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ABSTRACT

This research examines the behavior of inoperative code (in-
trons) in the evolution of genetically robust solutions. Ge-
netically robust solutions are solutions that are less likely to
be degraded by genetic operators, such as crossover. Pre-
vious work has shown that there is significant evolutionary
pressure in favor of genetically robust solutions and that
evolving programs adopt a number of strategies to increase
genetic robustness, notably an increase in inoperative ‘genes’
(individual genetic units that don’t influence fitness) and a
preference for ‘genes’ with a relatively small effect on fitness.
Here we examine the role of genes that cancel each other
out. We find that allowing such ‘canceling genes’ leads to
an overall increase in the rate of code growth, both through
the inclusion of self-canceling code and through a general
increase in introns. Finally, we find that the evolution gen-
erally follows a two-step process. Initially the operative code
evolves rapidly to achieve a (near) optimal fitness. Then, the
inoperative code begins to evolve most rapidly to increase
robustness. In an extreme case of a problem that can be
solved with no operative genes, individuals evolve by losing
all operative genes and then losing all inoperative genes.
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1. INTRODUCTION

Genetic robustness is a measure of the invariance of fit-
ness when an individual undergoes genetic changes [3]. In-
dividuals with a smaller expected variance are more robust
than individuals with a larger expected variance. The defin-
ition is based on fitness (rather than behavior, performance,
phenotype, or another related measure) because in genetic
programming (GP) it is typically the fitness of the offspring
that determines the offspring’s probability of survival.

Research has shown that there is significant evolutionary
pressure to evolve genetically robust solutions and that this
pressure has a significant effect on the course and trajectory
of evolution. The most obvious and well documented effect
is the phenomenon of code growth (or bloat) in genetic pro-
gramming (GP) [5, 2, 13, 11, 22, 10, 13, 14, 12]. Recently it
has been shown that the pressure for robustness also influ-
ences which genes dominate the evolutionary process. Given
multiple genes with similar affects those genes that produce
more resilient individuals will tend to replace genes that pro-
duce less resilient individuals [19, 24, 18, 1]. Finally, several
experiments have shown that pressure for robustness may
cause evolution to favor individuals with lower fitness, but
higher robustness than individuals with higher fitness and
lower robustness [19, 20].

All three of these effects (code growth, gene choice, and
preference for less fit, but more robust, solutions) are signif-
icant to the GP practitioner. Thus, it is important to un-
derstand how pressure for robustness influences the course
and trajectory of evolution. In particular, to understand the
different strategies that are adopted by evolving individuals
to increase their robustness. Because the most obvious and
arguably the most significant effect is code bloat, consider-
able research has been devoted to understanding the causes
of code bloat. Recent research has focused on the role of
different types of genes and genetic structures in contribut-
ing to bloat. In this paper we examine the role of ‘canceling
genes’, genes that cancel each other out in the evolution of
robustness and bloat. Our goal is to better understand how
different types of code contribute to bloat and thereby to
develop representations that eliminate or at least reduce the
biggest contributors.

2. BACKGROUND

Code bloat is a rapid increase in code size that does not re-
sult in fitness improvements. The extra code usually consists
of introns (code that does not contribute to the program’s
fitness). Early research into the code bloat phenomenon
focused on the role of introns - code that did not effect fit-



ness. However, Luke [10] has argued that introns themselves
are not the cause of code growth. Smith and Harries have
shown that growth can occur in code that does influence
fitness (exons) if the exons only have a negligible effect on
performance [17]. More recently, Soule has shown that code
growth can occur even with exons that have a significant im-
pact on the programs’ fitness [18]. Research by Besetti and
Soule has shown that in GP the number of different functions
increases at significantly different rates [1]. For example, in
a typically symbolic regression problem the number of divi-
sion functions increased twice as rapidly as the next most
common function (multiplication).

This research makes it clear that different types of code do
contribute to code bloat. Thus, the next question is whether
all types of code contribute equally. Several taxonomies of
GP code have been previously proposed. Nordin, Francone,
and Banzhaf introduced a taxonomy of intron types for their
linear GP system with 5 code categories based on whether
changing the given code could affect the program’s behav-
ior [14]. Smith and Harries adopted this taxonomy for tree
structured GP [17]:

1. Type 1: changes to the code region cannot change
the program’s behavior for any input in the problem
domain.

2. Type 2: changes to the code region cannot change the
program’s behavior for any input in the training cases.

3. Type 3: code does not contribute to fitness and re-
placing the code region with a no-op will not change
the program’s behavior for any input in the problem
domain (replacing the code with something other than
a no-op could change the behavior).

