
Search-Based Determination of Refactorings for Improving
the Class Structure of Object-Oriented Systems

Olaf Seng, Johannes Stammel and David Burkhart
FZI Forschungszentrum Informatik

Haid-und-Neu-Strasse 10-14
Karlsruhe, Germany

{seng,stammel,burkhart}@fzi.de

ABSTRACT
A software system’s structure degrades over time, a phe-
nomenon that is known as software decay or design drift.
Since the quality of the structure has major impact on the
maintainability of a system, the structure has to be recon-
ditioned from time to time. Even if recent advances in the
fields of automated detection of bad smells and refactorings
have made life easier for software engineers, this is still a
very complex and resource consuming task.

Search-based approaches have turned out to be helpful in
aiding a software engineer to improve the subsystem struc-
ture of a software system. In this paper we show that such
techniques are also applicable when reconditioning the class
structure of a system. We describe a novel search-based ap-
proach that assists a software engineer who has to perform
this task by suggesting a list of refactorings. Our approach
uses an evolutionary algorithm and simulated refactorings
that do not change the system’s externally visible behavior.
The approach is evaluated using the open-source case study
JHotDraw.

Categories and Subject Descriptors
D.2.7 [Software Engineering]: Distribution, Maintenance,
and Enhancement—Restructuring, reverse engineering, and
reengineering

General Terms
Design

Keywords
Refactoring, Evolutionary Algorithms, Software Metrics, De-
sign Heuristics

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington,USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

1. INTRODUCTION
According to Lehman’s first law a software system that

reflects some external reality undergoes continuous change
or becomes progressively less useful [9]. Since a system’s
original design is rarely prepared for every new requirement
and the changes have to be made quickly by different peo-
ple without properly adjusting the system’s structure, it
gets harder and harder to maintain the system. This phe-
nomenon is known as software decay [8].

As a consequence, a software system’s structure has to be
constantly reconditioned. Using known heuristics and met-
rics [11], one can assess the quality of this structure as well
as identify the spots having a negative impact on its main-
tainability. These spots are instances of so called bad smells.
Typical examples for these bad smells are high coupling be-
tween subsystems or god class (a large class providing more
than one abstraction) [13].

The hard question is how to remove these bad smells.
Refactorings [8] provide a powerful means to get rid of them,
because their application does not change the externally vis-
ible behavior. But deciding which refactoring to apply and
where to apply it is a tough question, since refactorings can
have undesired side effects on the system’s structure. Re-
moving one bad smell might result in creating a new one at
another place. Just imagine that you try to get rid off a
god class by moving several of the methods belonging to it
to other classes. This could result in the creation of a new
god class, because the other classes already contain several
methods.

For improving the subsystem decomposition, methodolo-
gies based on search algorithms have already been proven
to be quite successful [16][6]. In this paper we show how to
use an evolutionary algorithm for optimizing the class struc-
ture of a system. This task is much more difficult because
it is much harder to specify behavior preserving class level
refactorings.

We designed a methodology for object-oriented systems
that helps the user to determine refactorings to improve
the class structure of a system with respect to the values
of several metrics and the number of violations of object-
oriented design principles. User input is only necessary for
setting initial parameters. Our approach suggests a list of
behavior preserving refactorings. Of course, the final deci-
sion whether to apply or not a proposed refactoring is left
to the user, since his understanding of good design might
contradict the metrics used as part of the fitness function.

1909

The main contributions of this paper are

• describing a novel search-based approach for refactor-
ing a software system’s class structure and

• evaluating the proposed approach using an open-source
case study

The rest of this paper is structured as follows: section 2
describes our approach in detail, with focus on the model,
the representation, the fitness function and the refactoring
operations we use. In section 3 we present the results of
an experiment conducted on a well-known open source case
study. Section 4 contains a brief summary of related work
and we conclude in section 5.

2. APPROACH
One of the biggest challenges when optimizing class struc-

tures using random refactorings is to ensure behavior preser-
vation. One has to take special care of the pre- and postcon-
ditions of the refactorings [15], e.g. it is not possible to move
methods that override a method of a superclass without
moving the overridden method as well. These constraints
are much harder to fulfil compared to the constraints that
apply to optimizing subsystem decomposition, where name
clashes and visibility violations are the only problems that
can occur and which are easy to solve by comparison.

