
Improving Evolutionary Real-Time Testing

Marouane Tlili
Daimler Chrysler AG,

Reasearch and Technology
Alt-Moabit 96a

D-10559 Berlin, Germany

marouane.tlili@daimler-
chrysler.com

Stefan Wappler
Technical University of Berlin,
DaimlerChrysler Automotive IT

Institute
Ernst-Reuter-Platz 7

D-10587 Berlin, Germany

stefan.wappler@tu-
berlin.de

Harmen Sthamer
Daimler Chrysler AG,

Reasearch and Technology
Alt-Moabit 96a

D-10559 Berlin, Germany

harmen.sthamer@daimler-
chrysler.com

ABSTRACT
Embedded systems are often used in a safety-critical con-
text, e.g. in airborne or vehicle systems. Typically, timing
constraints must be satisfied so that real-time embedded
systems work properly and safely. Execution time testing
involves finding the best and worst case execution times to
determine if timing constraints are respected. Evolutionary
real-time testing (ERTT) is used to dynamically search for
the extreme execution times. It can be shown that ERTT
outperforms the traditional methods based on static analy-
sis. However, during the evolutionary search, some parts of
the source code are never accessed. Moreover, it turns out
that ERTT delivers different extreme execution times in a
high number of generations for the same test object, the re-
sults are neither reliable nor efficient. We propose a new
approach to ERTT which makes use of seeding the evolu-
tionary algorithm with test data achieving a high structural
coverage. Using such test data ensures a comprehensive ex-
ploration of the search space and leads to rise the confidence
in the results. We present also another improvement method
based on restricting the range of the input variables in the
initial population in order to reduce the search space. Ex-
periments with these approaches demonstrate an increase
of reliability in terms of constant extreme execution times
and a gain in efficiency in terms of number of generations
needed.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and Debugging—
Testing tools

General Terms
Verification

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
GECCO’06,July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007 ...$5.00.

Keywords
Software tools, Software engineering

1. INTRODUCTION
Classical methods for determining extreme execution times

are based on static analysis and manual estimations [8].
Static analysis methods are limited when the test object
contains program control structures such as loops. In this
case, loop bounds must be specified manually or can only
be estimated. With manual estimations, the program code
must be analyzed by hand and the possible execution paths
which lead to extreme execution times must be figured out.
This process is resource-consuming and error-prone. Fur-
thermore, the shortest execution time can be too optimistic
and the longest execution time too pessimistic due to man-
ual estimations.
ERTT is an approach to testing the timing constraints of
real-time systems. The test objective is transformed into an
optimization problem. An evolutionary algorithm is used to
try to solve this problem. The search space is formed by the
input domain of the test object (parameter data and global
variables). The objective function is based on the execution
time needed to execute the test object with the respective
input data. This time is either maximized for the search for
the worst case execution time (WCET) or minimized for the
search for the best case execution time (BCET).
Previous work [2] showed that ERTT outperformed manual
testing and random testing of timing constraints. However,
in experiments, it can be shown that the results of ERTT
are not always reliable. Different test runs produced dif-
ferent extreme execution times. Moreover, the number of
generations needed to find the extreme execution times is
usually high, even for simple test objects. This means that
this method is not efficient. Furthermore, not every part of
the test object was executed during the tests. Incomplete
coverage decreases the confidence in the test results because
the execution of the uncovered parts might lead to improve
the extreme execution times.
In order to increase the reliability and the confidence in the
results achieved by ERTT, we propose two methods to find
longer and shorter execution times in less number of gener-
ations and in a robust way. The first method is based on
seeding the evolutionary algorithm with structural test data
which help the evolutionary search to explore new regions in
the search space. Previous works [11, 2] suggest seeding the
initial population of the evolutionary algorithm with input

