Reformulation of the Generation of Conformance Testing
Sequences to the Asymmetric Travelling Salesman Problem

Jitian Xiao, Chiou Peng Lam, Huaizhong Li, Jun Wang*
School of Computer and Information Science, Edith Cowan University,
2 Bradford Street, Mt Lawley, WA 6050, Australia

{j.xiao, c.lam, h.li, jwang}@ecu.edu.au

ABSTRACT

Protocol conformance testing generally involves checking whether
the protocol under test conforms to the given specification. An
important issue in protocol conformance testing is the generation of
test sequences in an efficient and effective way that achieves the
required fault detection coverage. This paper proposed an approach
for finding the shorter test sequences for protocol conformance
testing based on the Wp method. The approach provides a technique
for transforming the problem of the test sequence generation from a
given FSM into one of finding the shortest path in the asymmetric
travelling salesman problem by using one of the many existing
meta-heuristic algorithms for addressing TSP. The approach
addresses the issue of reformulation of Software Engineering
problems as search-based problems in Search-based Software
Engineering. The paper also shows that the resulting test sequences
will maintain the same fault detection capability as those of the Wp
method.

Categories and Subject Descriptors
D.2.4 [Software Engineering]: Software/Program Verification -
Formal methods, reliability.

General Terms: Algorithm, Verification, Reliability.

Keywords: Conformance testing, test sequence, Wp method,
TSP.

1. INTRODUCTION

Many systems such as communication protocols and control systems
can be modelled using the finite state machines (FSMs). Protocol
conformance testing generally involves checking whether the
implementation under test conforms to a given specification. A
sequence of inputs, generated from the specification, is applied to
the implementation and the outputs is verified as to whether the
expected sequence of outputs is obtained [1][3]. As the
implementation is a black box from a testing perspective, the
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protocol conformance testing problem is difficult to tackle
efficiently [1]. One of the most important issues in protocol
conformance testing is how to generate the sequence of inputs,
called the test sequence, in an efficient and effective way to achieve
the required fault detection coverage.

Many methods have been proposed to address the protocol
conformance testing problem [1][2][3][6]. Among these, the W-
method [4] and the improved Wp method [5] have attracted much
attention. Unlike other methods, the W-method and Wp method can
be applied to all protocols, and can guarantee the detection of any
output and transfer faults under certain conditions [4][5]. However,
these two methods assumed that the implementation under test has
reliable reset functions which is difficult to be realized for some
systems. If an implementation doesn’t have a reliable reset function,
alternative reset technique can be used to home the test sequence
[5]. In addition, the length of the generated test sequences using
these two methods are usually the longest amongst all methods.
Attempts to optimise the generated test sequences based on the Wp
method (i.e. shorter test sequences) include the use of the Rural
Chinese Postman (RCP) algorithm in a technique proposed in [3].

This paper proposed an approach for finding shorter test sequences
for protocol conformance testing based on the Wp method. The
approach provides a transformation technique for converting the
problem of the test sequence generation from a given FSM into one
of finding the shortest path in the asymmetric travelling salesman
problem (ATSP) using one of the many existing meta-heuristic
algorithms for addressing TSP. This paper, like some papers in
search-based software engineering, reformulates a software
engineering problem, (i.e. state machine testing), as a search-based
problem (i.e. the asymmetric TSP). An important issue, as indicated
in the discussion section with the proposed approach, is that the
resulting test sequences will maintain the same fault detection
capability as those of the Wp method when protocol conformance
testing is concerned.

2. RELATED WORK

Many approaches, such as Transition Tours (7-method),
Distinguishing Sequence (DS-method), Characterising Sequences
(W, Wp method) and Unique Input/Output Sequences (UIO, UIOv-
method) have been proposed previously to address the conformance
testing problem (see, for example, [1][2][3][5][6]). It has been
shown previously that the T-method does not have good fault
detection capability and very few protocols possess DS. The UIO is
also not applicable to all protocols; only the W-method and Wp
method can be applied to all protocols. As mentioned previously, if
there is no reliable reset function in the FSMs, the test sequences
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generated using the Wp method and the UIO method are generally
very long.