4. Type 4: code does not contribute to fitness and replac-
ing the code region with a no-op will not change the
program’s behavior for any input in the training cases
(replacing the code with something other than a no-op
could change the behavior).

5. Type 5: code has a negligible effect on fitness.
Soule introduced a general taxonomy for code types [21]:

1. Operative code: code that effects fitness, changes to
the code are likely to change fitness.

2. Inoperative code: code that does not effect fitness
(code that could be replaced by a no-op without chang-
ing fitness), but that is likely to effect fitness if modi-
fied.

3. Inviable code: code that cannot effect fitness even if
changed.

4. Viable code: code that could effect fitness if changed.

Note that under this taxonomy inviable code is a proper
subset of inoperative code and operative code is a proper
subset of viable code.
A typical example of Type 1 or inviable code is the code
labeled SUBSECTION in the following code fragment:
IF(FALSE)THEN(SUBSECTION)
The subsection is inviable because it is never executed.
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Table 1:

Summary of the evolutionary algorithm

parameters.
Objective Target (see text) = 50
Integer values 0,1,4,-1,-4
Population Size 500
Crossover 0.9
probability
Mutation 0
probability
Selection 3 member tournament

Run Time

1000 Generations

Maximum Size

None

Elitism 2 copies of the best
individual are preserved

Initial Random individuals

Population of length 5 to 59

Number of trials

200

Crossover type

Constant (see text)

A typical example of type 3 or viable, but inoperative
code, is the expression +(Y —Y) in the following code frag-
ment:

X+ (Y -Y)

The section +(Y — Y') has no effect on fitness because the
two Y’s cancel each other out. Replacing +(Y —Y') with a
no-op will not effect fitness, but any other change to the code
section is likely to have an effect. A less typical example of
this type of code is:

Y4+ (.)-Y

Again the two Y’s cancel each other out and do not con-
tribute to fitness.

The protective value of Type 1 or inviable code is obvious;
changes to this code will not effect fitness. Thus, it is a likely
candidate for causing bloat. The protective value of Type 3 -
viable, inoperative code - is less clear. Moving whole sections
of this type of code will not effect fitness, e.g. inserting
or removing +Y — Y can’t change the individual’s fitness,
but changes within a section could change the individual’s
fitness.

Research has shown that operative code, the code that
actually contributes to fitness, is generally not a major con-
tributor to bloat. Most bloated code consists of inoperative
code including types 1, 2, 3, 4, and 5. The goal of this paper
is to determine whether type 3 and 4 code (viable, inoper-
ative code), contributes significantly to bloat. In particular
there are two questions we would like to answer:

1. Does type 3 and 4 code (viable, inoperative) bloat?

2. If type 3 and 4 code bloats, does it increase the overall
growth rate? l.e. is the bloating of type 1 and 2 code
additive with bloating by type 1 and 2 (inviable) code?

Specifically we examine the role of canceling genes, e.g. +4
and -4 when used with addition.

3. EXPERIMENT

To answer the questions proposed above we need a GP
system that gives the user control over the types of code
that are possible. Soule designed an experiment that uses
strings of variable length to examine the code growth of dif-
ferent code types [20, 19]. In that experiment, the goal was



to find a set of integers that sum to a given target value T.
The allowed integers were 0, 1, 4. Individuals are variable
length strings consisting of those three integers. The fitness
of an individual is the absolute value of the difference be-
tween the sum of the integers (the individual’s value) and
the target value, i.e. fitness = |value — T'|. For example,
the individual 10401 has value 1+0+44+ 0+ 1 = 6 and
fitness |6 — T'|. Clearly a lower fitness is better.

The advantage of this very simple evolutionary represen-
tation is that the types of code are fixed. 1s and 4s are oper-
ative (exons) as they always affect fitness. Os are inoperative
(introns). If mutation is not used then Os approximate invi-
able code (types 1 and 2) because most crossover operations
will simply exchange 0s. (Note that for this system types 1
and 2 are equivalent, as are types 3 and 4, because there is
only one fitness case.)