1917

data which contain information from the tester or informa-
tion about the pathology of the program. Our idea is to
seed the initial population with test data that lead to a high
structural coverage of the test object.
The second method is based on the idea that most of the
input and global variables are not used in their full data
type range. When restricting the range of these variables in
the initial population, the optimization process is guided to
regions in the search space where the range of the variables
is actually used. In doing this, more code is executed and
therefore the confidence in the results delivered by ERTT is
reinforced. In our experiments, we compare these two ap-
proaches with the standard ERTT.
This paper is structured in sections as follows: section 2 de-
scribes the ERTT. Section 3 shows the limitations of this
approach. The new designs of the standard ERTT used
to improve its reliability are explained in section 4 and 5.
Section 6 presents the experiments and their settings, this
includes the testing tools, the environment for testing the
real-time systems, the evolutionary algorithm settings, the
test objects and the analysis of the results. The last section
concludes the paper and gives insights on future work and
new ideas.

2. EVOLUTIONARY REAL-TIME TESTING
Time testing aims at finding input data for a given test

object which result in extreme execution times. For safety-
critical systems such as the airbag system of a modern ve-
hicle, the timing constraints play an essential role. It is not
acceptable that the system reacts after a specified time limit.
During time testing, it must be ensured that the maximum
and minimum time limits are satisfied by the function under
test.
The traditional test methods lack the property of automat-
ing test case generation. For this reason, evolutionary test-
ing (ET) is used. It can be applied to testing non-functional
properties, like safety testing, robustness testing and tem-
poral behavior testing. ET can also be employed for the
automation of existing test methods like functional testing,
structural testing or mutation testing [3].
With ERTT, the extreme execution times are searched for
using an evolutionary algorithm. This input domain com-
prises the parameter data and the global variables which are
referenced by the test object. Each individual represents a
particular value set for the input space of the test object.
For the fitness evaluation, the individuals are converted into
test data with which the test object is executed. The ex-
ecution time is measured and returned to the evolutionary
algorithm as an objective value.
The evolutionary algorithm uses these values to select promis-
ing individuals for recombination and mutation in order to
create better ones. Typically, the initial population of the
evolutionary algorithm is generated by random. The suc-
ceeding iterations of the algorithm try to improve this initial
data. The search usually is terminated if no improvement
of the extreme execution time can be achieved over a num-
ber of predefined generations or if a configured number of
generations has been reached (see section 6.3 for details).

3. LACK OF RELIABILITY
Although ERTT is more successful in finding the extreme

execution times than the traditional methods based on sta-

tic analysis, this method presents limitations. In order to
practically demonstrate them, experiments on the standard
ERTT were conducted (see section 6.3.1) on different test
objects (see table 1). The following observations have been
made:

• In order to have an idea on what are the parts of
the program covered during the ERTT, the structural
branch coverage of the individuals generated during
the search for the WCET has been measured. The av-
erage branch coverage achieved is 75%. This shows
that the results given by ERTT might not lead to
the WCET. Indeed, the execution of the correspond-
ing branches of the code which were not visited might
help to produce a longer execution time. This observa-
tion shows that the confidence in ERTT can be further
increased if a larger part of the source code is investi-
gated during the evolutionary search.

• The delivered execution times are not always the same
for the same test object. This is due to the different
conditions in the code of the test object which must be
satisfied in order to reach an extreme execution time.
For instance, if the true branch of a complex condi-
tion leads to an execution path which needs a large
amount of time during the execution, ERTT is suc-
cessful only when this complex condition is satisfied.
However, the objective function which is solely based
on the execution time does not direct the evolution-
ary search to satisfy this condition. Consequently, the
extreme execution time can only be found if the con-
dition is satisfied by random.
In figure 1, there is a common situation where the
evolutionary search is not able to access some control
statements. This happens because the search space
is too large and there is no strategy favoring the ex-
ecution of a certain branch in the control-flow graph.

Figure 1: The probability to execute the if state-
ment is very low since the search space is too large.

