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ABSTRACT 
The application of network analysis to emergent mating 
topologies in spatially structured genetic algorithms is presented 
in this preliminary study as a framework for inferring 
evolutionary dynamics in recombinant evolutionary search. 
Emergent mating topologies of populations evolving on regular, 
scale-free, and small-world imposed spatial topologies are 
analyzed. When the population evolves on a scale-free imposed 
spatial topology, the topology of mating interactions is also found 
to be scale-free. However, due to the random initial placement of 
individuals in the spatial topology, the scale-free mating topology 
lacks correlation between fitness and vertex connectivity, 
resulting in highly variable convergence rates. Scale-free mating 
topologies are also shown to emerge on regular imposed spatial 
topologies under high selection pressure. Since these scale-free 
emergent mating topologies self-organize such that the most-fit 
individuals are inherently located in highly connected vertices, 
such emergent mating topologies are shown to promote rapid 
convergence on the test problem considered herein. The emergent 
mating topologies of populations evolving on small-world 
imposed spatial topologies are not found to possess scale-free or 
small-world characteristics. However, due to the decrease in the 
characteristic path length of the emergent mating topology, the 
rate of population convergence is shown to increase as the 
imposed spatial topology is tuned from regular to small-world.  

Categories and Subject Descriptors 
I.2.8 Artificial Intelligence [Problem Solving, Control Methods, 
and Search]: Heuristic Methods 

General Terms 
Algorithms, Performance, Design, Experimentation 

Keywords 
Emergence, Genetic Algorithms, Mating Topologies, Network 
Analysis, Scale-Free, Self-Organization, Small-World 

1. INTRODUCTION 
There has been a recent surge of interest in modeling and 
analyzing interactions in complex systems as networks. Such 
analysis has provided an understanding of the mechanisms by 
which complex systems are generated and has offered useful 
insight into their dynamics and underlying topological structure. 
Many seemingly disparate systems, both natural and manmade, 
have been shown to possess “small-world” and/or “scale-free” 
topological characteristics. 
 