Figure 1 gives a short overview of the workflow of our
approach. The source code needs to be transformed into
a suitable model - our phenotype - using standard fact ex-
traction techniques. It allows simulating the source code
refactorings and calculating the impact of these refactorings
on the fitness function. Our genotype consists of the already
executed refactorings.

Figure 1: Workflow of the proposed approach

It is necessary to differentiate the model elements accord-
ing to the role they play in the system’s design before trying
to improve the structure. We call this step classification.
Not all elements can be treated equally, because e.g. de-
sign patterns sometimes deliberately violate existing design

heuristics. This means that we cannot assess them properly
using a generalized fitness function. Currently we restrict
our approach to those elements that respect general design
guidelines. Elements that deliberately do not respect them
are left untouched in order to preserve the developers con-
scious design decisions.

We consider multiple models which form our population
at a time. The initial population is created by copying the
model extracted from the source code x times. During one
evolution step, elements of the current population are mod-
ified using a model refactoring, or a new model is created
by combining the genomes of two parents using a crossover
operator. In order to reduce our population to the initial
size of x elements we select the most promising elements us-
ing our fitness function and a tournament selection strategy
[1]. Since the already applied model refactorings are stored
as our genotype a user can easily find out later which refac-
torings he needs to carry out on the source code in order to
improve the structure.

The optimization stops after a predefined number of evo-
lution steps. This number is chosen based on the number of
model elements and the number of refactorings being used.
The user needs to inspect the resulting structure manually,
because he has to decide which refactorings to apply to the
source code.

2.1 Phenotype
As already mentioned in the section above, our phenotype

consists of the abstract source code model and several model
refactorings These model refactorings simulate the actual
source code refactorings.

2.1.1 Source code model
Our source code model is designed to accommodate sev-

eral object oriented languages. The basic model elements
are classes, methods, attributes, parameters and local vari-
ables. In addition to these elements, we need a special ele-
ment called access chain, which will be described below and
the following access types:

• class access: A class can access another class directly,
e.g. if it inherits from the other class.

• method access: A method access models that a method
of another class is called.

• attribute access: An attribute access is part of an ac-
cess chain and models that an attribute is referenced
in the method body of a method.

• local variable access: A local variable access occurs if
a local variable is referenced inside a method.

• parameter access: A parameter access models that the
parameter is referenced inside a method.

• operator access: An operator access models the use of
operators like ++.

• this access: Models explicit references to the this ob-
ject, like this.getMovie().

• super access: Models explicit accesses to the super
class, like super.getMovie().

• literal access: Models references to literals like ’7’.

1910

An access chain models the accesses inside a method body,
because we need to adapt these references during the opti-
mization. If a method is moved, we need to change the call
sites. An access chain therefore consists of a list of accesses
of the above types. In general, each statement is mapped to
a separate access chain. If the statement is an assignment,
it is modeled by two access chains, which represent its left
and right side. Access chains are hierarchical, because each
method argument at a call site is modeled as a separate ac-
cess chain, that could possibly contain further access chains.
During the fact extraction we additionally compute whether
an access chain is a read or a write access.

An example model representing the source code shown
in Figure 2 is depicted in Figure 3. The class C contains
the method calcArea(Rectangle r1) that has one read access
chain consisting of two parameter accesses and two method
accesses. Class C also contains the method foo(Rectangle
r2) that has one read access chain consisting of one method
access and one parameter access.

class C {
...

int calcArea(Rectangle r1) {
return r1.height()*r1.width();

}
...

void foo(Rectangle r2) {
calcArea(r2);

}
...

}

Figure 2: Example code

Figure 3: Example model

Things we currently do not take into account and therefore
leave unchanged are initialisers, inner classes and synchro-
nisation points. Additionally, we assume that the system
being processed does not make use of reflection.

2.1.2 Model Refactorings
Our model refactorings are based on the source code refac-

torings that can be found in [8]. The model we proposed in
section 2.1.1 allows to simulate most of the important refac-
torings for changing the class structure of a system, which
are Extract Class, Inline Class, Move Attribute, Push Down
Attribute, Pull Up Attribute, Push Down Method, Pull Up
Method, Extract Superclass and Collapse Class Hierarchy.