• The number of generations needed for the evolutionary
algorithm is high even for simple test objects. More-
over, this number is not always the same in all the test
runs. This means that the ERTT suffers from a lack
of efficiency.

In order to find better extreme execution times in a constant
number of generations, the evolutionary search has to access
new regions in the search space which were not executed by
the standard ERTT. We propose two modified designs of

1918

the standard ERTT. Both designs come from the idea that
if the individuals in the initial population can access new
regions in the search space, then this will help to find better
values for the longest and the shortest execution times in
the next generations. The first design is based on seeding
the initial population of the evolutionary algorithm with test
data which might cover regions in the code which were not
accessible by the standard ERTT. The second new design
does not use seeding but consists in restricting the range
of the input and global variables in situations like the one
described in figure 1. If the range of the integer input vari-
ables is restricted to the values 0 and 1, then the probability
of executing the if statement is much bigger than without
restricting the range of the variables.

4. EVOLUTIONARY REAL-TIME TESTING
USING SEEDING

The idea behind this work is to provide the evolutionary
algorithm with a high quality initial population to evolve
from and therefore orienting the evolutionary search to new
regions in the search space which might cover new parts in
the source code of the test object. The first strategy is to
seed the initial population of the evolutionary algorithm.
As the seeding should be efficient, the new evolutionary al-
gorithm settings should be different from the ERTT with
standard settings. For this standard configuration, the ini-
tial population is made of randomly generated individuals
in the search space.
In our work, the selected seeding strategy is to seed the ini-
tial population with input data achieved a high structural
code coverage. As described in section 3, some parts of the
source code in the test objects are never covered, the initial
population is seeded with test data which might access these
uncovered regions. In order to make sure that the seeded test
data really cover these new regions, a maximum structural
code coverage is performed prior to seeding. This ensures
that the seeded individuals could execute all the reachable
code.
Different coverage criteria exist for structural testing, for
instance path coverage. A 100% path coverage is achieved
when every possible path in the program is executed. Unfor-
tunately, path coverage is too resource-consuming because
of the significant computational time needed to test the in-
feasible paths. Moreover, the efficient automation of such a
method is difficult to achieve [5].
Branch coverage is another structural coverage criterion, it
consists in ensuring that each branch is traversed at least
once in the control-flow graph. Every statement and every
condition in the branches are executed. The automation of
such coverage method is relatively easy to do [1]. Branch
coverage testing was used in this work to generate the test
data for seeding, the testing tool which was used to do such
testing is the ETS-tool [10].
The branch coverage generates test cases. A test case con-
tains values for the input and global variables of the function
under test. These values are seeded in the initial population
of all the test objects. If the branch coverage generates a
smaller number of test cases than the number of individual
contained in the initial population, the remaining individu-
als are generated at random as it is the case for the stan-
dard ERTT. The opposite situation (number of test cases

generated bigger than the number of individuals) has never
occurred in our experiments and was therefore not handled.

5. EVOLUTIONARY REAL-TIME TESTING
USING RANGE RESTRICTION

The test objects used in the experiments present in their
sources situations where the input and global variables of-
ten don’t use the full range of their data type. Programmers
do not take into account this important detail when writing
a software. This results in a waste of computational efforts
during the optimization process and it might lead to prevent
the search from hitting the optimum since no search direc-
tion is preferred and the fitness function is only based on the
execution times. The example given in figure 1 shows that
if the range of the input variables is restricted to 0 and 1,
then the probability of executing the if statement is higher
than the case without range restriction because the search
space is smaller with the range restriction technique. The
test object N3 (see table 1) has 50 input and global variables
of different data types, the range restriction technique was
applied to 23 of them. The original search space bit size is
93 bits and the reduced search space bit size is 86 bits. The
ratio of the second number over the first one gives a very
small number which means that this method permits to save
up to 99% of the original search space.
The range restriction was manually applied in our work for
the test objects whenever it was possible. This was done in
a very careful way. It was only performed when it was clear
that a variable uses only a part of its data type. The expe-
riences with ERTT were done with the testing tool TESSY
(see next section). TESSY allows to restrict the range of
the input and global variables with specifying new bounds.
During the evolutionary search, the values of the variables
can only be between these bound.