The realization that the topologies of many real-world systems 
possess similar attributes began with the seminal work of Watts 
and Strogatz [22]. Prior to this work, the connection topologies of 
real-world systems were typically modeled as either regular 
graphs or completely random graphs. However, Watts and 
Strogatz found that the interaction topologies of several 
biological, technological, and societal systems could not be 
captured by either of these models; these systems had 
characteristics that left them somewhere in the middle of the two 
extremes. In particular, these topologies were found to have a 
high degree of clustering among vertices, reminiscent of a regular 
graph, but a short characteristic path length between vertices, 
reminiscent of a random graph. In order to model such systems, 
Watts and Strogatz introduced a simple algorithm that produced 
networks with these topological characteristics and named them 
“small-world.” The neural network of the worm Caenorhabditis 
elegans, the collaboration topology of film actors, the power grid 
of the Western United States [22], email networks [6], and the 
cerebral cortex of primates [21] are just a few examples of 
systems that have been shown to possess small-world 
characteristics. 
Shortly after the introduction of small-world networks, Albert and 
Barabási investigated the connection topology of the World Wide 
Web (WWW) and found that the distribution of vertex 
connectivity did not follow the Poisson distribution predicted by 
the random and small-world models [2]. The connection topology 
of the WWW obeyed a power law, where the probability a given 
vertex had k connections was governed by the relationship P(k) ~ 
k-γ. This was an important finding as it showed that while the 
majority of vertices had very few links, a few vertices possessed 
the majority of links, acting as hubs in the network. These 
networks were termed “scale-free” and it was subsequently shown 
that this connection topology is quite ubiquitous in natural and 
manmade systems. The internet [20], human sexual interactions 
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[14], metabolic networks [10], protein-protein interactions [11], 
and semantic relationships between words in the English language 
[17] have all been shown to possess a scale-free distribution of 
vertex connectivity. 
Understanding the structural characteristics of interaction 
networks in complex systems has provided useful insight into 
their dynamics. The discovery of the scale-free distribution of 
vertex connectivity in the map of the internet provided an 
understanding of both the robustness of this system to random 
failure and its vulnerability to targeted attacks [3]. The finding 
that the distribution of human sexual interactions in Sweden 
obeyed a power-law provided insight into how to possibly design 
more effective methods for public health intervention and 
educational campaigns [14]. The shortcuts found in small-world 
networks, such as societal interactions, provided insight into how 
information spreads within a population [12], knowledge that has 
proved very useful to both epidemiologists and marketing 
strategists in understanding the spread of disease and consumer 
awareness of new products  
Analysis of the structural properties of spatial interaction 
networks in evolving artificial populations has received attention 
in the evolutionary computation and artificial life communities as 
well. There has been a growing appreciation for the influence of 
population structure on evolutionary dynamics in recent years; 
metapopulation (i.e. island model) [5] and cellular 
[1],[9],[15],[18],[23] spatial structures have been thoroughly 
studied and have proven useful in maintaining population 
diversity and curbing premature convergence. More recently, the 
effect of small-world and scale-free population structures on the 
dynamics of evolutionary algorithms has been examined, focusing 
primarily on the structural characteristics of the network of 
potential mating interactions (i.e. population structure). In 
particular, the evolutionary dynamics of populations evolving on 
scale-free imposed spatial topologies have been explored in the 
context of evolutionary game theory [13], and the evolutionary 
dynamics of populations evolving on both small-world and scale-
free imposed spatial topologies have been investigated with 
genetic algorithms (GA) [8]. However, network analysis has yet 
to be applied to the topology of actual mating interactions that 
emerge when a population evolves on a given imposed spatial 
topology. Distinguishing between the imposed spatial topology 
(IST) upon which the population evolves and the emergent mating 
topology (EMT) is important since it is ultimately the EMT that 
governs the dynamics of a population-based optimization 
algorithm in recombinant evolutionary search. Understanding the 
structure of the EMT may provide more direct insight regarding 
the adaptability of a population and the rate at which genetic 
information disseminates throughout a population. Thus, the EMT 
may prove to be the more relevant topology to investigate.  
In the following, the EMT of a generational GA is investigated on 
a variety of ISTs: regular graphs with various mating 
neighborhood sizes (from nearest neighbor to panmictic), small-
world graphs, and scale-free graphs. The primary goal of this 
preliminary study is to assess the structural characteristics of these 
emergent mating networks. None of the EMTs found were small-
world, but EMTs from both scale-free and regular ISTs with 
sufficient selection pressure were found to be scale-free, although 
with different relationships between fitness and vertex 
connectivity. A few preliminary results regarding some 
implications on evolutionary dynamics are discussed, although 

the relationship between the structural characteristics of the 
emergent mating networks and their function will be addressed 
more fully in future research. 
 

2. METHODS 

2.1 Network Analysis of EMTs 
EMTs were modeled as a labeled graph, G, with individuals 
represented as vertices v1,v2,…,vμ where μ is the population size. 
Mating interactions between individuals were represented as 
edges between vertices, captured in a symmetric adjacency 
matrix, A, such that ai,j = 1 if individuals i and j mate with one 
another in a given generation and ai,j = 0 otherwise. Edge 
multiplicity was ignored in this study, though this information 
could easily be incorporated by weighting each edge by the 
number of mating interactions that took place between two 
individuals.  

Three metrics were computed to assess the structural properties of 
the EMT: the probability distribution of vertex connectivity, P(k),  
the clustering coefficient C, and the characteristic path length L. 
P(k) is a probability distribution function that depicts the 
frequency with which a given vertex has k connections. For a 
given vertex i connected to ki nodes, the clustering coefficient of 
vertex i, Ci, is the ratio between the number of edges, Ei, that 
actually exist between the ki nodes and the number of edges that 
could potentially exist between the ki nodes. Thus,  
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where N is the total number of vertices in the EMT. L is defined 
as the number of edges in the shortest path between two vertices, 
averaged over all pairs of vertices. 