In general these refactorings cannot be applied automat-
ically and require user information in order to be carried

out completely. For example, it is not possible in general to
decide, whether an attribute can be moved or not, and it
is required that a user specifies the new object on which a
moved method should be called.

But since we are proposing a search-based approach, we
cannot require user input for every refactoring we simulate.
Therefore, we have to restrict these general refactorings to
special refactorings, which are independent from user input.

Currently, we have successfully defined and implemented
special refactorings for Move Method, Pull Up Attribute,
Push Down Attribute, Pull Up Method, Push Down Method.
For the remainder of this paper we focus on the Move Method
refactoring.

2.1.3 Special refactoring for moving methods
For moving methods we consider the following two strict

preconditions: At first, target and source class are not part
of the same inheritance hierarchy. Otherwise you would use
Pull Up Method or Push Down Method . At second, the
method to be moved must not implement a method of an
interface or overwrite a method of a superclass.

We do not take into account further preconditions con-
cerning visibilities and names, since a violation can be re-
solved easily after the optimization, by a simple Rename
refactoring or by calculating the necessary visibility of model
elements and adjusting it.

In order to successfully move a method in the general
case it is necessary to manually specify for all accesses an
object with the type of the target class on which the method
should be called. A user of course can decide whether to
use an already existing object, or to create a new one. In
order to allow automatic processing, we need to make sure
that suitable objects already exist at the call sites. This is
achieved by considering the following three special cases of
the move method refactoring which allow to reuse already
existing objects at the call sites:

• O1: Move a method to one of its parameter types.
The type must not be a primitive type and its type
definition must be available as source code.

• O2: Move a method to a type of a randomly chosen
attribute of the class the method belongs to. The type
must not be a primitive type and its type definition
must be available as source code.

• O3: Move a static method

Besides allowing an automatic transformation, the first
two special cases of Move Method constitute a good heuris-
tic for speeding up the search process. It does not seem
to make sense to move methods to classes, which are not
already related to the original class, because this would in-
troduce new dependencies. Checking these preconditions
is done before the optimization starts and leads for every
type of refactoring to a list of model elements that could
be processed. These checks could be carried out during the
optimization as well, but doing it beforehand and storing
the information as part of the representation saves time and
therefore speeds up the optimization.

To apply a refactoring to the model, we have two possi-
bilities. Either we provide the complete source object as an
additional parameter (A1) or we provide only the elements
of the source object which are read only by the method as

1911

additional parameters (A2). The second alternative reduces
dependencies between source and target classes, but is not
applicable as often as the first one due to its more restric-
tive preconditions. After changing the method’s signature,
we additionally have to adapt the call sites and the access
chains inside the methods. At the call sites, we need to re-
place the old object references used to call the method with
references to an object of the type of the target class. Inside
the method, we need to replace all accesses to surrounding
class members with an access using the newly introduced
method parameter.

To give a short example we show in Figure 4 how the
method calcArea(Rectangle r1) that has been introduced in
Figure 2 could be moved the class Rectangle, which is its
parameter type.

Figure 4: Example model refactored

The parameter Rectangle can be deleted, since we moved
the method to this class. Inside the method the accesses
to the parameter object r1 can be removed. At the call
site, we have to modify the existing access chain such that
the parameter r2 is now used to call the method calcArea()
instead of being used as a parameter.

Figure 5 shows how the source code would look like, if the
proposed refactoring would be applied to it.

class C {
...

void foo(Rectangle r2) {
r2.calcArea();

}
...

class Rectangle {
...

int calcArea() {
return height()*.width();

}
...

}

Figure 5: Refactored example source code

To allow a free movement in the search space, it should be
possible to move the methods back to their original place.
For methods that have been moved using O3 or O1/A1,
this is automatically possible. For the other mutations, spe-
cial inverse transformations have been designed, avoiding
the creation of unnecessary backreferences to the original
classes.

Further special refactorings have already been specified
but not implemented yet. These include Move Attribute. It
is only allowed to move attributes between classes that have

been previously split using extract class, because this assures
that there is a one to one relationship between corresponding
objects at runtime.

