
Designing Safe, Profitable Automated Stock Trading
Agents Using Evolutionary Algorithms

Harish Subramanian, Subramanian Ramamoorthy, Peter Stone, Benjamin J. Kuipers
Artificial Intelligence Laboratory, Department of Computer Sciences

The University of Texas at Austin
Austin, TX 78712, USA

harish.subramanian@alumni.utexas.net, s.ramamoorthy@mail.utexas.edu
pstone@cs.utexas.edu, kuipers@cs.utexas.edu

ABSTRACT
Trading rules are widely used by practitioners as an effective means
to mechanize aspects of their reasoning about stock price trends.
However, due to the simplicity of these rules, each rule is suscepti-
ble to poor behavior in specific types of adverse market conditions.
Naive combinations of such rules are not very effective in miti-
gating the weaknesses of component rules. We demonstrate that
sophisticated approaches to combining these trading rules enable
us to overcome these problems and gainfully utilize them in au-
tonomous agents. We achieve this combination through the use of
genetic algorithms and genetic programs. Further, we show that
it is possible to use qualitative characterizations of stochastic dy-
namics to improve the performance of these agents by delineating
safe, or feasible, regions. We present the results of experiments
conducted within the Penn-Lehman Automated Trading project. In
this way we are able to demonstrate that autonomous agents can
achieve consistent profitability in a variety of market conditions, in
ways that are human competitive.

Categories and Subject Descriptors
[Real World Applications]: finance, intelligent agents, automated
trading

General Terms
Algorithms, Design, Experimentation, Performance

Keywords
Genetic Algorithms, Genetic Programming, Finance, Application,
Fitness Evaluation

1. INTRODUCTION
Recent developments in the automation of exchanges and stock

trading mechanisms have generated substantial interest and activ-
ity within the machine learning community [13, 17], including the
evolutionary algorithms community [3, 4, 5, 8].

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

When building autonomous agents, it is desirable to structure
them in a modular fashion - as combinations of simple interpretable
pieces. Such a structure could enable the identification of specific
transferable features in the strategy that contribute to the observed
success. This is crucial if these algorithms are to be adopted in the
real world of banks and investments, where the stakes are high and
practitioners need some assurance of safety and, at least statistical,
bounds on profitability. Correspondingly, when a strategy is found
to be unprofitable, it can often be improved if its failure can be
attributed to specific causes that can then be eliminated.

One way to achieve such modular design is through the use of
technical trading rules. Such rules are widely used by practition-
ers. For instance, a survey of foreign exchange traders in London
[19] estimates that up to 90% of them use some form of trading
rules in daily practice. As such, the popularity of the rules flies
in the face of theoretical objections arising from the efficient mar-
kets hypothesis, [6, 12], that asserts that stock markets are random
processes lacking in systematic trends that may be exploited by
mechanized rules. However, with the emergence of high frequency
finance [7] it has been demonstrated that the efficient market hy-
pothesis is not entirely valid in the short time scales at which au-
tonomous agents are able to operate. Moreover, recent evidence
[1, 11] has suggested that the profitability of trading rules can be
rigorously characterized and the simplicity of these rules does not
necessarily imply a lack of theoretical justification for their use. As
stated in [1], there is ample evidence to suggest that trading rules
are very well suited to autonomous agents operating in electronic
markets.

A more pressing concern, from the perspective of agent design,
is that each trading rule is profitable in certain environments or mar-
ket conditions and there are corresponding market conditions under
which it could be unprofitable. This dichotomy suggests that no
rule can be used in isolation for any reasonable period of time. It
also implies that the emphasis of design needs to be on compos-
ite rules - as noted in [4], we need to move beyond the ”technical
trading rule” and consider the ”technical trader”. In fact, when peo-
ple use trading rules, they observe several indicators and use their
judgement to arrive at a composite decision. Naive combinations
of trading rules are rarely, if ever, useful and prudent. So, the ques-
tion arises as to how the human judgement involved in combining
these rules can be emulated in an automated strategy acting within
a computer program? We will address this question in this paper.

Another key aspect of human judgement is the way we han-
dle asymmetry between upside and downside risks. Traders might
welcome the occasional windfall profits but they certainly want
to avoid bankruptcy at all costs; and they act in such a way that
these preferences are satisfied. For an automated agent emulating

1777

such behavior, we seek some assurance that worst-case losses are
bounded below at an acceptable level. In an uncertain trading envi-
ronment, and with limited information, are there mechanisms that
enable us to arrive at such bounds? It seems unlikely that we can
establish these bounds in an absolute sense - after all, this is a sto-
chastic environment notorious for its inherent risks. However, we
do seek a statistical characterization that assures us that our profits
are consistent in an acceptable way. This is what we mean by the
termsafe agent design.

