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ABSTRACT
A genomic computing network is a variant of a neural net-
work for which a genome encodes all aspects, both structural
and functional, of the network. The genome is evolved by a
genetic algorithm to fit particular tasks and environments.
The genome has three portions: one for specifying links and
their initial weights, a second for specifying how a node up-
dates its internal state, and a third for specifying how a node
updates the weights on its links. Preliminary experiments
demonstrate that genomic computing networks can use node
internal state to solve POMDPs more complex than those
solved previously using neural networks.

Categories and Subject Descriptors: I.2.6

General Terms: Algorithms

Keywords: evolutionary neural networks, POMDP

1. INTRODUCTION
Current neural networks can perform certain functions,

but typically only as well or incrementally better than sta-
tistical or other traditional techniques. Genomic computing
networks provide the following additional functionality that
expands the capabilities of neural networks:
• The nodes do not implement a simple transfer function,

such as a sigmoid, but rather have complex internal state
and operations matched to their function.

• The nodes have weight update rules (i.e. learning rules),
matched to their particular role/function.

• Nodes can form large, heterogeneous structures with vary-
ing patterns of connectivity and functionality.

• The structure and function of the nodes and their net-
works are designed by evolution.

Genomic computing networks embody an ambitious vision
that cannot be achieved all at once. We describe some initial
steps towards validating the approach.

There has been a large amount of work in the area of evo-
lutionary algorithms applied to neural networks. One aspect
of our work that distinguished it from most of the rest is that
it is simultaneously evolving not only the architecture and
initial weights but also the learning rules and internal node
operation. Hussain [3] has the same broad goals, but uses a
very different implementation involving grammars and ge-
netic programming.

Most of the problems described in Section 3 involve rein-
forcement learning with memory, also referred to as partially
observable Markov decision processes (POMDPs) [1]. These
are problems where knowledge of the current state is not suf-
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Figure 1: Structure of the genome

Figure 2: This example state update gene
specifies to add -0.7*state2/state4 to state2 if
-1.4<state3<0.8 and 0.4<state1<4.2.

ficient, and the decision process needs to remember the past.
There have been a range of neural network approaches ap-
plied to such problems, including pure recurrent networks
(e.g., [4]) and explicit memory cells [2]. Our more general
approach is to provide general-purpose internal state for the
nodes and to allow evolution to determine how to use it.

2. GENOMIC COMPUTING NETWORKS
Node and Network Basics - The basic network struc-

ture of a genomic computing network is like that of standard
neural networks. A big difference is that genomic computing
networks use internal state. The different types of state are:

Location states identify the location of the node with re-
spect to the geometry and topology of the network.

The input state is the weighted sum of the inputs from
the incoming connections to a node.

Free internal states are set according to the state update
rules in the genome.

The output state is a special free internal state.
Weights can be viewed as a special type of node state.
The feedback states provide data that can be used by the

weight update rules, including information on how down-
stream nodes change their weights.

The Genome - The details of not just the structure of
a genomic computing network but also its operation are en-
coded in a genome. As illustrated in Figure 1, the genome
has three sections. Each section controls a different aspect
of the network and its functionality: one for the connectivity
and initial weights (architecture), one for the state update
procedure, and one for the weights update procedure. Each
is further subdivided into a variable number of individual
genes. Every gene has two parts, a regulator and an action.
The regulator consists of a set of conditions that must all be
satisfied before a node can execute the action. Heterogene-
ity arises from only certain nodes expressing each gene (i.e.,
executing the action associated with that gene).

The genes have different forms in each of the three sections
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Figure 3: The control logic

of the genome, and here we focus just on the state update
genes. The regulator portion consists of an arbitrary number
(possibly zero) of conditions. Each condition specifies three
values: which state to test and its minimum and maximum
values. The action portion tells which state to modify and
specifies the function that computes the quantity by which
to increment/decrement the state’s value. This function is
a monomial in the input state and free internal states, with
the coefficient and exponents given in the genome. When
multiple active genes are associated with the same state, the
monomials combine into a polynomial. Figure 2 shows an
example.

The Genetic Algorithm - The base genetic algorithm
code is a customized version of version 13 of ECJ that uses
a master-slave mechanism for distributed processing. The
genetic operators are each focused on one of the three com-
ponents of the genome. For the state update genes, the oper-
ators are AddStateGene, DeleteStateGene, ChangeStateCo-
effs, ChangeStateExps, ChangeStateConds, AddStateConds
and CrossOverStateGenes.

3. EXPERIMENTS
We use two types of POMDP environments. One requires

classification decisions based on sequences of ones and ze-
roes. The second is a simple virtual world involving a mouse,
some cheese (its goal state), and mazes.

As shown in Figure 3, the mouse’s “brain” contains con-
trol logic, implemented as a genomic computing network,
that receives sensory inputs and produces decisions for how
to move. Three sensory inputs tell the contents of the three
squares it senses. The value of these inputs is 1 if the con-
tents is a wall, 0 if the square is empty, and -1 if the square is
the goal. A fourth input is 1 when a reset occurs (i.e., when
the mouse is placed back at the beginning of the maze) and
0 otherwise.

The short summary of the experiments is that genomic
computing networks were able to efficiently find solutions to
each of the following test problems.

Majority-Ones Experiment - For an odd number, N,
provide a sequence of N zeroes and ones at the single input
node of the network. At the end, the output should be high
if there were more ones than zeroes in the sequence and low
if the opposite was the case.

N-In-A-Row Experiment - At the end of a sequence,
the output should be high if at any point there were N con-
secutive 1’s and low otherwise.

T-Maze-With-Counting Experiment - The T-maze
problem has been previously used by multiple researchers
to investigate reinforcement learning with memory [1]. A
signal at the beginning of a long corridor tells an agent what
direction to turn at the end of the corridor. We have added
the extra challenge of counting N steps beyond the end of the
corridor before turning. As shown in Figure 4, we formulate

Figure 4: The T-maze-with-counting maze

Figure 5: The many-branch maze

this as a mouse-and-maze problem with the signal being the
lack of a wall on one side at the beginning of the hallway.

Many-Branch Experiment - This problem requires a
simple maze search strategy combined with the ability to
count steps and act accordingly. As shown in Figure 5, the
maze consists of a main corridor with 10 different passage-
ways branching off of it. The cheese can be in any of the 10
side passages but is always 3 steps in. An efficient search
should not continue to the end of each side passage but
rather turn around after 2 steps if the cheese is not there.

Figure 6: The 3-branch-exploration maze

3-Branch-Exploration Experiment - This problem
differs in that it includes an explicit exploration phase dur-
ing which the mouse gathers information about the maze.
The mouse starts in the spot where three passageways di-
verge, as shown in Figure 6. The cheese is at the end of
one of these passageways. The mouse is allowed three short
exploration runs followed by an execution run, and is eval-
uated only on its performance during the execution run.
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