6. EXPERIMENTS

6.1 Test Environment

6.1.1 Testing Tool TESSY
TESSY [12] is a software testing tool commercially avail-

able through Hitex. Its main characteristic is to provide a
support for different test activities for C-based programs.
These activities include test execution, test monitoring, test
evaluation as well as a systematic design of test cases, partic-
ularly for the functional test. The most important strength
of TESSY is that it provides support for the whole test-
ing life cycle. TESSY is a tool that can be used with-
out a profound knowledge of the C-programming language
and that permits the separation between the test quality
process and the software development process. TESSY fa-
cilitates the combination of black-box and white-box tests.
For black-box testing, test cases are determined using the
classification-tree editor CTE, a graphical editor for the de-
scriptive and systematic design of black-box test cases using
the classification-tree method [9].
In our work, TESSY was used to automate the temporal
test execution of the functions under test. The automation
of ERTT is first done by generating the test driver and es-
tablishing the communication between the testing host and
the target host. Working in an embedded environment is

1919

different from working in a native program development en-
vironment; the target host and the testing host system are
not on the same hardware as it is the case for desktop ap-
plications. In order to run an application in this specific
environment, a simulator or a target hardware is required.
Two hardware/software configurations have been used in
this project. This choice was made in order to test dif-
ferent software functions working on different platforms and
to make the experimental test environment be as close as
possible to the industrial one. The following configurations
have been used to simulate the real-time systems:

• The debugger-simulation environment fast-view66-win
from Hitex. It is a windows-based high level language
debugger for the C166-ST10 microcontroller families.
The C compiler used is the Tasking Compiler 16 bits.
It is a special embedded compiler used for a big range
of microcontrollers and microprocessors.

• A 32 bit microcontroller MPC555, a Motorola prod-
uct, it contains a floating point unit designed to accel-
erate the advanced algorithms operations necessary to
support complex applications. It is commonly used in
the automotive applications such as engine and trans-
mission control as well as robotics and avionics con-
trol. The compiler used with this microcontroller is
the DIAB complier from the company Wind River, it
creates executable files which will be downloaded on
the MPC555 target board.

Input
data

Execution
times

Fitness
values

Individuals

Testing tool TESSY

GEATbx

Testing host Target host

Test
driver

Test object

Figure 2: Host-Target configuration; communica-
tion between the testing tool TESSY and the test
driver.

Figure 2 shows the communication with the target host
during the optimization process. The evolutionary algo-
rithm is implemented in an application called the peanuts
server. The algorithms implementation is based on the Ge-
netic and Evolutionary Algorithm Toolbox for Matlab (GEATbx
[6]). The different phases of the evolutionary algorithm are
executed on the testing host. When the evolutionary algo-
rithm generates the relevant test data whose fitness values
(execution times) have to be computed, TESSY sends these

test data to the target board or the simulator. The longest
or the shortest execution times are measured on the target
host and sent back to the testing host computer in order to
perform the next steps (selection, recombination, mutation
and reinsertion) of the evolutionary algorithm.
For the fast-view66/tasking compiler configuration, the host
and the target are on the same computer, whereas the micro-
controller MPC555 is on an evaluation board (but installed
on the host computer as a peripheral). The host computer
used has a Pentium 4 2,66GHz processor, 760MB of RAM
and runs Microsoft Windows XP Professional.

6.1.2 Testing Tool ETS-tool
The testing tool used to generate the seeded test data

is the evolutionary testing system (ETS) tool. Its function
is to generate test data based on coverage criteria such as
statement, branch and condition coverage. It uses an evo-
lutionary algorithm to perform the structural coverage. In
prior works [10], it has been successfully applied to gener-
ate test data achieving a high structural coverage and it has
proven to outperform the structural random testing.