To approximate tree based crossover in this linear system
a special form of crossover tailed for variable length strings
known as constant crossover was used. In this crossover
method, the length of crossed region [ is chosen according
to the following algorithm:

=2

While(l < L/2 AND random real < 0.5)

l=1%2

where L is the length of the parent individual. Thus, the
size of the region selected for crossover is 2 ‘genes’ long 50%
of the time, 4 genes long 25% of the time, 8 genes long
12.5% of the time, etc. Crossing short regions is very com-
mon and crossing longer regions happens infrequently. Once
the length of the crossed region is generated the left-hand
crossover point is randomly selected, the right-hand point
is [ beyond the left-hand point. This form of crossover is
referred to as constant crossover because the distribution of
lengths of the crossed region is constant, regardless of the
parent’s size.

Constant crossover is analogous to crossover in tree based
GP. In standard tree based GP crossover a random point is
chosen for crossover. For full binary trees this results in an
average crossover branch consisting of two nodes regardless
of the tree size [4, 16]. Larger branches are exponentially
less likely to be chosen for crossover. In practice, GP usually
leads to randomly shaped trees rather than full trees [15, 7].
However, the distribution of crossover points still heavily
favors small branches [23] and using the 90/10 rule (choosing
leaf nodes for crossover only 10% of the time) only slightly
shifts the distribution towards larger branches [23]. Thus,
the distribution of crossover sizes with constant crossover is
comparable to those seen in tree based GP; both emphasize
exchanging small branches.

To introduce the possible of type 3 code (inoperative, but
viable) we only need to introduce two new (negative) inte-
gers: -1 and -4. The other parameters are given in Table 1.

4. RESULTS

Figure 1 shows the total code growth for the ‘gene’ sets
(0, 1, 4) and (-4, -1, 0, 1, 4). The populations start with
individuals of the same average size (i.e. individuals in both
initial populations are generated using the same algorithm),
but an overall increase in the rate of code growth is observed
with the set (-4, -1, 0, 1, 4). Two factors contribute to the
larger average size. First, the population with ‘canceling
genes’ (-1 and -4) jumps from the (average) size of 30 to 50
within a few generations. Second, the overall growth rate
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Figure 1: Comparison of code growth with and with-
out canceling genes. Inclusion of -1s and -4s leads
to an overall increase in the rate of code growth

when the canceling genes are included is more rapid. The
first factor, the rapid initial jump, is easy to explain. With-
out canceling genes the average individual value in the initial
population is roughly 50, the same as the target value. With
canceling genes the average value in the initial population is
zero, because an individual is equally likely to contain 1s or
-1s and 4s or -4s. Thus, individuals that have above average
numbers of positive genes, which tend to be larger overall,
are selected and there is a rapid jump in average size. Once
the target value is reached (within a few generations) this
pressure is removed and size ceases to grow as rapidly. The
second factor, steady growth that is more rapid than in the
case where the canceling genes are absent has two possible
causes. Either the inoperative pairs (1 and -1, and 4 and
-4) are being preferentially included, increasing the overall
growth rate, or the number of Os is increasing more rapidly
when -1 and -4 are included in the set of allowed values.
These possibilities are explored further below.

Figure 3 show the average number of 0s, 1s, and 4s when
canceling genes are not included and Figure 2 shows the av-
erage number of Os and the average number of all 1s (positive
and negative) and the average number of all 4s (positive and
negative) when the canceling genes are included. Figure 3
shows a rapid increase in Os and a replacement of 4s with
multiple 1s (i.e. the number of 4s tends towards zero and
the number of 1s increases towards the target value). Fig-
ure 2 shows a similar, but slightly more rapid, increase in
the number of 0s. This difference is significant (Student’s
t-test, t = 3.48, P < 0.01) meaning that the inclusion of
canceling genes significantly increases the rate of growth of
Os.

Figure 2 shows that the number of positive and nega-
tive 1s increases throughout all 1000 generations. The total
number of positive and negative 1s in generation 1000 (Fig-
ure 2) is significantly greater the number of positive 1s alone
(Figure 3) (Student’s t-test, t = 24.6, P < 0.01). Similalry,
the number of positive and negative 4s decreases much more
slowly than the number of positive 4s when negative 4s are
not included (Figure 3) (Student’s t-test, t = 11.2, P <
0.01).