2.2 Genotype
Our genotype consists of an ordered list of executed model

refactorings including necessary parameters. The current
phenotype is created by applying these model refactorings
in the order that is given by the genotype to the initial source
code model. Therefore the order of the model refactorings
is important, since one model refactoring might create the
necessary preconditions for some of the following ones.

2.2.1 Mutation operator
Our mutation operator extends the current genome by an

additional model refactoring. This means that our genome
grows during the optimization and the length of the genome
is unlimited. For performance reasons we store the current
phenotype together with the current genotype, because oth-
erwise we would have to execute all previous model refac-
torings before being able to choose a new one.

2.2.2 Crossover operator
Our crossover operator combines two genomes by selecting

the first n model refactorings from parent one and adding
the model refactorings of parent two to the genome. N is
randomly chosen. We can be sure that the n model refactor-
ings of parent one can be executed safely, but not all model
refactorings of parent two might be applicable. Therefore
we apply the model refactorings to the initial source code
model. If we encounter a model refactoring that cannot be
executed due to unsatisfied preconditions, we drop it.

An example crossover is depicted in Figure 6. At first,
three elements of P1’s genome are combined with P2’s
genome resulting in an intermediate genome PI. While ap-
plying PI’s model refactorings to the original source code
model it turns out, that the model refactorings M6 and M7
cannot be executed.

Figure 6: Example application of our crossover op-
erator

The advantage of this crossover operator is that we can
guarantee that the externally visible behavior is not changed.
The drawback is that it takes some time to perform the
crossover, since the refactorings need to be simulated again.

2.3 Fitness Function
Our fitness function is a weighted sum of several met-

ric values and is designed to be maximized. The proper-
ties we would like to capture with it are coupling, cohe-
sion, complexity and stability. Usually it is desirable to

1912

have low coupling values between classes, in order to keep
classes independent of each other. If classes are not cohe-
sive, it is likely that a class captures more than one con-
cept and therefore some methods should be moved to other
classes. For coupling and cohesion, we rely on existing met-
rics, which are taken from Briand’s catalogues [4]. Coupling
is assessed by computing the Response for class (RFC) and
the Information-flow-based-coupling (ICP) metrics. Cohe-
sion is assessed using the Tight class cohesion (TCC), the
Information-flow-based-cohesion (ICH) and the Lack of co-
hesion (LCOM5) metrics. These metrics are computed glob-
ally for the whole system by simply adding up the values for
the individual classes.

The motivation for using complexity metrics as part of our
fitness function is that software systems very often contain
so called god classes [13]. They contain a lot of methods
that should be moved to so called data classes which are
associated to the god classes and provide almost no func-
tionality. It is desirable to distribute a system’s complexity
equally between classes. To assess complexity we use two
variants of the Weighted method count (WMC) metric. One
with the cyclomatic complexity and one with the complexity
value one. In the second case the WMC metric would result
in the Number of methods (NOM) metric. In order to nor-
malize these metrics we defined a trapezoid shaped function
that maps the complexity values to a value between zero
and one. Complexity is considered to be optimal inside an
interval amin and amax. Outside an interval bmin and bmax

it is considered to be zero. Between bmin and amin and bmax

and amax it is linearly interpolated. The advantage of such
a fitness function is its fuzzy shape, which does not punish
complexity values too hard, if they are only slightly outside
the specified optimal values. Currently we are using the fol-
lowing values for the NOM metric: amin = 10, amax = 40,
bmin = 3 and bmax = 50. Of course these values can be
customized by the user.

Figure 7: Complexity metric

The metric for stability has been adapted from the re-
conditioning of subsystem structures [12]. Using this metric
one tries to achieve a layered class structure, so that each
class only depends on classes that are more stable than itself.
At the same time, this metric punishes cyclic dependencies
between classes.

The formula for calculating the instability of a class k is:

I(k) = Ce
Ce+Ca

Ce is the number of other classes whose elements k uses.
Ca is the number of classes using elements of k.

Since not all of our metrics are normalized it is not pos-
sible to just add up all values in order to obtain the fit-
ness value for a software system. The fitness value of a sys-
tem S is calculated by comparing the actual metric values
M(S) with the initial value Minit(S) and maximum val-
ues Mmax(S) obtained by a calibration run optimizing each
metric alone beforehand.