In this paper, we present an approach to autonomous agent de-
sign that explicitly addresses these issues. We show that it is pos-
sible to achieve safety by qualitatively characterizing the domain
of profitability of each rule and devising multiple model strategies
that attempt to navigate away from unsafe regions of the state space.
We establish the soundness of this concept by discussing the prop-
erties of a simple hand-constructed agent that won an open multia-
gent competition. We then show that through the use of evolution-
ary algorithms acting within this framework of safe agent design,
we can construct fairly sophisticated agents that achieve levels of
performance that are at least comparable to, and often superior to,
what humans are usually able to achieve. We present two different
designs based on evolutionary algorithms. A genetic algorithm is
used to optimize a weighted combination of technical rules. Each
generation of candidate solutions is optimized to increase the aver-
age returns and reduce the volatility of returns - over a fixed period
of training days. Simulations are run to tune the weights to trade
robustly over varying market conditions. A similar design is also
implemented with a genetic program that evolves complex rules
from a pool of constituent rules and boolean operators to combine
them. We evaluate various fitness functions and performance mea-
sures including a simple measure of risk adjusted return and one
that penalized only downside volatility. We compare their mer-
its and effects on the agents, and evaluate their performance when
used as a tuning parameter for the GA.

Trading on real world electronic markets, that fulfil orders in an
automated fashion, is a costly exercise. To allow us the freedom
of experimenting in a limited, but realistic electronic exchange,
we use a simulated environment as part of the Penn-Lehman au-
tomated trading (PLAT) project [9]. It uses real-world, real-time
stock data and incorporates complete order book information; sim-
ulating the effects of matching orders in the market. It also allows
the participants to program their own strategies with ease within
the client-server mechanism, and trade with other agents as well as
the external market.

2. THE PENN-LEHMAN AUTOMATED
TRADING PROJECT

The Penn-Lehman Automated Trading (PLAT) project is a broad
investigation of algorithms and strategies for automated trading in
financial markets. The agents described in this paper were con-
structed as a part of this research effort. All agents implemented
within this project trade using the Penn Exchange Simulator (PXS).
PXS is a software simulator for automated trading that merges au-
tomated client limit orders with real world, real time order data
available via modern Electronic Crossing Networks (ECN). The
simulator periodically queries the ECN to get order book informa-
tion, which it then uses to match buy and sell orders. The order
books from the Island external market and the internal market cre-
ated by PLAT agents are merged, i.e., the simulator tries to match
the agent orders against actual Island trades and if no such match is
available, it tries to match against another agent’s order.

Some of the agents described in this paper were initially de-

signed to participate in an open multi-university competition. The
participants in the competitions were researchers from several ma-
jor research universities in the USA and UK. The contests each
consisted of 10 days of live trading. As mentioned earlier, the mar-
ket clearing mechanism combined the order books received from
NASDAQ and an order book that was internal to the simulated
environment. The rules of this competition include the following
clauses that define the trading task: (1) The task is that of intra-
day trading. Each agent begins with no money and no shares at the
start of each trading day. The agent may take long or short posi-
tions during the day in an attempt to improve net worth. (2) There
are no limits on the number of shares that can be held at any given
time. However, every agent must liquidate its position at the end
of the trading day. Any shares held at the end of the day will be
valued at 0. Any shares borrowed from the simulator will need to
be purchased at a cash value of twice the current price. (3) PXS
runs in transaction cost/rebate mode for the competition. Every
time PXS executes a trade, one side of the order must have already
been sitting in one of the order books, and the other side of the or-
der must have been the ”incoming” order. For each share executed
by PXS, the party whose order was already in the books receives a
rebate of $0.002, and the party that was the incoming order pays a
transaction fee of $0.003. This is exactly the policy used by Island
ECN. (4) The performance measure for the contests is a form of the
Sharpe ratio [16]. Additionally, for our experiments, we employ a
modified risk adjusted return as a measure based on the policy that
we are not perturbed by the possibility of volatile return structure
provided the strategy is mostly profitable. Sortino ratio [15], is a
modification of the Sharpe ratio that differentiates ’harmful volatil-
ity’ from volatility in general, using a value for downside deviation
only.

The discussion in this paper will be framed in terms of the fol-
lowing variables and functions:

• Price,pn, is a random variable (wheren is a timestep)

• Volume of shares,vn = f(vn−1, ..., v0, pn−1, ..., p0)

• Cash in hand,cn = g(cn−1, ∆vn, pn)

• Net Worth, or Value,Vn = pn · vn + cn

• The goal, for a single day of trading, is to maximizeVn.

• The performance of the agent is evaluated by Sharpe and
Modified Sortino ratios based onVn at the end of several
days of trading.

• The goal of agent design is to design the functionf to maxi-
mize the performance measure.

3. QUALITATIVE BEHAVIORS OF
TRADING RULES

Composite rules need to be constructed from simpler rules. What
should the basis set of simpler rules consist of, using which we
compose the more complex rules? The intuitive answer is that they
must complement each other. For instance, given a particular set
of trends during a trading day, if one rule were unprofitable then
another rule(s), adapted to the specific conditions of the day, should
be able to take over. As such the space of trends is infinite, so we
need a more compact language to characterize rules in a basis set.
In this Section, we present one way to approach this issue. Trading
rules behave as predictive filters [14]. Profitability is a function of
the dynamic properties of the predictive filter and the dynamics of
the stock price. In this section, we consider the qualitative behavior

1778

of one rule, the contrarian strategy, but this analysis can be extended
to other rules as well.