Thus, the more rapid growth when canceling genes are
included does have two causes. One, inoperative code, rep-



resented by -1,1 pairs, increases significantly. Two, the
amount of inviable code, represented by 0s, increases more
rapidly. The first cause clearly shows that evolutionary sys-
tems will increase inoperative, but viable code. The sec-
ond cause implies that there are synergistic relationships be-
tween different code types than can further increase growth
rates.

Figure 4 shows the average number of each gene type (0,
-4, -1, 1, 4). It shows almost parallel code growth between
each pair of canceling genes (1 and -1, or 4 and -4). Close
inspection shows that there is a slight increase in the gap
between the small effect canceling genes (1 and -1) and a
slight reduction of the gap between the large effect canceling
genes (4 and -4). This appears to confirm that there is a
preference for genes with a relatively small effect on fitness.

The affect of canceling genes on the evolutionary dynam-
ics is further examined by excluding Os from the ‘gene’ set.
Figure 5 shows the average number of each gene type in this
case. Comparing Figures 5 and 4 reveals a number of simi-
larities and differences. In both figures the number of small
effect genes (1s and -1s) increases rapidly, but the growth
is significantly more rapid when Os are not included (Stu-
dent’s t-test, P < 0.01 for both positive and negative 1s).
This suggests that in the absence of inviable code the evolu-
tionary process grows the available inoperative, but viable,
code more rapidly to compensate. In the absences of Os the
number of 4s and -4s increases, but much less rapidly than
for the 1s and -1s. The number of 4s and -4s in genera-
tion 1000 is significantly different depending on whether or
not zeros are included (Student’s t-test, P < 0.01 for both
positive and negative 4s). Towards the end of the run the
number of 4s and -4s does level off and it appears that given
a longer run they might decrease. This further supports the
hypothesis that the evolutionary process is favoring individ-
uals using the small effect genes.

All the results above are from a target value of 50 (T=50).
An interesting case to explore is T=0. In this case no op-
erative genes are required to achieve the target value. We
found that for T=0 solutions eventually lose all operative
genes (rather than, for example, keeping canceling pairs).
Even more interesting, after all operative genes are lost, all
inoperative genes are also lost, resulting in individuals of
size 0.

Figure 6 shows the number of Os for three small target
values (0, 1, and 5). In all three cases all operative genes
are eventually lost. In the case of target values of 1 and 5
this means that the population converged on solutions that
were sub-optimal (1 and 5 respectively - 0 is optimal). The
number of Os behaves differently across the three cases. The
number of Os either goes to 0, stabilizes at some small value,
or grows, depending on the target value.

Two factors working together explain this phenomenon.
First, short ‘gene’ sequences evolve during early generations.
Under a small (absolute) target value, a sequence of a few
operative genes is sufficient to achieve a high fitness. Thus,
since it takes time to evolve robustness, most surviving se-
quences during the early generations are short. Second,
in this paper the generic operation only involves crossover,
there is no mutation. This makes an accidental loss of a
certain ‘gene’ type in the population a permanent loss. As
such permanent losses accumulate all operative genes are
eventually lost.
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Figure 2: Average code size with canceling genes
(paired). Os increase most rapidly, but some inop-
erative pairs (1,-1) also increase; other inoperative
pairs (4,-4) decrease slightly.
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Figure 3: Average code size without canceling genes.
The number of Os exhibits the most rapid growth;
the number of 1s rises to approximately 50 to
achieve the target value (T=50), the number of 4s
drops to near zero.
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Figure 4: Average code growth with canceling genes
(unpaired). Canceling genes (1 and -1, or 4 and -4)
exhibit almost parallel growth. The slight enlarge-
ment of the gap between 1 and -1, and the slight
reduction of the gap between 4 and -4 implies a pref-
erence for genes with a smaller effect on fitness (e.g.
1s over 4s).
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Figure 5: Average code growth with canceling genes,
but without 0s. The number of each type of gene
changes in parallel. There is fairly rapid growth in
the number of 1,-1 pairs indicating that they are
being used to generate code growth.
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Figure 6: Number of Os for small target values when
all five gene types (-4, -1, 0, 1, 4) are included. In
each case, the population converges to individuals
with no operative genes (e.g. all 1s, -1s, 4s, or -
4s are lost) (data not shown). For T=0, solutions
evolves by first losing all operative genes and then
losing all Os; for T=1 or 5, evolved solutions lose all
operative genes but maintain some Os.