 An EMT was considered scale-free if a strong linear correlation 
between the logarithm of the probability of vertex connectivity 
(P(k)) and the logarithm of vertex connectivity (k) was found. The 
linearity of the correlation was determined by visual inspection on 
a log-log plot and quantified by the proportion of explained 
variation (R2) between log(P(k)) and log(k). Based on preliminary 
experimentation, an R2 > 0.96 was used as a threshold to delineate 
between scale-free distributions of vertex connectivity and non-
scale-free distributions of vertex connectivity (for lower R2, the 
log-log plots visually appeared decidedly non-linear, as in Fig. 1, 
open circles). An EMT was considered small-world if C >> Crand 
and L ≈ Lrand, where Crand and Lrand are the clustering coefficient 
and characteristic path length, respectively, of a random graph 
with the same number of vertices (N) and mean vertex 
connectivity (<k>) [22]. Metrics for random graphs were 
approximated analytically [22] as 
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2.2 Experimental Design 
A generational GA was used to optimize a single 100-variable 
binary knapsack problem in all experiments, wherein fitness was 
minimized. While preliminary experimentation using other binary 
knapsack problems and alternative benchmark fitness functions 
produced qualitatively similar results, attention is restricted herein 
to a single problem for the sake of clarity. The GA used single-
point crossover (pcross = 0.85) and bitwise mutation (pmut = 0.05). 
The single best individual was allowed to survive each generation 
without undergoing any genetic operations. Selection probabilities 
were assigned using a nonlinear rank-based function. The 
probability an individual of rank i was selected as a parent was 
calculated as  
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where N consists of all the individuals in the mating neighborhood 
of individual i and 0 ≤ α ≤ 1. Thus, parent selection was based 
solely on relative fitness; no assortative mating preferences were 
employed. Rank was ordered such that the most-fit individual had 
the lowest rank and the least-fit individual had the highest. A tie 
in rank resulted in equal probability of selection. Stochastic 
universal sampling [7] was employed as the selection mechanism. 
All experiments were performed in Matlab v.7.0 [16]. 
EMTs were analyzed on the following ISTs: regular graphs, 
scale-free graphs, and small-world graphs. These ISTs are defined 
as follows. The regular graph ISTs were represented as square 
lattices with periodic boundary conditions, with additional edges 
added between all vertices within rectangular neighborhoods of a 
specified mating radius (r) centered on each vertex i (including 
edges from a vertex to itself). Nearest neighbor interactions in a 
cellular genetic algorithm thus correspond to r = 1, k = 9, while 
panmictic GAs correspond to r = μ/2 – 1, k = μ (i.e., complete 
graphs). Increasing the size of the mating radius has the effect of 
increasing selection pressure.  
Scale-free ISTs were generated according to the preferential 
attachment model of Albert and Barabási [4]. The topology was 
created incrementally such that new vertices were sequentially 
added to the IST with a bias toward already highly connected 
vertices. Formally, the topology was generated by adding new 
nodes to the IST one at a time until a maximum number of 
vertices was reached. Here, the maximum number of vertices was 
simply the population size (μ) since only one vertex was needed 
per individual. When a new node was introduced to the IST, it 
attached to a node i having vertex connectivity ki with probability 
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Small-world ISTs were generated according to the rewiring 
algorithm of Watts and Strogatz [22], as follows. The IST was 
initialized as a ring of μ vertices where each vertex was connected 
to its k = 10 nearest neighbors. Each vertex was then visited one 
at a time in a clockwise fashion and the edge that connected that 
vertex to its nearest neighbor was rewired to a randomly chosen 
node in the topology with probability p. Duplicate edges were 
forbidden. The algorithm then considered edges joining more 
distant neighbors in the same clockwise manner. This process 
repeated itself until every edge had been considered for rewiring 
exactly once. Since edges are rewired at random, and from any 
given vertex there are more distant vertices than local vertices, 
such rewiring forms “shortcuts” in the topology. EMTs were 
analyzed from ISTs across the entire range of p ∈  [0,1], although 
only those in the middle of this range  (e.g., p ∈  [5e-3,1e-1]) 
have small-world characteristics. 
For experiments on all types of ISTs, the initial population was 
distributed randomly on the IST without regard to fitness (as in 
[8]) for the same ten random initial populations for each given 
population size and experiment (i.e., wherever possible, paired 
replications were performed in which experiments were initialized 
with identical initial populations). On each of these ISTs, ten 
replications were performed for each initial population, for a total 
of 100 trials per IST per experiment. Further details of the various 
experiments are provided in the next section. 
 