Consider the Contrarian strategy, defined in terms of sign rela-
tionships. As long as an upward or downward trend is detected, the
volume is corrected downward or upward respectively.

vn =

8<
:

vn−1 − γ : ∆pn > δ
vn−1 + γ : ∆pn < −δ

vn−1 : −δ < ∆pn < δ
(1)

Often, the decision∆pn > δ can not be made instantaneously
[14]. In practice, this is approximated by using moving averages.
An arithmetic moving average rule, based on a moving window can
be used. A more useful form of this approximation can be achieved
by comparing two windows of different lengths.

ms−1X
j=0

pn−j/ms ≥
ml−1X
j=0

pn−j/ml + δ ⇒ ∆pn > δ (2)

whereml > ms.
In order to understand the behavior of this rule, we need a char-

acterization of the dynamics of the price. Consider a price process
that is a mean reverting log random walk (at any given time, the
returns can be assumed to be randomly chosen from a lognormal
distribution) with drift,

xn = ln(pn)− ln(pn−1)

xn = α + βxn−1 + εn (3)

whereεn ∼ iid(0, σ2).
We may characterize the conditions required for profitable oper-

ation (with the trading rule of equations 1,2, window sizesms, ml

and the price process of equation 3) in terms of the probability dis-
tribution of daily returns. In specific cases, the conditions can be
derived analytically. For instance, [2] presents analytical condi-
tions for profitability, withms = 1, ml = 2, and [1] includes some
generalizations. However, in general, this becomes somewhat in-
volved. An alternate approach to gaining a similar understanding is
through the use of Monte Carlo simulation. We adopt the following
procedure to perform a simulation study:

1. Select models for the price process and trading rules

2. Generate a large number of sample paths of the price process
and apply the trading rule. A typical setting might consist
of 3000 sample paths, each path corresponding to a day’s
trading, with trading opportunities separated by 1 minute in-
tervals.

3. Collect sample statistics of the value at the end of the sample
paths

Performing such an experiment for the Contrarian strategy yields
the following characterization:

• The rule is profitable, in a statistically significant sense, in a
mean-reverting log random walk market.

• The rule results in zero expected profits in a simple log ran-
dom walk market.

• The rule is potentially loss-making in a log random walk
market with drift, i.e.,α 6= 0.

If this rule were to serve as a component of a composite strat-
egy, then the primary requirement is that wheneverα 6= 0, we
should avoid this rule and prefer another rule that is profitable un-
der that condition. Many trading rules can be characterized in this

way. Even when such a formal characterization is hard to come
by, it stands to reason that if we have a sufficiently diverse ’bag’
of rules, we can compensate the weaknesses of each rule by substi-
tuting another rule that is of a complementary nature. In this way,
the composition is significantly more robust than each individual
rule. The above characterization is qualitative to the extent that we
are able to make statements based just on the sign of key quanti-
ties, e.g.,α 6= 0 or β 6= 0. This ensures that a composition based
on these rules can be expressed compactly and without depending
on detailed identification of market conditions. In situations where
the rules do not admit such a qualitative representation, we can still
use the same approach to partitioning state space, but we will need
more detailed quantitative information about the price process.

4. COMPOSING MULTIPLE TRADING
RULES

In the previous Section, we arrived at the rationale for when a
particular rule should be invoked. How do we make this decision
in real time? Characterizing statistical distributions in real-time
is hard. In this Section, we propose an alternate, surrogate, test
that allows us to make this decision. The state of a trading agent
can be represented by two important variables - cash in hand,cn,
and volume of shares,vn. In a phase space defined by these two
variables, depicted in Figure 1, the result of a day’s trading defines
a trajectory. Ideally, the agent follows a path along the direction of
increasingcn while staying close tovn = 0, thus minimizing risk.

Now, we wish to identify, without fitting statistical distributions,
when the agent is in one of the unprofitable regions of state space.
Intuitively, the agent is in an unprofitable region when its perfor-
mance falls below that of a simple random walk market. In the
cn− vn phase space, the random walk market yields a line that has
the property that a trading rule that is neutrally profitable would
stay on this line, exchanging cash for shares and vice versa, but not
making any profit. A profitable agent will follow a trajectory that
lies on one of the half planes defined by this line. An unprofitable
agent enters the other half plane. By observing the trajectory of
the agent in real time, we can detect unprofitability by monitoring
entry into this undesirable half-plane.

In addition, for a day trading agent such as the agents partici-
pating in the PLAT competitions, one of the requirements is that it
must unwind its position by the end of the day or risk the possi-
bility of great losses overnight (due to market activity outside trad-
ing hours). This acts as a boundary value constraint that implicitly
restricts the maximum position taken during the day. Combining
these two requirements, we specify that a trading rule, e.g., the
Contrarian strategy, should be invoked only as long as(Vn − p0 ·
vn + cn > 0) ∧ (cn > cnmin) ∧ (vnmin < vn < vnmax). This
test encodes the intuitive idea of ”falling below” the performance
of the simple random walk market and hence acts as a surrogate test
for safety, from the notation introduced in Section 2 for net value
and cash/share positions.