5. CONCLUSION

The results show that evolutionary systems will increase
the overall amount of inoperative, but viable, code (repre-
sented in this research by pairs of genes whose effects cancel
each other out: 1 and -1, and 4 and -4) in evolving indi-
viduals. Interesting the degree to which this occurs is de-
pendent on the potential contribution of the genes to the
overall fitness. Genes with a smaller potential contribution
increase the most rapidly. Specifically, in these experiments
the number of (1, -1) pairs increased quite rapidly, whereas
the number of (4, -4) pairs actually decreased slightly.

The increase in inoperative pairs occurs even when in-
viable code (represented by 0s) was present, although the
number of Os increased more rapidly. Further, when invi-
able code was not present the inoperative pairs increased
more rapidly than when it was present. Thus, the results
indicate that the evolutionary process is using whatever type
of code, inviable or inoperative, is available to increase code
size.

Recently Langdon and Banzhaf showed that repeated se-
quences commonly evolve in both linear and tree based rep-
resentations [9, 8]. For tree based representations they found
many repeated subtrees that were either syntactically iden-
tical or syntactically different, but that produced correlated
answers - suggesting semantic similarity. They conclude
that ‘where bloat is possible, GP will generally evolve pro-
grams containing copious repeated patterns’ [9]. One as-
sumption is that repeated patterns provide robustness via
redundancy - if one copy of the structure is removed another
copy is present to fulfill its role. Pressure for redundancy as
a means to increase robustness has been observed by Krack-
auer and Plotkin [6].

Our results suggest an alternative explanation, that the
repeated structures they observed were evolving to cancel
each other out. For example, in the code (X +Y)— (X +Y)
the structure (X +Y) is repeated, but the structure con-
tributes to robustness by canceling itself out and producing



an inoperative code section, rather than acting redundant

code.

If this is the source of the code redundancies ob-

served by Langdon and Banzhaf it suggests that evolution
may lead to fractal-like code structures in which structures
are recurrently constructed from canceling copies of cancel-
ing substructures, e.g., structures like (X +Y)—(X+Y))—
(X+Y) - (X+Y)).

6.
(1]

2]

3]

[4]

[5]

[6]

[7]

8]

[9]

(10]

(11]

REFERENCES

S. Besetti and T. Soule. Function choice, resiliency
and growth in genetic programming. In GECCO,
pages 1771-1772, 2005.

T. Blickle and L. Thiele. Genetic programming and
redundancy. In J. Hopf, editor, Genetic Algorithms
within the Framework of Evolutionary Computation,
pages 33 — 38. Saarbrucken, Germany:
Max-Planck-Institut fur Informatik, 1994.

A. G. M. DeVisser, J. Hermission, G. P. Wagner,

L. A. Meyers, H. Bagheri-Chaichain, J. L. Blanchard,
L. Chao, J. M. Cheverud, S. F. Elena, W. Fontana,
G. Gibson, T. F. Hansen, D. Krakauer, R. C.
Lewontin, C. Ofria, S. H. Rice, G. von Dassow, and
A. Wagner. Perspective: Evolution and detection of
genetic robustness. Fuvolution, 57:1959-1972, 2003.

C. Igel and K. Chellapilla. Investigating the influence
of depth and degree of genotypic change on fitness in
genetic programming. In W. Banzhaf, J. Daida, A. E.
Eiben, M. H. Garzon, V. Honavar, M. Jakiela, and
R. E. Smith, editors, Proceedings of the Genetic and
Evolutionary Computation Conference 1999, pages
1061-1068. Morgan Kaufmann, 1999.

J. R. Koza. Genetic Programming: On the
Programming of Computers by Means of Natural
Selection. Cambridge, MA: The MIT Press, 1992.

D. C. Krackauer and J. B. Plotkin. Redundnacy,
antiredundancy, and the robustness of genomes.
PNAS, 99:1405-1409, 2002.

W. B. Langdon. Size fair and homologous tree genetic
programming crossovers. In W. Banzhaf, J. Daida,
A. E. Eiben, M. H. Garzon, V. Honavar, M. Jakiela,
and R. E. Smith, editors, Proceedings of the Genetic
and Evolutionary Computation Conference 1999,
pages 1092-1097. Morgan Kaufmann, 1999.