The metric values of the software system are kept as an ar-
ray M(S) = [WMC(S), RFC(S), ICP (S), TCC(S),
ICH(S), LCOM5(S), ST (S)]. The current fitness value
fitness(S) is calculated with the help of M(S), Minit(S)
and Mmax(S).

fitness(S) =
n∑

i=1

wi ∗
Mi(S)−Miniti

(S)

Mmaxi
(S)−Miniti

(S)

Using the weights wi a user can decide to focus on certain
aspects of the fitness function. The sum of all weights has
to be one.

2.4 Classification
Before optimizing the structure, we classify the model ele-

ments according to the roles they play in the system’s design,
e.g. whether they are part of a design pattern. We need to
do this for two reasons. On the one hand, there are many
design patterns, which deliberately violate existing design
guidelines, e.g. the methods belonging to a facade are usu-
ally not cohesive, since they only forward incoming requests
to other classes that can fulfill these. Currently such model
elements cannot be assessed correctly by our fitness func-
tion and therefore are left unchanged in order to preserve
the original design decisions. Of course our approach could
be extended by other special refactorings which could try to
split up a huge facade, but this is out of the scope of this
paper.

On the other hand, there are a lot of elements, which
are not worth to be considered separately, because they
only provide helper functionality for other elements. Getter
methods for example are usually small methods that simply
expose the state of an object to the outside of a class. They
could possibly be moved, but it does not really make sense
to move them without the attributes they encapsulate and
the corresponding setter-methods. Using this information
can speed up the optimization, since it is not necessary to
try to move the getter- and setter methods alone.

In order to classify the existing model elements we are us-
ing an approach similar to the one described in [2]. The main
idea to identify the role of an element is to describe its static
structure and additionally make use of naming conventions.
As an example, static factory methods are described as be-
ing static, having a non-void return type, and containing
a call to a constructor that creates objects whose type is
equal to the return type of the method. The specification
and detection of such roles is implemented as a Java-Library.

At the moment we focus on roles of methods, because we
restricted ourselves to the move method refactoring for the
remainder of this paper. But of course we are able to identify
candidates for design patterns which involve classes as well,
e.g. facades, factories, proxies, observers and visitors.

We identify the following types of helper methods:

• getter and setter methods: These methods are strongly
coupled to the attributes they get or set. They should
not be moved to another class alone.

• collection accessors: Collection accessors are simple
methods that do not contain a lot of statements. They
simply add some new objects to the surrounding class.
They are tightly coupled to some attribute and there-
fore do not need to be moved around without the at-
tribute.

1913

• state methods: State methods perform simple checks
that describe the state of an object. They are tightly
coupled to the class and its attributes.

Additionally, we identify factory methods and delegation
methods. Several factory methods are often bundled in a
class of their own. They create an instance of a certain type
but should not necessarily be moved to that type, even if
they use no attributes of the surrounding factory class and
only methods and attributes of the types instantiated. Fac-
tory method is a design pattern itself. Delegation methods
do not provide much functionality. They simply forward re-
quests to classes capable of fulfilling them. Therefore using
standard coupling and cohesion metrics, delegation methods
tend to be moved to the classes doing the real work. Dele-
gation method is not a design pattern itself, but used as a
part of many other design patterns like e.g. facade.

3. EVALUATION
In this section we present a first evaluation of our ap-

proach. Currently only the move method refactoring and
the crossover operator are considered. We used the open
source software JHotDraw as a case study, which is a frame-
work for creating technical drawings. It is well-known as a
good example for the use of design patterns.

Table 1 gives an overview of the system’s size:

Subsystems 11
Classes (inner) 275(64)
Methods 2571
Attributes 489
LOC 28776

Table 1: JHotDraw statistic

Our experiments were carried out on a PC at 3 GHz with
1 GB of RAM. For each run we used a population size of
30, 4000 generations, a mutation probability of 80 % and
a crossover probability of 20 %. One run took about 30
minutes. In order to judge how stable our results are, we
carried out the optimization 10 times. The first goal of our
evaluation was to to find out whether our approach could
find meaningful refactorings in the original system structure.
Our second goal was to to show, that our approach was able
to move manually misplaced methods back to their original
positions.