Our approach to safe composition consists of ensuring that we
have a collection of trading rules that have complementary direc-
tional properties and that we monitor their progress using the mech-
anism described above in order to make changes. A simple agent
that embodies this approach is the the following: If(Vn−p0 ·vn +
cn > 0) ∧ (cn > cnmin) ∧ (vnmin < vn < vnmax) then invoke
the Contrarian strategy, else Divest (i.e., reduce share position) us-
ing a Safe Contrarian strategy (a modified version of the original
rule).
This rule is kept deliberately simple to illustrate ideas. In later sec-
tions, we will discuss more complex combinations. However, we

1779

Figure 1: Agent behavior represented along the cash-share axes

note that even such a simple rule, constructed using the principles
outlined above, is capable of impressive results. This strategy func-
tions such that the Contrarian strategy is invoked and the agent is
guaranteed non-negative returns. In a drifting market, the Contrar-
ian rule is unprofitable and eventually the divestment strategy is
invoked, which brings the agent back towards the desirable region.

This agent was submitted to the April 2004 PLAT competition.
The experiment consisted of an economy of six agents that included
the proposed agent, called SMM, four other competing agents with
the same trading objective as ours, and a VWAP agent intended to
provide liquidity. We used Sharpe ratio, a measure of risk adjusted
returns, as a means of evaluating the performance of these agents.
The results of the live competition show that the SMM achieved
consistent profitability - as reflected by the Sharpe ratio that was
several multiples higher than that of other agents.

Test Set SMM #1 #2 #3 #4

Avg. Profit 2519 239 4725 1057 148
Std. Dev. 1009 316 6551 1829 3413

Sharpe ratio 2.49 0.76 0.72 0.58 0.04

The primary benefit of the proposed monitoring mechanism is that
the trading rule is able to adjust its risk by divestment, when market
conditions are unfavorable, in order to avoid excessive losses. In
later sections, we will discuss combinations of several rules, some
of them more sophisticated than the ones described above. How-
ever, the foregoing discussion provides us reason to believe that
our approach and monitoring mechanism will allow us to achieve
a measure of robustness. With this encouraging evidence, we may
use evolutionary optimization to aggressively search for higher lev-
els of performance. This will be the focus of the remainder of this
paper.

5. EVOLUTIONARY AGENT DESIGN
Having understood the basic principles of composite agent de-

sign, we apply them to the design of an evolutionary learning algo-
rithm that uses optimization to determine the best weighting be-
tween a set of rules. If each component rule yields a decision,
Di ∈ {−1, 0, 1} corresponding to{Sell, Do Nothing, Buy}, then
a combined decision would beDcomb =

P
ωi·Di. The goal of

the evolutionary optimization algorithm is to determine the best set
of weight vectors,ωi that would optimize the fitness function in an
effort to maximize the performance of the trading agent. The aim
of our design is to maximize profitability. In addition, we incor-
porate our test for safety to bias the search algorithm towards safe
and feasible regions. The evolutionary algorithm learns both the
trading decision and the trade volume simultaneously.

The evolutionary learning process identifies the best strategy by
searching among the weights, to identify the right composite trad-
ing rule. However, in practice, the competing objectives of max-
imizing profits and managing risk to avoid penalties makes this
learning problem hard. To evaluate the benefit of bootstrapping
such learning agents by providing the qualitative characterization
and allowing the exploration to focus on identifying quantitative
optima, we performed several experiments. These, in turn, isolate
the various elements of the agent design. We use two variations of
the general agent architecture. The first experiment is based on a
genetic algorithm agent, called GAA. In this agent,ωi is encoded
as binary strings and hence quantized to discrete values of volume.
A variation of this agent called GAAMM is defined as,
If (Vn − p0 · vn + cn > 0) ∧ (cn > cnmin) ∧ (vnmin <
vn < vnmax) then invoke the decisionDcomb =

P
ωi·Di, else

Dcomb = 0.
The second experiment is based on an agent that uses genetic pro-
gramming [10], called GPA. This agent uses a decision tree to com-
bine the individual decisions. In our notation, this implies thatωi

could take on finer resolution values than in the case of GAA. The
modified version of GPA, called GPAMM, is similar to GAAMM
in the use of the multiple model safety mechanism (differing from
GAAMM in the representation ofωi).

The design is based on a representative set of days including a
variety of different market conditions. The PLAT domain is config-
ured to run with historical as well as live data. For the purpose of
our experiments, we use a single stock (MSFT), and data used for
training and testing is selected to include various market conditions
(increasing, decreasing, mean reverting, etc.) The data, selected
from over 6 months (archived in the PLAT project), was used as a
baseline. After pruning for incomplete or corrupted data, we tried
to include representatives of a number of different stock behaviors
over a training day were included. Training in a non-volatile mar-
ket (or other homogeneous market patterns) alone could yield a set
of weights that would be disastrous in a volatile market, and at-
tempts to eliminate this over-fitting effect have been made. A non-
homogeneous subset of the selected trading days, set aside as test
day for competitive tests, is substantially different from the training
data - both in terms of trading days or market behavior patterns.