6.2 Test Objects
Table 1 contains software metrics describing the complex-

ity of the test objects. The CYC is the cyclomatic com-
plexity. It corresponds to the number of decisions plus one,
a high value corresponds to a complex control flow. The
maximum nesting level is the measure NL. KC is the Knot
Count which counts the number of break, continue, goto
and return statements. The number of logical operators is
described by the metric Myer’s Interval (MI). The ELOC is
the number of executable lines of code.
These test objects were chosen because they present different
structural properties. Some of them have a high cyclomatic
complexity value such as BK-4, A-3 and MUZ-11. These
examples present also high values for NL and KC. In fact,
most of the functions are relatively complex since they have
a cyclomatic complexity higher than 10. A recommended
maximum value of the cyclomatic complexity is 10 [4].

Name CYC NL KC MI ELOC
N4 71 7 32 101 293
N3 51 4 19 18 232
N11 50 4 0 22 320
N7 49 6 25 21 266
N9 44 17 6 2 157
N1 42 4 0 25 156
N10 29 8 0 8 86
N5 23 2 0 21 90
N8 23 4 16 21 110
N6 20 2 4 4 179
N12 10 2 0 10 35
N2 7 2 0 4 27

Table 1: Software structural measurements on the
tested functions. The test objects are ordered by
cyclomatic complexity value. These test objects are
used in the automotive industry.

6.3 Experiment Configurations
Each test object has been tested 10 times for the search

for the WCET and 10 times for the search for the BCET.

1920

For all the experiments, the same evolutionary algorithm
settings were applied. This was done in order to be able
to compare the outcome of the experiments. These settings
for testing the temporal behavior use the so-called Extended
Evolutionary Algorithms [7]. The idea is to use different
subpopulations. Each subpopulation follows its own search
strategy and competes with the other subpopulations. Six
subpopulations have been used, each of them contain 40 in-
dividuals, which makes 240 individuals in total. The input
variables are in integer format, the selection method is sto-
chastic universal sampling, and the selection generation gap
is set to 0.9, which means that a new generation is composed
of 10% of individuals from the former generation (parents)
and 90% from newly created individuals. Recombination is
done with the help of discrete recombination. Mutation has
also been applied. Each subpopulation is assigned a value
for the mutation range, the value used are 0.01, 0.05, 0.001,
0.005, 0.0001 and 0.0005. This ensures that subpopulations
are affected differently by mutation. Having different values
is important for a local and global search strategy. Since
there are parallel subpopulations, competition and migra-
tion are applied. Competition takes place every 10 genera-
tions, 10% of unsuccessful individuals in the subpopulations
are being transferred to successful ones. When the size of a
subpopulation reaches the number of 10, no further transfer
is done. Migration is used to make sure that information is
exchanged between the isolated subpopulations, which hap-
pens every 13 generations, and the best individuals (10%)
migrate from every subpopulation.
The objective function is the measurement of the execution
times of the test data. The termination criterion is the max-
imum number of generations decided by the tester. This was
done by experimenting after how many generations the op-
timization’s result was not improved (plus 30 to 50% of this
value). Such a decision was made with the help of a visual-
ization tool contained in TESSY. The time measure is the
number of CPU clock ticks that every individual needed.

6.3.1 Experiment 1 - Standard ERTT
In this experiment, the tester provides no indications to

optimization process. The initial population is created ran-
domly according to an internal procedure implemented in
the GEATbx matlab toolbox. The input variables use the
full range of their data type, which means that during the
optimization, the entire search space might be investigated.

6.3.2 Experiment 2 - ERTT with seeding
In this configuration, test data which achieved a high

structural branch coverage are seeded as described in sec-
tion 4. Table 2 shows the branch coverage achieved using
the ETS-tool. The achieved branch coverage is maximum,
the seeded test data cover all the reachable code in the test
objects.