First we examined how restrictive our preconditions for
moving methods are and how many methods are not consid-
ered during the optimization because of their classification
as special elements. Table 2 shows the results of our classi-
fication. 724 methods out of the 2571 overall methods are
classified as special methods, which means that they are not
processed by our approach. The results of the classification
have been manually inspected by us. We did not find any
false positives among the getter/setter/collection/delegation
and state methods. But we found eleven false positives
among the factory methods. It is not crucial to identify
all false positives, because our approach is still able to pro-
cess a case study. Having false positives just means, that
some methods, that could be moved in theory are left un-
touched and therefore the result of an optimization could
have been even better. False negatives are not that impor-
tant either, because if our approach fails to identify some

design pattern methods during the classification we would
discover them later on during the manual inspection of the
proposed refactorings. On the whole, our classification ap-
proach turned out to be successful.

Getter methods 205
Setter methods 176
Collection methods 49
State methods 56
Factory methods 135
Delegation methods 103
Pattern methods 724
Movable methods 718
Movable non pattern methods 260
Overall methods 2571

Table 2: Method statistic

Table 2 additionally gives an overview of the number of
methods that can be considered during our optimization.
The precondition check results in 718 movable methods. Af-
ter combining these results with our classification informa-
tion, we are still able to move 260 methods around. This
means that the classification significantly reduced our search
space, but there are still too many methods to examine them
manually without being assisted by a tool and therefore a
relevant number of methods can be moved.

Figure 8 shows the results of our series of optimizations.
The lowest line represents the minimum fitness value, the
middle line the median fitness value and the highest line the
maximum fitness value for each generation of all 10 runs.
Convergence is pretty good and statistical spread is low.
You can observe that after approximately 2000 generations
the fitness value does not significantly change any more.

As expected our approach is able to find refactorings that
improve the fitness value of JHotDraw’s system structure.
Table 3 shows the average relative improvement of the in-
dividual metrics, obtained by comparing the final values to
the maximum values Mmaxi(S) calculated during the initial
calibration runs:

Figure 8: Optimisation results

relative improvement =
Mfinali

(S)−Miniti
(S)

Mmaxi
(S)−Miniti

(S)

A value of 0 % means that this metric could not be im-
proved during the optimization. A value of 100 % means
that our approach proposed refactorings that resulted in a
final metric value equal to the one obtained during the cal-
ibration.

The results just presented show that at least with respect
to our fitness function JHotDraw offers some potential to be

1914

WMC NOM LCOM TCC Sta ICH ICP RFC
3% 5% 33% 31% 66% 81% 87% 3%

Table 3: Relative improvement

refactored. In order to judge whether the refactorings make
sense to a developer, we manually inspected the proposed
refactorings. This is of course not easy, since we were not
involved in the original design of JHotDraw. The names of
the methods that were proposed to be moved are shown in
the first column of Table 4. The suggested target class is
shown in the second column. The third column contains the
number of runs this method has been proposed to be moved.
10 out of the 11 proposed refactorings have been found in
every run, which indicates that our results are pretty stable.

Method Target class #
PolygonFigure.chop Geom 10
AttributeFigure.initializeAttributes FigureAttributes 10
FigureAttributes.read StoreableInput 10
FigureAttributes.write StoreableOutput 10
FigureAttributes.writeColor StoreableOutput 10
ShortestDistanceConnector.findPoint Geom 10
TextTool.fieldBounds FloatingTextField 10
PertFigure.readTasks StoreableInput 10
PertFigure.writeTasks StoreableOutput 10
ColorMap.color ColorEntry 2
ColorMap.colorIndex ColorEntry 10

Table 4: Methods proposed to be refactored

From our perspective all proposed refactorings can be
justified. Consider for example the static method Point
chop(Polygon poly, Point p) of class PolygonFigure that has
been suggested to be moved to the class Geom. This method
chops a polygon using a specified point. As you can observe
from its source code shown partially in Figure 9 it makes
heavy use of the methods length2() and intersect() of class
Geom but does not use any attributes or methods of the
class it belongs to. The purpose of this method is to pro-
vide utility functionality that is best kept in the class Geom
which is part of the utility package.

for (int i = 0; i < poly.npoints; ++i) {
int nxt = (i + 1) % poly.npoints;
Point chop =

Geom.intersect(poly.xpoints[i],
poly.ypoints[i], ...);

if (chop != null) {
long cl =
Geom.length2(chop.x, chop.y, p.x, p.y);

}
...