6. PERFORMANCE EVALUATION AND
FITNESS FUNCTIONS

The criteria for evaluating the performance of our agents in the
experiments we performed, are measures of risk-adjusted invest-
ment returns. The reason these are good metrics, in addition to
the profits is that consistency is rewarded and volatile trading pat-
terns are not. Common measures within this class are theSharpe
andModified Sortinoratios. These measures reward consistency as

1780

well as profitability. Since these are the two tenets of our design,
they are ideally suited for evaluation of their performance.

We use both these ratios, in turn, as fitness functions and as eval-
uation measures. Ifρi is the daily return or the profit/loss of the
agent at the end of trading dayi (after adjusting for transaction fees
and penalties),µ is the mean value of allρi andσ is the standard
deviation, then the Sharpe ratio (SR) is,S = µ/σ. Despite the
common use of Sharpe ratio in the field of financial performance
evaluation, we are not perturbed by the possibility of volatile return
structure provided the strategy is mostly profitable. Sortino ratio,
is a modification of the Sharpe ratio that penalizes only the harm-
ful volatility, i.e., downside deviation. The form of this ratio that
we will use in following sections isModified Sortino Ratio, which
is µ/σn, whereσn is the standard deviation of negative returns
only. The evolutionary algorithms in our design determine optimal
weights to maximize the measures of performance. Owing to the
iterative nature of simulations over the complete trading cycle, the
fitness functions for the optimization of the genetic algorithms are
the performance evaluation criteria themselves. We optimize the
weights of the algorithm by simulating trades over a sample period
of trading days. On evaluating the Sharpe and Modified Sortino
ratios at each generation, we evaluate the fitness of the candidate
solutions. The performance evaluation measure that tests how well
the agent has done while trading in a test set of days, acts as the fit-
ness function (the parameter to be optimized) in a unique training
set.

7. IMPLEMENTATION OF GENETIC
ALGORITHM AGENT

In the previous section, we described the general principles of
designing an agent where several rules are combined and the com-
bination weighted using an evolutionary algorithm. Let us examine
in greater detail, the specifics of these designs. We have it set up
such that the final output of the agent is a trading decision (decid-
ing to abstain from trading is also an action) produced at frequent
samples of a trading day when the books are updated and fresh
data is available. In addition to designing an automated strategy
that is intuitively appealing, the generation of effective strategies
using complete, comprehensible indicator strategies also helps in
the understanding of these component strategies, their effects and
limitations. Additionally, it allows for substitution, addition and
deletion of component rules from the overall rule set. The encom-
passing safety mechanism (listed in the figure below as Multiple
Model Control) determines the mode of operation and is analogous
to a faucet. It acts as the final regulator on the trading decision and
volume, allowing only those trades that move the agent towards
increased profitability.

• Each of the weights, represented as discrete bits in a string,
include a sign bit that helps evaluate the suggested action and
the strength of the suggestion in a single string. This rep-
resentation is particularly useful in possibly expanding the
search space available to the GA as well as in compensat-
ing for some misrepresentations of the component (indicator)
strategies, allowing the agent to tune itself for better perfor-
mance.

• To ease the burden of computation time, we used a small
number of finite, discrete values for the weights at the cost of
increased granularity in weight values. Longer strings would
make the search space of possible solutions much larger, ow-
ing to the increased number of unique combination of bits
and this would make it unreasonably computation intensive.

Figure 2: Mechanics of working of GAA agent

• We split the strings into buy and sell components to accom-
modate for the asymmetry in their trending behavior.

• The genetic algorithm iterates through generations of popu-
lation, fitness calculation, crossover and mutation stages un-
til convergence is achieved. In view of the heavy computa-
tion time associated with each generation, we set a maximum
number of iterations at which to stop iteratively computing
the strings.

• A population of ten strings for each of the buy and sell rules,
initialized randomly, allow for sufficient exploration of the
search space.

• An elitist approach to the selection of candidates for subse-
quent generations encouraged convergence.

• Each generation is populated as a result of crossover and mu-
tation operations performed on the selected strings.

• The fitness of candidate strings was calculated in each gen-
eration using the Sharpe or Modified Sortino ratio, with the
goal of the evolution process to maximize the fitness func-
tions (and find the combination of weights that achieves this).

• The components (indicator strategies) were simple adapta-
tions of moving average crossover, price channel breakout,
order book volume imbalanceand simple price trend, de-
noted by MAS, PCBS, VS and PS respectively.

The bit strings consisting of 2 bits corresponding to each weight,
can take on 7 discrete values (including 3 non-zero values for each
of the positive and negative signs prefixing them). For a pool of
four indicator strategies, that gives us a bitstring of 12 bits. The ad-
dition of rules will necessitate retraining the agent with the longer
string or by replacing an insignificant component rule. In the very
first generation, the population is initialized using uniform pseudo-
random integers which are translated to strings, and constitute the
initial population. The top k percent of strategies are used for
crossover, and bit strings are crossed over tail to head. The prob-
ability of being selected for crossover is higher for strategies with

1781

Figure 3: Mechanics of working of GPA agent

higher fitness. In order to preserve strings with high fitness in our
search for local as well as global maxima, we maintain an elitist
model since the top 2 strings (from each of the buy and sell sides)
are spared mutation. After checking to see if the resulting strings
are unique, we use a relatively high mutation rate of 10 percent, to
enable exploration of the search space inspite of the small popula-
tion size. Convergence is said to occur when mean fitness changes
by no more than 10 percent and maximum fitness changes by no
more than 1 percent between the previous and current generation.