3. EXPERIMENTAL RESULTS 
3.1 EMTs from Regular ISTs 
EMTs were analyzed on regular ISTs with mating neighborhood 
sizes varied from nearest neighbor interactions to panmictic.  
EMTs were examined for both scale-free and small-world 
characteristics, as follows. 
For examining whether or not the EMTs were scale-free, we used 
a large population size of 102,400 individuals (320×320) in order 
to encourage the distribution, P(k), to span a greater range of k, 
since P(k) ≥ 1/μ. (However, smaller populations exhibited 
qualitatively similar topologies). Three values of α (α 
∈{1/5,1/3,1/2}) and 8 mating radii (r∈{1,2,3,4,5,10,50, 
panmictic} were investigated.  Increasing either α or the mating 
radius increases selection pressure.  
Selection pressure was found to affect the emergence of scale-free 
mating topologies when the population evolved on a regular IST. 
When α = 1/2, the EMTs from nearest neighbor interactions (r 
=1, k = 9) were not scale-free, while the EMTs from panmictic 
interactions (r = μ/2-1, k = μ) were consistently scale-free (Figure 
1, Table 1). For mating neighborhoods larger than strict nearest 
neighbor interactions (r ≥ 2, k ≥ 25), a scale-free topology 
consistently emerged for α = 1/2 and α = 1/3 (Figure 2a). 
However, for α = 1/5, selection pressure was too low to promote 
the emergence of a scale-free EMT for any mating radius (Figure 
2a). For all three values of α considered, the proportion of 
explained variation (R2) between the logarithm of P(k) and the 
logarithm of k briefly peaked for 2 ≥ r ≥ 5 (Figure 2a), but the 
importance of this trend is uncertain. Increasing either α or r 
decreased the parameter (γ) governing the scale-free vertex 
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Figure. 1. Distribution of vertex connectivity, P(k), of 
EMTs from regular ISTs with nearest neighbor 
interactions (r = 1, open circles) and panmictic interactions 
on a complete graph (r = μ/2-1, black dots). Data 
summarizes 10 replications for each of 10 different initial 
populations with α = 1/2, μ = 102,400. The best-fit line of 
the scale-free EMT is offset to the right for visual clarity. 
The horizontal dotted line represents the minimum 
possible P(k), which is equivalent to 1/μ. Note the log-log 
scale.  

connectivity distribution ( )( )P k k γ−  (Figure 2b).  That is, 

higher selection pressure caused higher connectivity in the hubs 
of the emergent scale-free mating topologies.    
 
In additional experiments (not shown), we found that as the 
absolute mating neighborhood size increased, the selection 
pressure increased, and the parameter governing the emergent 
power-law distribution of connectivity, γ, decreased, regardless of 
the overall domain size.  Thus, it appears that the absolute mating 
neighborhood size, rather than the relative neighborhood to 
domain size, governs the distribution of connectivity, P(k), in the 
scale-free EMT, since the absolute size of the mating radius 
determines how many potential mating interactions a given 
individual has.  
For examining whether the EMTs possessed small-world 
characteristics, experiments were limited to population sizes of 
2500, α = 1/2, and r∈{1,2,panmictic}, for computational reasons. 
As the size of the mating neighborhood increased, both the 
characteristic path length (L) and the clustering coefficient (C) 
decreased (Table 2). With small mating neighborhoods (r ≤ 2), L 
≈ 2.4⋅Lrand, so these cannot be considered small-world, while at 
the other extreme (panmixia) C ≈ 1.25⋅Crand, so these are also not 
small-world (Table 2).  It is possible that for some intermediate 
neighborhood size the EMT would be small-world, but this has 
not yet been demonstrated. 