Figure 9: Example code

But for a few of the proposed refactorings we could also
think of design decisions why the suggested refactorings have
not been already carried out by the original designers. The
class AttributeFigure for example contains a method called
initializeAttributes which our approach proposed to be
moved to the class FigureAttributes because it operates only
on the attribute fAttributes which is of type FigureAttributes.
By moving this method the knowledge to create default at-

tributes is transferred to the class that represents the at-
tributes, which is reasonable from our perspective. From
a metrics perspective moving this method reduces the cou-
pling between AttributeFigure and FigureAttributes, because
the calls to the set method are now performed in the class
FigureAttributes. But on the other hand, the original design-
ers might have preferred to leave the class FigureAttributes
ignorant of any default combinations that are meaningful to
the class AttributeFigure.

As a second goal, we wanted to show that if we modified
the original system by randomly selecting 10 methods and
misplacing them, our approach would be able to suggest
refactorings moving them back their original position. Since
JHotDraw is generally considered to be well designed, we
assumed that its original design could serve as a reference
design. Therefore, we did another series of 10 runs using the
modified system.

The names of the manually misplaced methods are listed
in the first column of Table 5. The second column contains
the name of the class the methods were manually moved to.
The third column shows the number of runs, the specific
method has been moved back to its original position.

Method Misplaced #
to class

MDIDesktopManager.resizeDesktop MDIDesktopPane 10
Geom.distanceFromLine PolygonFigure 1
Geom.ovalAngelToPoint ChopEllipseConnector 10
ImageFigure.drawGhost FigureAttributes 10
PolygonFigure.findSegment FigureAttributes 10
DiamondFigure.getPolygon FigureAttributes 10
AttributeFigure.writeObject FigureAttributes 10
CompositeFigure.bringToFront QuadTree 10
CompositeFigure.findFigure QuadTree 10
PertFigure.layout Quadtree 10

Table 5: Manually misplaced methods

Our approach successfully moved back each method at
least once, meaning that it was able to restore the original
reference design. Nine out of the ten methods even have
been moved back during each run, which prove that the
results are very stable.

Our evaluation revealed that our preconditions for our
special refactorings still allow to move a relevant number of
methods and that our approach is able to suggest meaningful
refactorings. Furthermore, it turned out that our approach
is able to move manually misplaced methods back to their
original position. As part of a first evaluation, these results
are very convincing and promising.

4. RELATED WORK
The general idea to treat software engineering as a search

problem is described in [5]. Search-based algorithms have al-
ready been successfully used in order to recover and improve
the decomposition of software systems into subsystems [6].

Existing approaches for improving class structures can be
roughly classified into three different categories. Approaches
of the first category consider optimizing class structures as
a manual analytical process. The main idea is to find one
problem and to fix it without considering other problems.
T. Dudzikan and J. Wlodka present an integrated approach
to restructure programs written in Java [7]. Starting from
a catalog of bad smells, potential solutions are proposed to

1915

the user. L. Tahvildari and K. Kontogiannis [17] present an
approach for aiding the user in deciding which refactoring
he should apply. Their main idea is to estimate the im-
pact refactorings have on some elementary metrics. How
the refactorings can be really carried out is not considered
by this approach. Another approach that analyzes the im-
pact refactorings have on metrics is described in [3]. They
point out that one refactoring can have a different impact
depending on the context in which it is applied. How these
refactorings can be used in order to improve the structure
is not examined. Compared to our approach all of these ap-
proaches do not take side effects of refactorings into account.
They focus on one part of the system and one structural
problem at at time.

The approaches that fall into the second category improve
a system automatically but with respect to only one special
design guideline. Lieberherr [10] for example presents an
approach to transform systems into systems that conform
to the Law of Demeter. Approaches of this category do
take side effects of refactorings into account, but only for
the special problem they try to tackle. The scope of these
approaches is more limited than the scope of our approach,
since we address a number of refactorings and bad smells at
a time.

Methodologies that fall into the last group are similar to
our approach and can be described as approaches that try
to improve a system’s structure using a search-based algo-
rithm and random transformations. One such approach is
described in [14]. The authors’ only goal is to improve the
structure of inheritance hierarchies, which means that our
approach is more general.