8. IMPLEMENTATION OF GENETIC
PROGRAM AGENT

We now present a design, using a genetic program, where we
combine various rules using boolean operators in place of the weighted
majority approach in the previous section. This allows us to grow,
using a conventional tree structure, composite rules of varying length
and varying complexity of interaction between the component rules.
The design of this agent is very similar to the GAA in the use of bit-
strings. In place of using a sign operator bit, we use bits for boolean
connectors. The binary string is an effective representation because
complex statements (including Boolean logic and numerical values
of parameters) can be represented in this form. The primary differ-
ence between the GP Agent (GPA) and the GAA are:

• the allowance for growth of trading strategies based on com-
bination of rules and thus a variable number of component
rules

• the use of Boolean operators as combining elements in place
of the weights in the GAA.

The use of GP allows for optimized strategies based on single rules
as well as a fixed number of chosen indicators. In a sense, the solu-
tion space of a GA is a subset of that of a GP. Trading strategies are
constructed by allowing the genetic selection engine to combine
the component indicator rules with Boolean operators. Strategies
are once again split into buy and sell rules. In each case, the GP
has the potential to choose from buy and sell rules based on mul-
tiple technical indicators. The Boolean operators AND, OR and
XOR are used to compose these buy and sell rules. Finally, as a
cash and share position management, we use the multiple model
control mechanism, like in GAA. The order price is similar to the
price used in GAA and the order volume in GPA was constant -
the value determined empirically. Order volume is determined by
frequency. For this purpose, we assume n consecutive orders of m
shares each to be close in value and fulfillment ability as an order

of n.m shares. The exclusion of volume as a tuning factor in this
experiment was made after problems with convergence of the al-
gorithm. We hypothesize that as the search space in this form of
a GP is large (much larger than the GAA representation), the in-
clusion of volume makes the search space so intractably large that
convergence took a very long time. Apart from Boolean connec-
tors, a difference in design from the GAA is in the use of rule in
use bits that act as flags. Each generation of evolving strategies
in the GP follows the same steps (population initialization, fitness
calculation, crossover and mutation) as that of the GAA, and the
mechanics of these steps remain the same.

9. EVALUATION OF AGENTS
- DEVELOPMENT

So far, we have examined various building blocks that make up
our agent, and how they are composed to make a composite trading
agent. We now turn our attention to evaluating the agents in tests
of their performance. Specifically, we aim to show that:

• the combination of rules is superior to each of the compo-
nents

• a weighted composition of these rules is better than a naive
combination

• a regulatory multiple model mechanism provides improved
performance by allowing the agent to switch between various
modes of varying risk aversion

• the composite trading agent designs perform well in a simu-
lated, realistic economy with competing agent designs.

In this section, we use the Sharpe ratio and raw profits as measures
of evaluation. In the following section, we will examine the use of
the Modified Sortino ratio as a fitness function as well as a measure
of performance. We first compare the agents’ performance against
the component strategies running alone. If the components exhibit
similar or superior profitability, there would be no benefit in com-
bining them with others. We test both the GAA and GPA in two
separate experiments with different out-of-sample test sets of 15
trading days each, in a competition with the component strategies
and various control strategies.

Test Set 1 GAA MAS VS PS PCBS
Avg. Profit 714 95 -307 10 -747
Sharpe ratio 0.7 0.095 -0.177 0.006 0.548
Test Set 1 GPA MAS VS PS PCBS
Avg. Profit 319 96 12 43 268
Sharpe ratio 0.285 0.105 0.011 0.041 0.371
Test Set 2 GAA MAS VS PS PCBS
Avg. Profit 430 232 170 -253 -314
Sharpe ratio 0.411 0.201 0.114 -0.181 -0.333
Test Set 2 GPA MAS VS PS PCBS
Avg. Profit 325 210 12 80 -256
Sharpe ratio 0.346 0.24 0.013 0.082 -0.217

The results show that GAA and GPA outperformed each of the
component strategies in both test cases - an important result regard-
ing the benefit of the composite strategy. Even within the compo-
nent strategies, we can see that there is substantial variation be-
tween the various strategies’ performance, indicating that it may be
useful to include different weights for the various indicator sugges-
tions. This variation can be attributed to a combination of different
test sets of data (market economies), their interaction with varying

1782

performances of the other agents that made up the economy, and
general variance.

This supports our initial hypothesis that the indicators, acting on
the same data set and when used in combination, do not lend sug-
gestions of equal power. This leads us to believe that a weighted
majority schema may be more appropriate, as opposed to a sim-
plistic combination. In order to verify this, we take the case of the
GAA, and compare the use of tuned weights against fixed and equal
weights, for two different test sets of data.