6.3.3 Experiment 3 - ERTT with range restriction
The range restriction technique was applied to all test

objects as it is described in the section 5. For some test
objects, many variables were not using the full range of their
data type. Whereas for other functions, the range of only a
few variables was subjected to range restriction.

Name Branch Coverage
N1 93,42
N2 100
N3 96,7
N4 94,89
N5 97,44
N6 100
N7 100
N8 100
N9 93,02
N10 100
N11 94,79
N12 100

Table 2: Structural coverage of the test objects in %.
For some of the test objects, 100% coverage was not
possible because the functions contain unreachable
statements in their source code.

6.4 Experimental Results
During the experiments, the longest and shortest execu-

tion times, the standard deviation of the values found in the
different test runs and the number of generations needed to
reach such values were measured.

6.4.1 Longest Execution Time
Figure 3 shows the longest execution times for the test

objects listed in the table 1. For almost all test objects,
the configuration using seeding and the configuration us-
ing range restriction outperform the default configuration
of ERTT. The improvement ranges from 0% to 41%. Fig-
ure 4 shows that the number of generations needed to find
the longest execution time has been shortened in practically
all the examples in RR-ERTT and S-ERTT. Concerning the

Longest Execution Time- Values

0

50

100

150

ST-ERTT 46 13 147 176 117 58 55 24 42 50 33 52
RR-ERTT 48 13 158 178 122 61 77 32 59 50 35 52
S-ERTT 48 13 160 178 121 61 76 32 59 51 35 52

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

Figure 3: Longest execution time needed for all
the test objects, ST-ERTT corresponds to the stan-
dard ERTT configuration, RR-ERTT corresponds
to ERTT with range restriction and S-ERTT cor-
responds to the ERTT with seeding. For almost all
the test objects, a longer execution time was found
in RR-ERTT and S-ERTT.

1921

standard deviation of the values found in the 10 test runs
for the different test objects, the values found are bigger
than 0 in ST-ERTT, whereas in RR-ERTT and S-ERTT,
very small values are found (very close to 0). The extreme
values found are more reliable in the improvement methods
since the standard deviation is very low and they are more
efficient since the number of generations needed has been
decreased.
The results also show that in RR-ERTT and S-ERTT longer
execution times were found for most of the test objects ex-
cept for N2 and N12. For these two test objects, in all three
experiments, the same execution times were found. One ex-
planation can be that these two test objects have a relatively
simple structure (see table 1). However, there is a difference
in the results of the two methods, a shorter number of gen-
erations was needed for the test object N12 in RR-ERTT
and S-ERTT, this confirms the fact that the improvement
methods help to find more efficient results even if the same
execution times were found for all methods.
From the experiments, longer execution times were found
in S-ERTT. However, one can not be sure in advance if the
longest execution time found is actually the WCET. Indeed,
the longest execution time for N5 and N7 in RR-ERTT gives
a bigger value than in S-ERTT. This shows that although
the individuals forming the initial population in S-ERTT
achieved a high structural coverage, they might not always
help the evolutionary search to explore all parts of the code
as these individuals might be discarded if they are not fit in
terms of their objective value (the execution time).

Longest Execution Time- Number of Generations
Needed

0

20

40

60

80

100

ST-ERTT 75 1 82 93 55 21 96 74 67 42 54 33
RR-ERTT 1 1 15 16 20 8 22 2 9 16 24 2
S-ERTT 1 1 20 15 56 12 40 5 7 14 52 3

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

Figure 4: Number of generations needed to find the
longest execution time. For almost all the test ob-
jects, less number of generations were needed in RR-
ERTT and S-ERTT.