 

3.2 EMTs from Scale-Free ISTs 
Scale-free ISTs were generated as described in section 2.2. In 
order to increase the speed of program execution, a sparse 
representation of the adjacency matrix of the scale-free IST was 
kept in memory at all times. Due to these memory constraints, the 
population size was limited to 10,000 individuals. In the 
generated scale-free ISTs, the parameter in the power law 
distribution of vertex connectivity was γ = 2.68 (R2>0.98). 

 

 
Figure 2. (A) Effect of increasing the mating radius (r) on 
the proportion of explained variation, R2, between the 
log(P(k)) and the log(k) for α = 1/2, α = 1/3, and α = 1/5, 
with μ=102,400. The dashed horizontal line represents the 
threshold used to delineate between scale-free and non-
scale-free distributions of vertex connectivity. (B) Effect 
of increasing the mating radius on the power law 
parameter, γ, governing the scale-free distribution of 
connectivity in the EMT. Data shown pertains to the 
EMT at the end of the first generation (t = 1). Note the 
log-scale on the x-axis. 
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As expected, EMTs from scale-free ISTs were also scale-free, 
although the slope of the average power law was steeper (γ=3.25, 
R2>0.97, Table 1) than in the IST. However, the relationship 
between the fitness of an individual in a given node and the 
connectivity of that node was markedly different between the 
EMTs found on scale-free ISTs and complete ISTs. In order to 
make a fair comparison of the evolutionary dynamics between 
these two, we ran an additional set of paired experiments using 10 
replications on each of the same 10 random initial populations, for 
μ = 10,000, α = 1/2. Figure 3 depicts the mean fitness of each 
individual with connectivity k, over all 100 trials evolving on 
complete ISTs and scale-free ISTs, at generations 1 and 1000. In           
the first generation (t = 1), there is already a strong positive 
correlation between good fitness and high vertex connectivity in 
the scale-free mating topologies that emerge from complete ISTs 
(Fig. 3, open circles), but not for the scale-free EMTs from scale-
free ISTs (Fig. 3, × symbols). This occurs because the scale-free 
EMTs from complete ISTs are self-organized, such that the more 
connected individuals inherently possess higher fitness, whereas 

in the scale-free ISTs, the mating neighborhood of a given 
individual was determined by its random initial placement.  
Regardless of their fitness, the highly connected individuals in the 
scale-free ISTs had more mating opportunities than the less 
connected individuals. This difference in correlation between 
fitness and vertex connectivity affected evolutionary dynamics, as 
discussed below.  
 

At t = 1000, the EMTs from scale-free ISTs have increased their 
correlation between fitness and vertex connectivity (Fig. 3, + 
symbols), as more-fit individuals have now had enough time to 
infiltrate the hubs of the IST, and thus become hubs in the EMT.  
Note that the maximum connectivity k also increases over time 
(see how the + symbols go farther to the right than the × symbols 
in Fig. 3), because fitter individuals in the hubs are better able to 
exploit the high connectivity of those hubs in the scale-free IST 
than their less-fit counterparts at t = 1.  

Table 1. Topological characteristics of emergent mating topologies (EMT) from various imposed spatial topologies (IST), with regard 

to whether or not the distribution of node connectivity ( )P k k γ−= in the EMT is scale-free.  An EMT is considered scale-free if the 
proportion of explained variation (R2) between log(P(k)) and log(k) is greater than 0.96.  For the scale-free EMTs, estimates of γ are 
shown as mean ± standard deviation over 100 trials. 