The UIO method was improved in [1] where the RCP technique was
proposed to replace the reset function whereby test segments are
connected into a continuous test sequence. The RCP approach was
also applied in [3] to the Wp method to produce an optimal test
sequence which includes all non-overlapping test segments. Other
attempts to produce optimal test sequences include some initial
attempts of [8][9] where the problem is first transformed and
mapped to an ATSP problem, followed by the applications of the
Hopfield Neural Network [9] or simulated annealing [8] technique
respectively. However, the work in both [8] and [9] are based on
multiple UIO test sequences.

Chen’s approach [3] involved generating test segments from the Wp
method as the first step. The second step checks if any pair of the
test segments from the first step can be overlapped. If so, a new test
segment is then constructed from the pair of overlapped test
segments. Lastly, RCP is used to connect the newly formed test
segments of step 2 in order to generate a minimum length test
sequence. The work in [8] and [9] first generate multiple UIO test
sequences. The node, n; of a TSP used here corresponded to a set of
sub-sequences that mapped to e;, one of the edges of the protocol.

A key issue in Search-based Software Engineering is the need to
recast software engineering problems into search-based problems. In
existing work involving structural testing, the problem of test data
generation is recast as a problem of searching for test inputs which
will satisfy a specified test adequacy criterion. For example, Harman
et al presented a testability transform that transform a code based
program with one or more exit statements into a structured branch-
covering equivalent program [11]. In the area of project planning in
software maintenance, Antoniol et a/ [10], recast the problem as one
of scheduling. While there is some very initial work involving
transformation of test sequence generation in conformance protocol
testing, none has involved transforming the problem of the test
sequence generation based on the Wp method into one of finding
the shortest path in the asymmetric travelling salesman problem.
Furthermore, it needs to be emphasized that although the resultant
test sequences were claimed as ‘optimal’ in [1][3][8][9], the
optimality was achieved in comparison to the original UIO and Wp
test sequences respectively. There is no guarantee that the shortest
test sequence can be obtained using these methods.

The proposed approach processes the test segments generated from
the Wp method to remove redundancy before generating the
resulting ATSP. This generally leads to shorter test sequences being
generated. This also reduces the complexity of the resulting ATSP,
ensuring that the computations involved with the test sequence
generation are greatly reduced.

TSP belongs to the class of computationally hard problems. The
problem involves finding the optimal (shortest) length of a tour
where a salesman starts at an initial city and visits all n cities in the
tour exactly once. Usually in a TSP, the distance between 2 cities is
the same in both directions but in an ATSP, the distances between
two cities can differ depending on the direction traveled. There are
many existing algorithms developed to address this class of
problem. These techniques can be divided into two categories: exact
algorithms that finds exact solutions but only work reasonably well
when the size of the problem is small (e.g. Branch and Bound
algorithm for TSP with 40-60 cities and Linear Search method

involving TSP with 120-200 cities) [13] and heuristics which will
find “good solutions with high probability (e.g. Nearest Neighbour
approach, k-opt, Simulated Annealing, ant system, genetic
algorithms and Neural Network).

3. PRELIMINARIES

A deterministic finite state machine (FSM) M is a quintuple (S, X,
Y, 8, A) where S is the finite set of states which includes the special
state s, called the initial state, X is the finite set of inputs, Y is the
finite set of outputs which includes “null”, 8: SxX —S is the
transfer function, A: SxXX —Y is the output function [6].

If functions & and A are defined for all (s;, X)) € SxX, the FSM M is
called completely specified. 1t is always possible to render a FSM
completely specified [2]. Therefore, without loss of generality, we
assume that the considered FSMs are completely specified.

The transfer function 6 and the output function A can be combined
to form a transition relation t. For (s;, X;) € SxX, if 8(s;, X)= s, and
MSi, Xj)= ¥n, a transition t(s;, X; sy y) in the transition set T is defined
as t: (s;, Xj) — (s, yn)- If M is completely specified, [S|=n, and [X[=m,
then [T|=nxm.

A labelled digraph G [1] is denoted as G = (V, E) where V is a set of
vertices and E is a set of labelled directed edges which link the
vertices. An edge e which starts from v; and ends at v; with distinct
label / is denoted by e(v;, v;, 1).