6.4.2 Shortest Execution Time
Figure 5 shows that in the three experiments, the same ex-

ecution time values were found for all the test objects except
for four of them. For these test objects (N4, N10, N11 and
N12), shorter execution times were found in S-ERTT, this
shows that the seeding method helps the evolutionary search
to explore new regions in the search space, which caused to

Shortest Execution Time- Values

0

50

100

150

200

ST-ERTT 16 10 117 148 95 35 9 6 14 19 183 39
RR-ERTT 16 10 117 147 95 35 9 6 14 19 173 39
S-ERTT 16 10 117 147 95 35 9 6 14 17 169 37

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

Figure 5: Shortest execution time needed for all the
test objects, a shorter execution time was found for
4 test objects out of 12 in S-ERTT.

find better optimum. The results found in RR-ERTT and
S-ERTT are also more robust since the standard deviation
is very close to 0 (see figure 6). The number of generations

Shortest Execution Time- Standard Deviation

0

5

10

15

20

ST-ERTT 0 0 1.5 0.97 0.6 1.26 9.15 2.5 0.5 1 20.3 0
RR-ERTT 0 0 0 0 0.6 0 0 0 0 0 8.74 0
S-ERTT 0 0 0 0.5 0.9 0 0.3 0 0 0 0.4 0

N1 N2 N3 N4 N5 N6 N7 N8 N9 N10 N11 N12

Figure 6: Standard deviation of the shortest execu-
tion times found between the different test runs. In
ST-ERTT, the standard deviation varies between 0
and 20. Whereas in S-ERTT and RR-ERTT, it is
very close to 0.

(figure not shown in this paper) needed to search for the
BCET can be higher in S-ERTT and RR-ERTT comparing
to ST-ERTT. This happens when the evolutionary search
needs more ’computational efforts’ to find the shortest exe-
cution time. Figure 7 shows an example of a possible ’short-
cut’ situation for the test object N7. The values for (a,b,c)
which lead to the shortest execution time are (1,0,0) because
evaluating a, b and c takes longer than evaluating only a.

1922

However, it was noticed that the seeded individuals in S-
ERTT present values for (a,b,c) = (1,1,1). Such individuals
were generated by the structural branch testing because in
order to execute the branch containing the if statement, one
of the variables must be evaluated to true, and if all of them
are evaluated to true, the branch is also traversed, the struc-
tural testing generated (1,1,1) and the branch was executed.
There was no need to generate the individual (1,0,0). Dur-
ing S-ERTT, the individuals with values for (a,b,c) which
are not equal to (1,0,0) might be discarded since their exe-
cution time can be further reduced. This explains why the
evolutionary search in S-ERTT might need a higher number
of generations in order to get out of the local optima (1,1,1)
and to find values for (a,b,c) = (1,0,0).

Figure 7: Situation of a possible ’shortcut’, if the
input (a,b,c) = (1,0,0) is not found, the shortest
execution time will not be reached.

7. CONCLUSIONS AND FUTURE WORK
The results of the conducted experiments confirmed the

expectations. The improvement methods showed that they
outperform the classical ERTT configuration. Longer and
shorter execution times were found in more robust and effi-
cient ways.
Concerning the search for the WCET, longer execution times
were found for almost all the test objects when these test
objects have complex structural properties. The number of
generations needed to find the longest execution times was
also noticeably reduced and the standard deviation of the
values found between the different test runs was decreased.
Although the results of the standard ERTT showed that
the shortest execution time was found for 66% of the test
objects. The seeding method and the range restriction tech-
nique helped to find shorter execution times for the rest of
the functions. They also helped to reduce the standard de-
viation, thus giving reliable and efficient results
Nevertheless, seeding with structural data shows the case
where the fitness function of the ERTT only computes the
execution time and does not take into account the struc-
tural properties of the seeded individuals. This results in
discarding some individuals that have interesting structural
properties. A future work might include a new design of
the fitness function which should account for the structural
properties of the individuals. For example, the fitness func-
tion will not only consist of the execution time, but also of
the ability of the seeded individuals to execute complex con-
ditions or to access different nesting levels.
Furthermore, experiments shall be performed to know after
how many generations and how often the seeding should be
done in order to check if this method has an influence on