5. CONCLUSION
In this paper we presented an approach that proposes a

list of refactorings that help a software engineer to improve
the class structure of a software system. The application of
these refactorings leads to a behaviorally equivalent system
structure with better metric values and fewer violations of
object-oriented design heuristics.

Our major contribution to the existing state of the art
is describing a novel search-based approach for refactoring
a software system’s class structure and evaluating the pro-
posed approach using an open-source case study.

Our approach uses a special model which allows us to sim-
ulate refactorings with all necessary pre- and postconditions,
a mechanism for classifying structural elements according to
their role, mutation and crossover operators and a fitness
function. We demonstrated the potential of our approach
by applying it to the open-source case study JHotDraw and
believe that it forms a convincing foundation for further re-
search in this area.

In order to further improve and extend our approach we
plan to implement further refactorings, to exploit more heuris-
tics on good class design and to validate our approach using
further case studies.

6. REFERENCES
[1] W. Banzhaf, P. Nordin, R. Keller, and F. Francone.

Genetic Programming - An Introduction. Morgan
Kaufmann Publishers, Inc., 1998.

[2] M. Bauer and M. Trifu. Architecture-aware adaptive
clustering of oo systems. In Proceedings of the Eighth

Euromicro Working Conference on Software
Maintenance and Reengineering (CSMR’04), pages
3–14. IEEE Computer Society, 2004.

[3] B. D. Bois and T. Mens. Describing the impact of
refactoring on internal program quality. In Proceedings
of the International Workshop on Evolution of
Large-scale Industrial Software Applications, pages
37–48. Vrije Universiteit Brussel, 2003.

[4] L. C. Briand, J. W. Daly, and J. K. Wüst. A unified
framework for coupling measurement in
object-oriented systems. IEEE Trans. Softw. Eng.,
25(1):91–121, 1999.

[5] J. Clark, J. J. Dolado, M. Harman, R. Hierons,
B. Jones, M. Lumkin, B. S. Mitchell, S. Mancoridis,
K. Rees, M. Roper, and M. Shepperd. Reformulating
software engineering as a search problem. Journal of
IEE Proceedings - Software, pages 161–175, 2003.

[6] D. Doval, S. Mancoridis, and B. S. Mitchell.
Automatic clustering of software systems using a
genetic algorithm. In IEEE Proceedings of the 1999
Int. Conf. on Software Tools and Engineering Practice
(STEP’99), 1999.

[7] T. Dudzikan and J. Wlodka. Tool-supported discovery
and refactoring of structural weaknesses. Master’s
thesis, TU Berlin, 2002.

[8] M. Fowler. Refactoring - Improving the Design of
Existing Code. Addison Wesley, 1999.

[9] M. Lehman and L. Belady. Program Evolution, -
Processes of Software Change. Academic Press
Professional, Inc, 1985.

[10] K. Lieberherr. Adaptive Object-Oriented Software -
The Demeter Method - With Propagation Patterns.
PWS Publishing Company, 1995.

[11] R. Marinescu. Detecting design flaws via metrics in
object-oriented systems. In Proceedings of Technology
of Object-Oriented Languages and Systems - Tools 39,
2001.

[12] R. Martin. Agile Software Development, Principles,
Patterns, and Practices. Prentice Hall, 2002.

[13] H. McCormick and R. Malveau. AntiPatterns:
Refactoring Software, Architectures, and Projects in
Crisis. John Wiley and Sons, 1998.

[14] M. O’Keeffe and M. O. Cinnèide. Towards automated
design improvement through combinatorial
optimisation. In Proceedings of the Workshop on
Directions in Software Engineering Environments,
2004.

[15] W. F. Opdyke. Refactoring Object-Oriented
Frameworks. PhD thesis, University of Illinois at
Urbana-Champaign, 1992.

[16] O. Seng, M. Bauer, M. Biehl, and G. Pache.
Search-based Improvement of Subsystem
Decompositions. In Proceedings of the Genetic and
Evolutionary Computation Conference, 2005.

[17] L. Tahvildari and K. Kontogiannis. A metric based
approach to enhance design quality through
meta-pattern transformations. In Proceedings of the
seventh European Conference on Software
Maintenance and Reengineering, 2003.

1916