EMT  

μ Scale-free? γ R2 

Regular (r = 1) 102,400 No -- 0.92 

Regular (r = 2) 102,400 Yes 3.79 

± 0.05 

0.97 

Complete 102,400 Yes 3.24 

± 0.02 

0.97 

Scale-Free (γ=2.68) 10,000 Yes 3.25 

± 0.14 

0.97 

IS
T

 

Small-World 10,000 No -- 0.58 

 
Table 2. Topological characteristics of emergent mating topologies (EMT) from various imposed spatial topologies (IST), with regard 
to whether or not the EMT possesses small-world characteristics.  An EMT is considered small-world if L ≈ Lrand and C >> Crand.  
Estimates of connectivity (C) and characteristic path length (L) are shown as mean ± standard deviation over 100 trials with μ=2,500. 

EMT  

Small-world? C Crand L Lrand 

Regular (r = 1) No, L > Lrand 0.0084 

±2.5e-3 

0.0012 

±2.6e-5 

22.4144 

±1.14 

9.3749 

±0.09 

Regular (r = 2) No, L > Lrand 0.0083 

±2.7e-3 

0.0012 

±3.4e-5 

22.2672 

±1.77 

9.3613 

±0.16 

Complete No, C ≈ Crand 0.0015 

±8e-4 

0.0012 

±3e-5 

8.262 

±0.22 

9.218 

±0.10 

Scale-Free No, C < Crand 

 
0.0089 

±1.3e-2 

0.0210 

±6.3e-3 

3.6444 

±0.67 

6.6841 

±0.45 

IS
T

 

Small-World No, L > Lrand 0.0337 

±3.2e-3 

0.0040 

±1.5e-6 

18.7240 

±7.0e-1 

3.3977 

±3.5e-4 
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In contrast, scale-free EMTs from complete ISTs maintain a high 
correlation between good fitness and high vertex connectivity 
throughout the evolution of the population (compare Fig. 3 open 
and closed circles). This high correlation reduced convergence 
times on the complete ISTs relative to the scale-free ISTs. 
Surprisingly, in all 100 trials, populations on both complete and 
scale-free ISTs found final solutions with identical fitness (Fig. 
3), so at least in this test case the more rapid convergence on the 
complete IST was not detrimental relative to the scale-free IST. 
However, it is not yet known if this result is general. 

EMTs from scale-free ISTs were also examined for small-world 
characteristics. As with the regular ISTs, these experiments were 
performed on population sizes of 2,500 with α = 1/2. Although 
the average characteristic path lengths were actually shorter than 
those from random graphs (L ≈ 0.5⋅Lrand, Table 2), the clustering 
coefficients were also lower than in random graphs (C ≈ 
0.04⋅Crand, Table 2), so they cannot be considered small-world. 
 
3.3 EMTs from Small-World ISTs 
To investigate the EMT of a population evolving on a small-world 
IST, small-world ISTs with 10,000 vertices were generated as 
described in section 2.2 with each node initially connected to its k = 
10 nearest neighbors. Once again, this population size was chosen 
due to the constraints incurred by keeping the adjacency matrix of 
the IST in memory at all times. In order to make a fair comparison 
between the EMT and the IST upon which the population evolved, 
ten parental pairings were made in each mating neighborhood in an 
attempt to keep the mean vertex connectivity consistent between the 
two topologies.  

No scale-free EMT was ever found when the population evolved on 
a small-world IST for any p. However, only small-world ISTs with 
k = 10 were considered in this experiment. Increasing the initial 
vertex connectivity of the IST would increase selection pressure and 
may promote the emergence of scale-free EMTs as was found on 
regular ISTs with high vertex connectivity in section 3.1. 