If V=S, and E includes an edge e(s;, sy Xy/yy) if and only if T includes
transition t(s;, X; s yy), then a digraph G(V, E) is a derived digraph
of the corresponding FSM M. Due to the equivalence of e and t, in
the following we will not distinguish between e and t, and will
subsequently denote the derived digraph of M as G(S, T), sometimes
called tramsition digraph. A transition digraph of an FSM M is
given in Figure 1.

The function 9§, function A and transition t can be extended to input
sequences. For completely specified FSMs, for a given state s; and a
given input sequence X ={X;, X, .., X,}, there is a transition
sequence: ty(;, X1, Sivt, Y1)s t2(Siv1s X2, Siv2, ¥2)s ++vs taSitn-ts Xny Siens Yo)-
We denote the transition sequence as f (s, X)= {t;, t, ..., t,}. On
the other hand, given a transition sequencelT , there is an input
sequence X which corresponds tof . Therefore, for simplicity and

without loss of generality, we frequently use f in the place of X .
Similarly, we denote the output sequence y =Msi, X)={Y1, Y2

yo} for a transfer 8(s, X )=si,. Note that the extension of the
definitions of & and A in this paper is slightly different from that in
[6]. In the derived digraph G(S, T), there exists an adjacent edge

sequence [ (Si’i ) ={ (i Sie1s X1/Y1)s (Siv1s Siv2s X2/Y2)seess (Siinets Sitns
Xo/yn)} corresponding to the transfer from s; to s;.,. We call £ a walk
of G from s; to s;.,,, while s; is the starting state and s;,, the ending
state of 7 .

An FSM is strongly connected if there exists a walk between any
pair of two distinct states s; and s;in its derived digraph. In this
paper, we assume that FSM is strongly connected which is also a
standard assumption for approaches based on the Wp method.
Strongly connected FSMs have complete reachability, i.e., there is
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always a feasible walk between two distinct states in the derived
digraph.

Figure 1. A transition digraph G(V, E) of M [3]

Two states in two FSMs are equivalent if they produce the same
output sequence for any input sequence. Two FSMs are equivalent
if and only if for every state in one FSM, there is an equivalent state
in the other FSM. An FSM M is minimal if all other equivalent
FSMs have equal or more number of states than M. An FSM M is
minimal if and only if there is no equivalent state in M [6].

Suppose that we are given a system which is specified by an FSM
M, and its implementation-under-test (IUT) is another FSM 1, the
problem to determine whether I is equivalent to M is called
“conformance testing” or “fault detection” problem. Similar to
[3][6], we assume that the specification FSM M and its
implementation FSM 1 are all minimal.A test sequence of the Wp
method can be partitioned into three parts: the prefix segment, the
transition to be checked and the suffix segment. The prefix segment
is an element of a state cover set Q which starts from the initial state
so and ends at the starting state s; of the transition to be checked.
Supposing that the transition ends at state s;, the suffix segment of
the test sequence is one of the elements of the state identification set
W;'. For example, in Figure 2, the state identification set for s, is
{(T5, T6), (TT)} .

In order to detect the transition T4, two test sequences have to be
generated: (T1,T2,T3,T4,T5,T6) and (T1,T2,T3,T4,T7). The prefix
segment is (T1,T2,T3), and the suffix segments are (T5,T6) and (T7)
respectively. The transition to be tested together with the suffix
segment is called the “test segment”. In Figure 2, [T4,T5,T6] and
[T4,T7] are two test segments to detect transition T4 (denoted by
Check(T4)" and Check(T4)?, respectively, in [3]). Note that we have
used the transition sequence to represent the corresponding input

sequence here.
6
TS5
sa
T7

Figure 2. Test sequences for a transition

@71@72@ T3 @m

! An identification set of a state sj is a transition set W; that has the
property that, for each state sy, sy # s; implies A(sy, W;) # A(s;,
W)).

J

4. AN OPTIMIZED TECHNIQUE TO
GENERATE TEST SEQUENCE BASED ON
THE WP METHOD

In this section, we describe our approach which will further
improve the results already reported in [3].