Test Set 1 GAA Equal Weights
Avg. Profit 715 178
Sharpe ratio 0.701 0.18
Test Set 2 GAA Equal Weights
Avg. Profit 431 -12
Sharpe ratio 0.411 -0.016

The results confirmed our hypothesis. We venture to explain the
advantage that the tuned agent has with the following:

• Equal weights would imply that each of these indicators were
equally confident when they gave a buy or sell recommenda-
tion at each time step. This is probably not the case. For
example, a price breakout may be more of a ’sure bet’ in
suggesting a trend than a simple price check. So, the weights
should be allowed to lend varying suggestive powers to the
components accordingly.

• Different weights for buy and sell sides accommodate the
contingency that an indicator may be more confident of a
buy signal as opposed to a sell signal, or vice versa.

To fit the final piece of the agent design puzzle, we proceed to
verify the benefit of bootstrapping the agent with qualitative infor-
mation to provide a multiple model control mechanism. The results
show that the evolutionary agents outperformed the ones without
multiple models. The results of all of the experiments so far, clearly
illustrate that the agents that were bootstrapped with qualitative in-
formation perform significantly better.

Test Set 2 Sharpe Test Set Sharpe
GAA 0.701 GPA 0.133
No MM 0.255 No MM -0.101

In the absence of the multiple model component, the strategy tends
to trade lower volumes and allots higher weights to indicator strate-
gies that are conservative (that have higher thresholds). This can be
attributed to the inherently safe regions that encapsulate the trading
agents’ exploration. The agent is willing to take a riskier position,
with the confidence that it will be led back to safety. There are
two ways of optimizing the performance ratios - increasing profit
everyday, or decreasing variance. Without qualitative information,
the optimization leads to a lower variance and lower profit. With the
multiple model component and higher profits (from higher volume
of trades), the variance is also higher. The agent, in the presence of
the MM component, trades much closer to the boundaries of safety
since it knows where they are.

10. EVALUATION OF AGENTS
- COMPETITION

When agents are trading in a market, the price dynamics are af-
fected by competing agents, each with a view to maximizing its
own profit. Agent interaction and the uncertainty it causes is of-
ten a cause of worry for designers of automated strategies. In this

Figure 4: Performance Comparison of GAA tuned with Sharpe
and MSR

section, we test the agents in open competition with other agents
that have different strategies, but want to be as profitable as possi-
ble. In the process, we test the agents’ performance in a more di-
verse environment. These agents are competitive and are all aiming
to be profitable. In addition to GAA and GPA, we use successful
agents from open competitions on the PLAT environment, includ-
ing agents SOBI [18], Market Maker(MM) [17] and Volume-based
agent (VBA). Earlier, we had hypothesized that fitness function is
a key component in deciding the effectiveness of the agent. We
proposed the use ofSharpe ratio(SR) andModified Sortino Ratio
(MSR) as performance measures, but also as a means of evaluating
fitness of candidates in the evolutionary algorithms. We expect that
penalizing negative volatility alone would result in an agent with
higher trading profitability as there is no limit on positive spikes or
windfalls that the agent may make on particular days. The results
of our experiments confirm our hypotheses.

Fitness function used Sharpe Sharpe MSR MSR
Agent design GAA GPA GAA GPA
Avg. Profit 797 415 1774 660
Sharpe 0.752 0.431 0.691 0.430
MSR 1.762 0.964 3.54 1.07
MSR/Sharpe 2.345 2.233 5.122 2.49

Finally, we test the agents’ performance in competitive tests. We
use all four agents (GAA and GPA, each tuned with Sharpe ra-
tio and MSR). Competing agents include a market maker (MM)
and Simple Multiple Model Agent (SMM) which were the winning
agents in the live PLAT competitions in December 2003 and April
2004. These are used to benchmark the performance of our evolu-
tionary algorithms against competitive agents, in tests of 15 trading
days each. The results are encouraging and suggest that the evolu-
tionary agents are profitable in a competitive environment, and are
in fact most successful when the fitness function and other tuning
parameters are chosen carefully to optimize the right parameters.

Test Set Avg. Profit Sharpe MSR
GAASR 725 0.552 1.518
GPASR 360 0.335 0.659
GAAMSR 2231 0.85 5.007
GPAMSR 710 0.509 2.196
MM 212 0.84 2.574
SMM 1561 0.807 2.67

Overall, the MSR tuned versions of the evolutionary agents per-
form very well and are extremely competitive with the other lead-
ing agents. The GAA strategy is consistently more profitable than

1783

the GPA, potentially owing to the design of GPA that needs a larger
pool of indicators to choose from. From the rigorous tests in this
section, we conclude that our choices of design parameters for this
agent are justified. We have achieved the elusive combination of
consistency and high Sharpe and Sortino ratios using these auto-
mated agents, and in the event, these results demonstrate a small
but significant result for automated trading agents.

11. DISCUSSION AND FUTURE WORK
The motivation for this work is twofold, (1) to use genetic algo-

rithms to optimally design composite trading rules that are robust in
varying market conditions and (2) to search for principles to guide
the design of safe, composite rules for autonomous trading agents.
Some key observations that emerged from our work are listed be-
low:

1. Not only can trading rules be combined together to achieve
profitable trading, but, in fact, the composite trading rule can
be structured in such a way that it becomes possible to rea-
son about safety and performance. This is something that
our proposed methodology adds to the existing literature on
trading agent design using evolutionary algorithms.