the overall test performance. Given that some of the seeded
individuals which have interesting structural properties are
discarded during the search, it will be interesting to find
out what might happen if these individuals are seeded again
after a determined number of generations which will be in-
vestigated experimentally.
In our work, the branch coverage was used as a criterion
to generate test data for seeding. This choice has a limita-
tion. The branch coverage concerns only the execution of
the conditions as true and false, but it does not handle the
execution of all the possible values of the predicates forming
the conditions. This has an impact on the execution time
since it can differ depending on how many variables are eval-
uated in a condition. Other structural coverage criteria exist
[4], among which a more suitable coverage criterion should
be investigated. For instance, one could think of using the
multi-condition coverage criterion, this ensures the genera-
tion of test cases which will cover all the operands of a given
condition, thus helping to optimize the execution time. This
idea is applicable only if the testing effort is not very high
and if there exists support tools for the automation of this
method.

8. ADDITIONAL AUTHORS
Joachim Wegener: joachim.wegener@daimler-

chrysler.com.

9. REFERENCES

[1] I. Baxter. Branch Coverage Tools for Arbitrary
Languages Made Easy. International Software Quality
Week , (QWE 2002), September 2002.

[2] H.-G. Gross. An Evaluation of Dynamic,
Optimization-based Worst-Case Execution Time
Analysis. Proceedings of the International Conference
on Information Technology: prospects and Challenges
in the 21st Century May23-26, 2003.

[3] C. Haubelt, S. Mostaghim, F. Slomka, J. Teich, and
A. Tyagi. Hierarchical Synthesis of Embedded
Systems Using Evolutionary Algorithms. In
R. Drechsler and N. Drechsler, editors, Evolutionary
Algorithms for Embedded System Design, Genetic
Algorithms and Evolutionary Computation (GENA),
pages 5–9, Boston, Dordrecht, London, 2003. Kluwer
Academic Publishers.

[4] Y. Malaiya, N. Li, R. Karcich, and B. Skbbe. The
Relationship Between Test Coverage and Reliability.
In Proc. 5th International Symposium on Software
Reliability Engineering, pages 69–80, 1994.

[5] N. Mansour and M. Salame. Data Generation for Path
Testing. Software Quality Journal, 12(2):121–136,
2004.

[6] H. Pohlheim. Geatbx: Genetic and Evolutionary
Algorithm Toolbox for Use With Matlab.
http://www.geatbx.com/.

[7] H. Pohlheim. Competition and Cooperation in
Extended Evolutionary Algorithms. In E. D.
Goodman, editor, 2001 Genetic and Evolutionary
Computation Conference Late Breaking Papers, pages
331–338, San Francisco, California, USA, 9-11 July
2001.

1923

[8] P. P. Puschner and R. Nossal. Testing The Results of
Static Worst-Case Execution-Time Analysis. In IEEE
Real-Time Systems Symposium, pages 134–143, 1998.

[9] H. Singh, M. Conrad, and S. Sadeghipour. Test Case
Design Based on Z and the Classification-Tree
Method. In ICFEM ’97: Proceedings of the 1st
International Conference on Formal Engineering
Methods, page 81, Washington, DC, USA, 1997. IEEE
Computer Society.

[10] J. Wegener, A. Baresel, and H. Sthamer. Evolutionary
Test Environment for Automatic Structural Testing.
Information & Software Technology, 43(14):841–854,
2001.

[11] J. Wegener and M. Grochtmann. Evolutionary
Testing of Temporal Correctness. Proceedings of the
2nd International Software Quality Week
Europe,(QWE 1998), November 1998.

[12] J. Wegener and R. Pitschinetz. Tessy-Yet Another
Computer-Aided Software Testing Tool? Proceedings
of the Second European International Conference on
Software Testing, Analysis and Review EuroSTAR 94,
1994.

1924