4.1 Problem Definition and Motivation

For a given transition digraph G of an FSM, we assume that there
are n test segments S; S, S, each consisting of a set of
transitions

S=(T, T, T, k=2, 1

According to Chen [3], if all test segments are to be tested
separately in a final test sequence 7, then 7 should appear in a
form of

78, L,S, ,LysS,
where Sﬂ1 ,Sﬁz ""’S”H S

”n

LS, @
is a permutation of S; S, S,
(i.e., m=r; when k= for I<k, j<n) and L, is a path
linking Sﬁk and S”H1 in G, k=1, 2, ..., n-1. The total length of
such a test sequence (in number of transitions) is

n n=l
C. = Z:length(S,,A )+ ;length (L)

k=1
n n-l (3)
=" length(S,)+ Y length(L,)
= =
Where length(S,) (length(L;), respectively) is the number of
transitions in path S; (L;, respectively). length(L;) is called the
cost of connecting S; and §; in G Let

s = ilength(SA ) )
k=1
and

= ”Z] length(L,) ®)

Then C,=s+I. We call [ the (total) cost of connecting test
segments in G. For a given FSM derived graph, s is a constant.

The goal of test sequence generation is to find a test sequence 7
such that C, as defined by formulae (3), (4) and (5) is minimized.
Chen’s work [3] tried to minimize / only. However it didn’t do
any reduction on s.

4.2 The New Approach

The generation of the shortest possible test sequence in the
context of this study is based upon Wp method. The problem of
transformation of the test sequence generation problem to ATSP,
followed by the generation of the TSP tour and final test
sequences involves four phases.

4.2.1 Phase 1: Generating Test Segments

For a given FSM M and its derived graph G, we produce a set of
test segments using the Wp method. Due to space limitations,
details relating to the generation of test segments using the Wp
method are omitted here. For a comprehensive example of this
step, refer to Chen’s work [3].
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4.2.2 Phase 2: Removing Overlapping Test

Segments

This phase reduces the number of the generated test segments
(i.e., n of formula (3)) in the final test sequence. If a test segment
is totally contained in another test segment (as a subsequence), we
simply remove it from the test segment set. We call the resultant
segment set the simplified test segment set, denoted by S.

4.2.3 Phase 3: Generating Segment Sequences

We concatenate a series of test segments if the end transition of
one test segment is the same as the start transition of another by
eliminating the overlapping start/end transitions. For example, if
two test segments are [T;, T,] and [T,, T;], respectively, then a
subsequence (T, T,, T;) in the final test sequence would cover
both test segments and will be shorter than that connecting both
test segments using any other links (for example, in a form of (2)).

In order to reduce the number of overlapping transitions between
consecutive segments in the final test sequence, we now define an
auxiliary weighted digraph, called segment graph, G, = (V,, E;,
w), to represent the relationships between transitions in the test
segment set. If a test segment starts at transition T; and ends at T,
then these two transitions are linked in G,. Formally, V; consists
of all testable transitions appearing in the simplified test segment
set S. For each test segment [7};, T}z, ..., Ty] €S, we define a
directed edge e = <T};, T;> <E;. The weight of such an edge e is
defined as the number of transitions in the corresponding test
segment, i.e., w(e)=k. If two or more test segments start from the
same starting transition 7;and end at the same ending state T;, we
define an edge in E, for each of these segments, and denote them
<T, T,—>l and <T;, ]}->2 , and so on. Intuitively, an edge in E; can
be explained as a path that bridges transitions from 7; to 7; within
the test segment [T, ..., T}].

Table 1. A set of test segments for the FSM M (from [3])
Starting Ending
State State
1 Check(T1)=[T1, T3] 1
Check(T2)=[T2, T8]
Check(T3)'=[T3, T1]
Check(T3)*=[T3, T2]
Check(T4)'=[T4, T1]
Check(T4)*=[T4, T2]
Check(T5)=[T5, T3]
Check(T6)=[T6, T8]

Test Segments

W= W[ [WIN W

=W (NN —

As an example, consider the set of test segments in Table 1 which
is generated for the FSM shown in Figure 1. As [T1, T3] is a test
segment (i.e., Check(T1)) in Table 1, by definition, there is a
directed edge <T1, T3> in its segment graph Gy, and the weight of
the edge, w;(<T1, T3>) =2 because there are two transitions in
the test segment. Other edges of G; can be defined similarly, and
we finally get a segment graph G,=(V, E;, w,) as shown in Figure
3, where V= {T, Ty, ..., Tg}; E;={<T,, T3>, <T,, Tg>, <T3, T;>,
<Ts, Tp>, <Ty, T>, <Ty4, T;>, <Ts, T3>, <Tg, Ts>}. The weights
are shown on the edges of the graph.