2. The fitness function used to tune an optimization algorithm
has a great effect on the profitability of the agent. When we
introduced the modified Sortino ratio (and thereby allowed
for unbounded positive volatility), profit margins increased,
and trading performance increased. This is also in accor-
dance with observed preferences of human traders, as noted
earlier.

3. Since the fitness function and the performance criteria were
the same in our designs, the choice of performance criteria to
match our objectives, is crucial to the development of agents
with increased performance.

A potential challenge to easily extensible models based on the
design presented above, is the computation time. Training the agent
involves simulating numerous, complete trading days. The time
taken for a training run for as few as 12 generations was 2 hours
and 30 minutes on a Pentium-4, 1 GHz machine with 256 MB of
RAM. Further complexity will require training the agents for longer
periods of time. Possible solutions to this problem include limiting
the interaction of training data and the agent to quickly simulate the
trading activity, and modeling this interaction numerically in such
a way that the training activity can be carried out without neces-
sitating complete trading simulations. The tests in this work are
confined to a single market. The use of further sophisticated fitness
functions as well as better representations of the candidate solu-
tions will only work to steadily improve the performance of agents
designed using the proposed principles, and the techniques intro-
duced here may be extended for tests in multiple markets.

12. CONCLUSION
Human trading behavior involves a fair amount of flexibility and

adaptability to the uncertainty of market conditions. Practicing
traders are able to use sophisticated combinations of simple rules
to arrive at robust decisions. We have tried to emulate this behavior
in our agent designs. Our approach to solving the problem of prof-
itable automated stock trading achieves this using a combination of
genetic algorithms to optimize and re-adjust the trading strategy;
and qualitative information to provide safety guarantees regarding
the agents’ behavior. Although the ideas are presented and eval-
uated in the context of specific agent architectures, the principles

we have adopted are fairly general and they are easily extensible to
other designs. Any complex trading rule or set of rules, if it can be
qualitatively characterized, can be substituted into our evolutionary
agent design. This provides us with a sound platform from which
to produce further, more sophisticated strategies that are ultimately
more profitable.

13. ACKNOWLEDGEMENT
This research was supported in part by NSF CAREER award

IIS-0237699.

14. REFERENCES
[1] E. Acar and S. Satchell. Advanced Trading Rules.

Butterworth-Heinemann, 2002.
[2] E. Acar and S. Satchell. A theoretical analysis of trading

rules: an application to the moving average case with
markovian returns.Appl. Math. Finance, 4:165–180, 1997.

[3] F. Allen and R. Karjalainen. Using genetic algorithms to find
technical trading rules.J. of Financial Economics,
51:245–271, 1999.

[4] M. Dempster and C. Jones. A real-time adaptive trading
system using genetic programming.Quantitative Finance,
1:397–413, 2001.

[5] M. Dempster and C. Jones and Y. Romahi and G. Thompson.
Computational Learning Techniques for Intraday FX Trading
Using Popular Technical Indicators.IEEE Transactions on
Neural Networks, 12(4), 2001.

[6] E. Fama. Efficient Capital Markets: A review of theory and
empirical work.J. Finance, 25(2):383–417, 1970.

[7] R. Gencay. An introduction to High-Frequency Finance.
Academic Press, 2001.

[8] T. Hellstrom and K. Holmstrom. Parameter tuning in trading
algorithms using ASTA.Computational Finance, 1:343–357,
1999.

[9] M. Kearns and L. Ortiz. The Penn-Lehman automated
trading project.IEEE Intelligent Systems, 18(6):22–31, 2003.

[10] J. Koza. Genetic Programming: On the programming of
computers by means of natural selection.MIT Press, 1992.

[11] A. Lo and A. Craig MacKinlay. A Non-Random walk down
Wall Street.Princeton University Press, 1999.

[12] B. Malkiel. A Random Walk down Wall Street.WW Norton,
1996.

[13] J. Moody and M. Saffell. Learning to trade via direct
reinforcement.IEEE Trans. Neural Networks,
12(4):875–889, 2001.

[14] S. Neftci. Naive trading rules in financial markets and
wiener-kolmogorov prediction theory: A study of”technical
analysis”.J. Business, 64(4):549-571, 1991.

[15] C. Pendersen. Derivatives and downside risk. InDerivatives
Use, Trading and Regulation, 2001.

[16] W. Sharpe. The sharpe ratio.J. Portfolio Management,
21(1):49–58, 1994.

[17] A. Sherstov and P. Stone. Three automated stock-trading
agents: A comparative study.AAMAS 2004 Workshop on
Agent Mediated Electronic Commerce VI, 2004.

[18] H. Subramanian.Evolutionary algorithms in optimization of
technical rules for automated stock trading. M.S. Thesis,
University of Texas, Austin, 2004.

[19] M. Taylor and H. Allen. The use of technical analysis in
foreign exchange markets.J. Int. Money Finance,
11:304–314, 1992.

1784