Surprisingly, the EMTs from small-world ISTs did not possess 
small-world characteristics (Figure 4, Table 2). This occurred as not 
every link in the IST necessarily manifested itself in the EMT. That 
is, two individuals that had the potential to mate due to their 
proximity in the IST, did not necessarily mate and form a link in the 
EMT. This resulted in the EMT having fewer total connections than 
the IST upon which the population evolved, despite the fact that ten 
parental pairings were made in each mating neighborhood. Thus, the 
normalized characteristic path length in the EMT is always greater, 
and the normalized clustering coefficient in the EMT is always less 
than, those of the IST from which the EMT arose (Fig. 4). Note that 
for small-world ISTs (e.g., p∈[5e-3,1e-1]), the high clustering 
coefficient of the IST does not result in a high clustering coefficient 
in the corresponding EMT, so these EMTs cannot be considered 
small-world. For consistent comparison to the other ISTs studied, 
data for C and L are also reported for μ = 2,500, α = 1/2, p = 0.008, 
where it can be seen that L ≈ 5.5⋅Lrand and C ≈ 8.4⋅Crand, (Table 2), 
indicating that the EMT from the small-world IST is not, itself, 
small-world. 

In a separate experiment, the convergence rates of identical 
populations of μ = 10,000 evolving on regular ISTs with nearest 
neighbor interactions (r = 1, k = 9), small-world ISTs (p = 0.008), 
and complete ISTs (r = μ/2-1, k = μ) were compared. In all trials 
(data not shown), the convergence rates of populations evolving on 
small-world ISTs were more rapid than the convergence rates of the 
same populations evolving on regular ISTs (r = 1, k = 9). This result 
is consistent with [8]. Interestingly, the convergence rates of 
populations evolving on small-world ISTs were also higher than the 

 
Figure 3. Relationship between vertex connectivity, k, and 
fitness in EMTs from scale-free ISTs and complete ISTs at 
the end of generation one (t = 1) and one thousand (t = 
1000). Data summarizes ten replications for each of ten 
different initial populations with μ = 10,000. Fitness is being 
minimized. Note the log-scale on the x-axis. 

 
Figure 4. Comparison between the topological 
characteristics of small-world ISTs and the EMTs of 
populations evolving on these small-world ISTs for α = 1/2. 
Each data point represents the mean of ten replications for 
each of ten different initial populations. The characteristic 
path length (L) and the clustering coefficient (C) are 
normalized by the L and C of a regular graph (p = 0). The 
characteristic path length of the EMT is consistently higher 
than the characteristic path length of the IST upon which 
the population evolved, though they both follow the same 
trend. The clustering coefficient of the EMT remains low 
for all p, even when the clustering coefficient of the IST is 
high. Data shown pertains to the EMT at the end of the 
first generation (t = 1). Note the log-scale on the x-axis. 
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convergence rates of the same populations evolving on complete 
ISTs. Further, on this test problem, the populations evolving on 
small-world ISTs identified final solutions with better fitness than 
the final solutions obtained by the same populations evolving on 
either the regular or complete ISTs. This implies that the 
populations evolving on regular and complete ISTs were converging 
prematurely on local optima, although it is unclear as to whether this 
relationship is general. The relationship between the topological 
characteristics of the EMT and convergence warrants further study. 
 