From the definition, a path consisting of k edges in G
corresponds to a sequence of & test segments in S such that the
end transition of the /™ test segment is the same to the start

transition of the (i+1)™ test segment, =1, 2, ..., k-1. These £ test
segments could be connected with no cost if we eliminate the
overlapping part (i.e., the start transition of each test segment,
except for the first segment, in the sequence) between them. If we
connect these £ segments as a sub test sequence and put it in the
final test sequence, not only the total cost of connecting those
segments in the sub sequence is reduced (thus reduced / in
formula (5)), but the total length of the test segments in the sub
sequence is also reduced (thus reduced s in formula (4)).

Figure 3. Segment graph G, for test segments of Table 1

As our goal is to find a shorter test sequence, we first concatenate
as many test segments as possible if they do not need any linking
transitions in the original FSM derived digraph, and subsequently
replace the test segments with their concatenated result in the test
segment set. In other words, we generate a minimum number of
concatenated test segments such that every test segment is
concatenated exactly once. It is evident that the generation of such
concatenated test segments is equivalent to the problem of finding
a minimum number of paths of G; that cover every edge exactly
once. We call each of these resultant test segments in G, an end-
overlapping segment sequence (EOSS).

An EOSS, S./\ , sz yees S./k , k>1, has the following properties:

(1) S_,-, is a test segment, 1< I<k;

(ii) The ending transition of S,-, is the same as the starting
transition of S./,‘. , 1 I€k-1.

Based on property (ii), for any EOSS S./\ ,sz yees S./’k (k>1), we

., trailing( S./k ),

called segment sequence, where trailing( S, ) is the sequence of

construct a sequence (S/, , trailing( S/, ), ..
J1 J2

transitions of S/, excluding the first transition of S, =2, 3, ...,
J1 1

k. The total length of such a segment sequence is:

k
length(S ;) + Zlength(rmiling(Sj, )
1=2
k
=length(S, )+ Z(length(Sjl )-1)
1=2
k
= length(S, )~ (k-1)
=1

By taking these segment sequences as a sub test sequence, we
reduce the length of the final test sequence by at least k-1, when
comparing with s in formula (4).

The algorithm (in C-like pseudocode) used to generate the set of
segment sequences is as below:

Algorithm SegSeq(G,)
Input: segment graph G;=(Vy, E;, w});
Output: segment sequences.
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BEGIN
For all nodes n;eV,
calculate indegree(n;) and outdegree(n;)*;
E=E;;
ss=1;
While (E # Q)
{V=V1;
print (“P”, ss, “: (”’); //new segment sequence
sst++;
Select a node n;eV of minimal indegree() and outdegree(n;)>0
{CurNode = n;; Print CurNode;
While there exists a node njeV such that <CurNode, n>€E
{Select anode n’€V such that
wi(<CurNode, n’>)=max;(w;(CurNode, nj>))
{print n’; Outdegree(CurNode) --; indegree(n’) --;
Remove <CurNode, n’> from E;
Remove CurNode from V;
CurNode =n’;

K}
}; //end of while
}; // end of select
Print (“) \n”); //Cur segment sequence ended.
}; //end of While
END;

Generally, there may not exist any single segment sequence that
goes through all edges of G; exactly once. In this case, we may
produce multiple segment sequences such that every edge of G, is
covered exactly once. For a given segment graph Gy, this strategy
may result in multiple solutions of segment sequences®. For
example, one such solution consisting of four segment sequences
is shown below (in the order of total weight of the edges in each
segment sequence) in Table 2 and Figure 4.

Table 2. Segment sequences for test segments in Table 1
Segment Sequence appearing in Figure 4
(T4, T1, T3, T2, T8) in thin solid arrowed lines

(T5,T3,T1) in thin dotted arrowed lines
(T6, T8) in thick solid arrowed lines
(T4, T2) thick dotted arrowed lines

Figure 4. A segment graph G, and its segment sequences
marked in different line types

2 The number of edges which start from a node is called the
Outdegree of the node. The number of edges which end at a
node is called the Indegree of the node

® The problem of selecting optimal solutions of segment sequence
set is beyond the scope of this paper and is thus not discussed in
this paper.