W. B. Langdon and W. Banzhaf. Repeated sequences
in linear GP genomes. In M. Keijzer, editor, Late
Breaking Papers at the 2004 Genetic and Evolutionary
Computation Conference, Seattle, Washington, USA,
26 July 2004.

W. B. Langdon and W. Banzhaf. Repeated patterns
in tree genetic programming. In EuroGP, pages
190202, 2005.

S. Luke. Code growth is not caused by introns. In Late
Breaking Papers, Proceedings of the Genetic and
Evolutionary Computation Conference 2000, pages
228-235, 2000.

N. F. McPhee and J. D. Miller. Accurate replication
in genetic programming. In L. J. Eshelman, editor,
Proceedings of the Sixth International Conference on
Genetic Algorithms, pages 303-309. San Francisco,
CA: Morgan Kaufmann, 1995.

228

[12]

(13]

(14]

(15]

P. Nordin. Evolutionary Program Induction of Binary
Machine Code and its Application. Muenster: Krehl
Verlag, 1997.

P. Nordin and W. Banzhaf. Complexity compression
and evolution. In L. J. Eshelman, editor, Proceedings
of the Sixth International Conference on Genetic
Algorithms, pages 310-317. San Francisco, CA:
Morgan Kaufmann, 1995.

P. Nordin, W. Banzhaf, and F. D. Francone. Introns
in nature and in simulated structure evolution. In

D. Lundh, B. Olsson, and A. Narayanan, editors,
Proceedings Bio-Computing and Emergent
Computation, pages 22-35. Springer, 1997.

R. Poli and W. B. Langdon. A new schema theory for
genetic programming with one-point crossover and
mutation. In J. R. Koza, K. Deb, M. Dorigo, D. B.
Fogel, M. Garzon, H. Iba, and R. R. Riolo, editors,
Genetic Programming 1997: Proceedings of the Second
Annual Conference, pages 278-285. San Francisco,
CA: Morgan Kaufmann, 1997.

J. P. Rosca and D. H. Ballard. Complexity drift in
evolutionary computation with tree representations.
Technical Report NRL5, University of Rochester,
Rochester, New York, 1996.

P. Smith and K. Harries. Code growth, explicitly
defined introns, and alternative selection schemes.
Evolutionary Computation, 6(4):339-360, 1998.

T. Soule. Exons and code growth in genetic
programming. In J. A. Foster, E. Lutton, J. F. Miller,
C. Ryan, and A. Tettamanzi, editors, Genetic
Programming, 5th European Conference, EuroGP
2002, pages 142-151, 2002.

T. Soule. Operator choice and the evolution of robust
solutions. In R. Riolo and B. Worzel, editors, Genetic
Programming Theory and Practice, pages 257270,
2003.

T. Soule. Resilient individuals improve evolutionary
search. Artificial Life, 12:1:17-34, 2006.

T. Soule and J. A. Foster. Removal bias: a new cause
of code growth in tree based evolutionary
programming. In ICEC 98: IEEE International
Conference on Evolutionary Computation 1998, pages
781-786. IEEE Press, 1998.

T. Soule, J. A. Foster, and J. Dickinson. Code growth
in genetic programming. In J. R. Koza, D. E.
Goldberg, D. B. Fogel, and R. R. Riolo, editors,
Genetic Programming 1996: Proceedings of the First
Annual Conference, pages 215-223. Cambridge, MA:
MIT Press, 1996.

T. Soule and R. Heckendorn. An analysis of the causes
of code growth in genetic programmin. Genetic
Programming and Evolvable Machines, 3:283-309,
2002.

T. Soule, R. Heckendorn, and J. Shen. Solution
stability in evolutonary computation. In I. Cicekli,

N. K. Cicekli, and E. Gelenbe, editors, Proceedings of
the 17th International Symposium on Computer and
Information Systems, pages 237—241, 2002.