4. DISCUSSION 
The goal of this preliminary study was to examine the network 
characteristics of emergent mating topologies in spatially structured 
genetic algorithms, specifically to see if they were small-world 
and/or scale-free. We found that the topological characteristics of 
emergent mating topologies can be quite different from the imposed 
spatial topologies upon which the population evolves. When the 
imposed spatial topology is scale-free, the emergent mating 
topology is also scale-free, but good fitness is not initially positively 
correlated with high connectivity. More interestingly, scale-free 
mating topologies were shown to emerge from regular graph 
imposed spatial topologies, as long as selection pressure was 
sufficiently high, and these exhibited a strong positive correlation 
between good fitness and high connectivity for at least 1000 
generations on the test problem. Scale-free topologies were never 
found to emerge when interactions were limited to nearest neighbors 
on a rectangular lattice, because the selection pressure was too low. 
Emergent mating topologies from a variety of imposed spatial 
topologies (including regular graphs with small mating 
neighborhoods, complete graphs (panmixia), scale-free graphs, and 
small-world graphs) were never found to exhibit small-world 
characteristics, although the reasons varied for the different imposed 
spatial topologies. Trends in the data hint that small-world 
characteristics may arise from intermediate neighborhood sizes on 
regular graphs, but this has not yet been demonstrated. These 
findings have implications for the study of evolutionary dynamics in 
both spatially structured GAs and spatially explicit artificial life 
simulations. 
Previous investigations of evolutionary dynamics on scale-free 
imposed spatial topologies [8],[13] have shown that if an individual 
of high fitness could successfully infiltrate one of the hubs of the 
scale-free topology, then that individual’s genetic information 
would disseminate rapidly throughout the population. However, 
when the imposed spatial topology is scale-free, there is initially no 
positive correlation between good fitness and high vertex 
connectivity. Here, we have shown that self-organizing scale-free 
mating topologies spontaneously emerge from regular imposed 
spatial topologies, and inherently have a strong correlation between 
good fitness and high vertex connectivity. Thus, in these self-
organizing scale-free mating topologies, fortuitous genetic 
combinations are quickly communicated throughout the population. 
Such swift dissemination of advantageous genetic information has 
implications for rapid, possibly premature, convergence.  
In [8], it was also shown that the rate of convergence of populations 
evolving on small-world imposed spatial topologies increased as the 
probability of rewiring (p) increased. This is due to the shortcuts 
that are formed in the spatial topology as edges are rewired, which 
decreases the characteristic path length and allows for the spread of 
genetic information over longer spatial scales. In the current study, 
we have shown that the emergent mating topologies from small-

world imposed spatial topologies are not, themselves, small-world 
due to their high characteristic path lengths and low clustering 
coefficients. However, since the characteristic path lengths of the 
emergent mating topologies do decrease with increased probability 
of rewiring, increasing p nevertheless has the effect of increasing the 
population convergence rate. 
We also found that the spatial scale of individual mating interactions 
directly affected the structure of the emergent mating topology. As 
expected, our results confirm that the localization of individual 
interactions (commonly employed in both cellular genetic 
algorithms [1],[9],[15],[18],[23] and artificial life simulations [19]) 
gives rise to a long characteristic path length in the emergent mating 
topology. As a result, genetic information remains quite localized 
and travels slowly across longer spatial scales, giving rise to 
fundamentally different evolutionary dynamics than found in 
randomly mixing populations. Further, the results of this study show 
that the connectivity distribution, P(k), of scale-free emergent 
mating topologies from regular imposed spatial topologies is 
governed by absolute, as opposed to relative, mating neighborhood 
size. Since different absolute mating neighborhood sizes produce 
emergent mating topologies which yield dramatically different 
evolutionary dynamics, the results of this study suggest that care 
should be taken in choosing biologically meaningful mating 
neighborhoods in spatially explicit artificial life simulations. 
 
5. SUMMARY 
In recent years, there has been a growing appreciation for the 
important influence of spatial relationships on evolutionary 
dynamics. Consequently, a variety of spatially explicit imposed 
population structures are being explored for use in GAs [1],[8],[23]. 
Our results, while preliminary, indicate that analysis of the network 
characteristics of the emergent (rather than imposed) mating 
topologies may provide valuable insight regarding evolutionary 
dynamics in populations, both natural and artificial. This method 
can expose underlying similarities and differences in the 
evolutionary dynamics produced on various disparate imposed 
spatial topologies. While the main focus of this study was to 
understand the structural characteristics of the mating topologies 
that emerge from various imposed spatial topologies, future 
endeavors will more fully explore the relationship between the 
structure of these emergent topologies and evolutionary dynamics. 
Further, future work will expand upon the results presented in this 
preliminary study by investigating emergent mating topologies and 
their dynamics on a broader range of test problems, and using 
alternative ranking functions and selection operators. We are 
particularly interested in the implications for adaptability in 
changing environments.  
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