4.2.4 Phase 4: ATSP and Final Test Sequence

A test sequence can be generated by linking the above generated
segment sequences together. In order to produce a shorter test
sequence which covers these segment sequences, the linking
segments should be selected such that / in formula (4) is
minimized. To do this, we construct another auxiliary weighted
digraph G, = (V,, E,, w,) as below: Each segment sequence P=
(S;, ..., S;) forms a node in V,. For any pair of segment sequences
P1 and P2 (P1# P2), there is a directed edge <P1, P2> < E,.
Assume that the end state of P1 (i.e., the end state of the last
transition in P1)is sp; in the original FSM derived digraph G and
the start state of P2 (i.e., the start state of the first transition in P2)
is spyin G. Then due to the fact that G is strongly connected, the
directed edge <P1, P2> always exists and its weight is defined as
the number of transitions in the shortest path from sp; to sp; in G.
In particular, if sp; = sp,, the weight of <P1, P2> is 0, indicating
the two segment sequences P1 and P2 are linked end-by-end. The
shortest paths between pairs of nodes in the original FSM derived
digraph G that were used to link the segment sequences can be
generated using, for example, Dijkstra’s shortest path algorithm
[12].

As each segment sequence corresponds to a node in G, the
problem of finding the shortest test sequence which covers these
segment sequences can now be converted to finding the shortest
path from G, that goes through every node of G, exactly once. In
other word, the problem can be converted to the well-known
travelling salesman problem® (TSP) over G,.

Note that a TSP tour must exist in G, because Gj is also strongly
connected, i.e., for any pair of nodes P1 and P2 (P1# P2) in G,,
there is a directed edge <P1, P2> € E,. Once a TSP tour is found,
by breaking the tour from an edge with the highest weight in the
tour, we get a “shortest path”® that goes through every node of G,
exactly once.

The final test sequence is then produced by taking all transitions
along the shortest path, including those inside the nodes (i.e., the
transitions in the corresponding segment sequences) and those on
the edges (i.e., the transitions that link two consecutive segment
sequences). The algorithm is informally stated using the following
pseudocode:

Algorithm TestSeqGen(G)
Input: FSM derived graph G;
Output: test sequence of M.
BEGIN
1. Generate the test segment set, S, using Wp method from G;
2. /*Remove redundant test segments*/
For all pairs of test segments S;and S; €S
If'S; is totally contained in S;

remove S; from S;

3. Construct segment graph Gy; //see phase 3

> The traveling salesman problem is to find a minimum-cost tour
of a given graph, covering every node exactly once [22].

® The path generated this way may not always make it the shortest
TSP path, however, it is a practice heuristic to generate shortest
TSP path.
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4. Call SegSeq(G); /*generate the set of segment sequences
from Gy, see phase 3 */
5. Calculate shortest paths between pairs of states from initial G
(using Dijkstra’ shortest path algorithm); //see phase 4
6. Construct auxiliary graph G, ; //see phase 4
Generate TSP tour from G,; //see phase 4
8. /*generate final test sequence™/
/*for simplicity and without lose of generality, suppose the
generated TSP tour appears in <Py, P,, Ps,..., P.q, P >*/
Fori=1,2, ..., m-1 do
{Output transitions in segment sequence P;;
Output transitions on the shortest path between the last
state of P; and the first transition of Py,

~

1.
S
Output transitions in segment sequence P;
END;

4.3 An Example

The example shown here is taken from [3]. Consider an FSM M
represented by the transition digraph G which has been shown in
Figure 1. All the assumptions used in [3] are also adopted here.
Note that it was declared in [3] that only transitions T1, T2, ...,
T6 are required to be checked as these transitions represented the
main behaviour of the protocol. For comparison purpose, we have
also adopted this declaration.

A set of test segments for G as shown in Table 1 is obtained in
[3]. It is reported in [3] that an optimal test sequence for G in
Figure 1 has a total length of 23.

We now illustrate our proposed method of test sequence
generation by going through the algorithm TestSeqGen. We use
the FSM derived digraph G in Figure 1 as the specification FSM.