<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.3
  /CompressObjects /Tags
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJDFFile false
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments true
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Academy
    /AgencyFB-Bold
    /AgencyFB-Reg
    /Alba
    /AlbaMatter
    /AlbaSuper
    /Algerian
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialRoundedMTBold
    /ArialUnicodeMS
    /BabyKruffy
    /BaskOldFace
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BlackadderITC-Regular
    /BodoniMT
    /BodoniMTBlack
    /BodoniMTBlack-Italic
    /BodoniMT-Bold
    /BodoniMT-BoldItalic
    /BodoniMTCondensed
    /BodoniMTCondensed-Bold
    /BodoniMTCondensed-BoldItalic
    /BodoniMTCondensed-Italic
    /BodoniMT-Italic
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BradleyHandITC
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /CalisMTBol
    /CalistoMT
    /CalistoMT-BoldItalic
    /CalistoMT-Italic
    /Castellar
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chick
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CopperplateGothic-Bold
    /CopperplateGothic-Light
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /Croobie
    /CurlzMT
    /EdwardianScriptITC
    /Elephant-Italic
    /Elephant-Regular
    /EngraversMT
    /ErasITC-Bold
    /ErasITC-Demi
    /ErasITC-Light
    /ErasITC-Medium
    /EstrangeloEdessa
    /Fat
    /FelixTitlingMT
    /FootlightMTLight
    /ForteMT
    /FranklinGothic-Book
    /FranklinGothic-BookItalic
    /FranklinGothic-Demi
    /FranklinGothic-DemiCond
    /FranklinGothic-DemiItalic
    /FranklinGothic-Heavy
    /FranklinGothic-HeavyItalic
    /FranklinGothic-Medium
    /FranklinGothic-MediumCond
    /FranklinGothic-MediumItalic
    /FreestyleScript-Regular
    /FrenchScriptMT
    /Freshbot
    /Frosty
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Gigi-Regular
    /GillSansMT
    /GillSansMT-Bold
    /GillSansMT-BoldItalic
    /GillSansMT-Condensed
    /GillSansMT-ExtraCondensedBold
    /GillSansMT-Italic
    /GillSans-UltraBold
    /GillSans-UltraBoldCondensed
    /GlooGun
    /GloucesterMT-ExtraCondensed
    /GoudyOldStyleT-Bold
    /GoudyOldStyleT-Italic
    /GoudyOldStyleT-Regular
    /GoudyStout
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /ImprintMT-Shadow
    /InformalRoman-Regular
    /Jenkinsv20
    /Jenkinsv20Thik
    /Jokerman-Regular
    /Jokewood
    /JuiceITC-Regular
    /Karat
    /Kartika
    /KristenITC-Regular
    /KunstlerScript
    /Latha
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSans-Typewriter
    /LucidaSans-TypewriterBold
    /LucidaSans-TypewriterBoldOblique
    /LucidaSans-TypewriterOblique
    /LucidaSansUnicode
    /Magneto-Bold
    /MaiandraGD-Regular
    /Mangal-Regular
    /MaturaMTScriptCapitals
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MSOutlook
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /OCRAExtended
    /OldEnglishTextMT
    /Onyx
    /PalaceScriptMT
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Papyrus-Regular
    /Parchment-Regular
    /Perpetua
    /Perpetua-Bold
    /Perpetua-BoldItalic
    /Perpetua-Italic
    /PerpetuaTitlingMT-Bold
    /PerpetuaTitlingMT-Light
    /Playbill
    /Poornut
    /PoorRichard-Regular
    /Porkys
    /PorkysHeavy
    /Pristina-Regular
    /PussycatSassy
    /PussycatSnickers
    /Raavi
    /RageItalic
    /Ravie
    /Rockwell
    /Rockwell-Bold
    /Rockwell-BoldItalic
    /Rockwell-Condensed
    /Rockwell-CondensedBold
    /Rockwell-ExtraBold
    /Rockwell-Italic
    /ScriptMTBold
    /ShowcardGothic-Reg
    /Shruti
    /SnapITC-Regular
    /Square721BT-Roman
    /Stencil
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /TwCenMT-Bold
    /TwCenMT-BoldItalic
    /TwCenMT-Condensed
    /TwCenMT-CondensedBold
    /TwCenMT-CondensedExtraBold
    /TwCenMT-Italic
    /TwCenMT-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Vrinda
    /Webdings
    /WeltronUrban
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages true
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages true
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /PDFX1a:2001
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <>
    /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /ConvertToCMYK
      /DestinationProfileName ()
      /DestinationProfileSelector /DocumentCMYK
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure false
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles false
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /DocumentCMYK
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /UseDocumentProfile
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


