameterization met-
hod should be applied to other challenging real-world
optimization problems. In particular, it may be ap-
plied to surface or shaping problems in 2 and 3 dimen-
sional space, where the target surface can be spanned
by the appropriate complete basis functions.

2. Further parameterizations should be studied and tested
with respect to the laser pulse shaping problem.
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