In Step 1, a set of test segments is generated based on the Wp
method. The generated test segments are listed in Table 1 (This
step is the same as that of Chen’s method [3] ).

Since no single test segment listed in Table 1 is totally contained
in any other test segment, Step 2 does no change the test segment
set. Thus S contains the same test segments as those found in
Table 1.

In Step 3, a segment graph G, for this example is constructed as
shown in Figure 3.

In Step 4, we produce the segment sequences that cover every
edge of Gy exactly once. Suppose that the execution of algorithm
SegSeq( ) generated segment sequences as below (note that,
depending on selection of the starting node, alternative solutions
may exist),

Py: (T4, T1, T3, T2, T8)
P,: (T5, T3, T1)

P;: (T6, T8)

Py (T4, T2)

and listed in Table 2. Note that P, is the concatenation of test
segments [T4, T1], [T1, T3], [T3, T2] and [T2, T8].

In step 5, the execution of Dijkstra’s algorithm generates the
shortest paths between pairs of nodes in the original FSM derived
digraph G. They are listed below, in Table 3.

Table 3. The shortest paths between pairs of nodes in G

state ® ® ®
@ %) (T (Ty)
@ (T3) %) (T3,Ty)
® (Ts,T3) (Ts} %)

In step 6, the auxiliary graph G, is constructed as below: there are
four nodes, each corresponding to one segment sequence
generated in step 4. The nodes are:

ni: (T4, T1, T3, T2, T8)
ny: (TS, T3, T1)

ny: (T6, T8)

ny: (T4, T2)

The end state of a segment sequence is the end state of its last
transition, and the start state of a segment sequence is the start
state of its first transition. Therefore the start/end state of each
segment sequence can be obtained from Table 1. Based on Table
3, we now work out the edges (and their weights as well) between
any pair of nodes in G, as below:

From n; to n3: The end state of segment sequence n,: (T4, T1, T3,
T2, T8) is state 3 in G (i.e., the end state of T8). The start state of
segment sequence n3: (T6, T8) is state D in G (i.e., the start state
of T6). By definition, there is a directed edge <n;, n;><E,, and
the weight of the edge is the number of transitions in the shortest
path from state 3 to state (D in the original FSM derived graph
G. From Table 3, this shortest path is (T5, T3). Thus the weight of
the edge is 2.

All other edge weights are calculated similarly, and are listed in
the Table 4. For ease of understanding, not only the weights of
edges but the shortest paths between nodes are also listed in the
table.

Table 4. Edge weights between nodes of G, (sp: shortest path
between nodes, w: weight)

n ny n3 Ny
w Sp w Sp w Sp w Sp
n 0 || 2@ty 1| (@
m| 0| & 2 M) o] @
m | 1] (T5 | 0| @ 1 | (T5)
| 1@ o o] 2] (@5m

For ease of tracking, the weight of each edge in Figure 5 is shown
by a sequence of transitions (instead of the number of the
transitions).

In step 7, a shortest tour of G, is generated using ATSP algorithm
found in [7]. One of the shortest path is shown in thick dotted
lines in Figure 5, i.e., ((T6, T8), (T5, T3, T1), (T4, T2), (T4, T1,
T3, T2, T8)) with total traveling weight 1, which corresponds to
only one transition, Ts as shown beside the edges of the paths in
Figure 5.

The transitions on the edges of the shortest path of G, are those
we need to link from one segment sequence to the next. In Step 8,
the transitions inside the nodes and those on edges along the path
are listed, and thus we get the following test sequence

T6,T8,T5,T3,T1,T4,T2,T5,T4,T1,T3,T2,T8
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where underlined transitions (e.g., TS5 in this example) are those
connecting consecutive segment sequences.
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Figure 5. G, with one of its shortest path marked in thick
dotted lines.

The shortest tour of a graph is, generally, not unique. For
instance, a different shortest path is shown in thick dotted lines in
Figure 6. This results in another final test sequence,

T6,T8,T5,T4,T1,T3,T2,T8,T5,T3,T1,T4,T2
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Figure 6. G, with another shortest path marked in thick dotted
lines

In both Figure 5 and 6, only one extra transition is needed to
connect segment sequences in the final test sequence. In fact, once
G, is given, the number of transitions used for linking segment
sequences of the final test sequence is fixed because the total
weight of the shortest path covering every node of G, exactly once
is fixed. Therefore, the total cost of connecting segment sequences
is fixed. As there is no cost in connecting test segments within the
segment sequences in phase 3, the total cost (i.e., /) of connecting
test segments is minimized.

As a comparison, the total length of the final test sequence
generated using our approach is 13 (as described above), while it
is 23 using Chen’s approach (see [3] for detailed test sequence
generation).

5. DISCUSSION

In Section 4, we converted the problem of finding the shortest
test sequence to finding a TSP path’ over the auxiliary graph G,.
In this section, we discuss some issues regarding our test sequence
generation approach.

Firstly, the TSP is NP-hard [12]. There exists a large number of
heuristics in literatures for solving TSP. The TSP algorithms can
be broadly divided into two categories: symmetric and
asymmetric. The symmetric TSP is a special case of asymmetric
TSP because the symmetric TSP heuristics deal with undirected
graphs while asymmetric TSP algorithms deal with digraphs. We
adopt asymmetric TSP in this paper.

Secondly, a TSP solution is a minimum-cost tour covering every
node of the graph exactly once. One of the easiest ways to
produce a TSP path from the TSP solution set is by breaking the
TSP tour (say, from an edge of the highest weight). On the other
hand, conformance testing requires that a test sequence start from
the initial state s, of the FSM derived graph G. If s, is the start
state of a segment sequence, once a TSP tour is produced, we can
simply break the TSP tour such that the first edge (or transition)
of the resultant TSP path starts from sy. This guarantees that the
generated test sequence starts from the initial state of the FSM M.
If s¢ is not the start state of a segment sequence, we can select a
segment sequence in the TSP tour such that the shortest path from
8o to the start state of the segment sequence is minimum (recall
that the shortest paths has been produced in Step 5 of algorithm
TestSeqGen( )). We then break the TSP tour before that segment
sequence of the TSP tour, and then add the shortest path from s,
as the initial path to the test sequence. In any of these cases, the
reset function is not required.

Theoretically, Phase 3 of our algorithm is optional. That is,
without this phase, it is still possible to generate the final test
sequence. However, phase 3 would reduce the number of nodes of
G, in Phase 4. As TSP is NP-hard, any reduction in the number of
nodes in G, would significantly improve performance of the
algorithm.

Finally, we show that due to the assumption that the specification
FSM and the implementation FSM are both minimal, the
exclusion of some test segments in Phase 2 and the concatenation
of segment sequences in Phase 3 do not affect the fault detecting
capability.

In the Wp method, an error is detected if there are some
unexpected outputs corresponding to inputs in a test segment. By
finding which test segment the error is detected, we can determine
the nature and the location of the error. Segment sequences in our
method have the explicit correspondence relation to those
segments in the Wp method. To show this, we only need to ensure
that any unexpected output which is detected by a Wp method test
segment will also be detected by the segment sequences generated
using our method.

The proof is trivial for conformance testing. It is obvious that our
test sequence can actually be viewed as a Wp test sequence for
each of the test segment, with alternative prefix segment and

7 A TSP path of a graph is a shortest path that goes through all
nodes of the graph exactly once [22].
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homing sequence. As the prefix segment and homing sequence in
a test sequence do not influence the fault detection capability of a
test segment in the test sequence, our test sequence has the same
fault detecting capability as each of its embedded test segments.
As a matter of fact, our test sequence can be viewed as a unified
test sequence for all the generated Wp test segments.

6. CONCLUSION

This paper has described a graph-based technique that reformulates
the problem of the test sequence generation based on the Wp
method for a given FSM into one of finding the shortest path in an
ATSP, thus enabling the use of one of the many existing meta-
heuristic algorithms in conformance testing. We first defined the
optimization objectives for generating the optimal test sequences.
Then we presented an approach to generate shorter test sequences in
a series of steps, each reducing the length of the final test sequence
in some way. The approach started with exclusion of redundant test
segments, followed by concatenation of test segments without
linking cost. The problem of finding the shortest test sequences was
finally converted to the well-known asymmetric TSP problem, of
which we have include URL of online TSP sources and
documentations. We have shown that our approach reduces the
length of the test sequences required for conformance testing while
maintaining the same fault detection capability.
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