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ABSTRACT

In this paper we present an evolutionary approach for infer-
ring the structure and dynamics in gene circuits from ob-
served expression kinetics. For representing the regulatory
interactions in a genetic network the decoupled S-system for-
malism has been used. We proposed an Information Criteria
based fitness evaluation for model selection instead of the
traditional Mean Squared Error (MSE) based fitness evalu-
ation. A hill climbing local search method has been incorpo-
rated in our evolutionary algorithm for attaining the skeletal
architecture which is most frequently observed in biological
networks. Using small and medium-scale artificial networks
we verified the implementation. The reconstruction method
identified the correct network topology and predicted the
kinetic parameters with high accuracy.

Categories and Subject Descriptors
J.3 [Life and Medical Sciences]: Biology and genetics;

1.2.8 [Problem Solving, Control Methods, and Search]:

Heuristic methods

General Terms

Algorithms, Design, Performance

Keywords

Genetic network, S-system, Reverse engineering, Informa-
tion criteria

1. INTRODUCTION

In the last few decades various types of models for repre-
senting gene regulatory networks have been proposed [3, 5,
9, 15, 22] as well as many algorithms have been developed
to trace genetic interactions from expression data. Different
genetic network models differ in terms of details of biochem-
ical interactions incorporated, discrete or continuous gene
expression level used, deterministic or stochastic approach
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applied, etc [6]. And these criteria define how closely the
model can represent genetic interactions. Generally, detailed
biochemical modeling is very useful for capturing the pre-
cise mechanism in common regulatory pathways. However
as we try to approach from a more abstract to a more real
representation the complexity of the model increases accord-
ingly. And with the increase of the model complexity the
data requirement for learning the model parameters also in-
creases. Therefore a genetic network model is desirable that
triggers a compromise between these two contradictory re-
quirements.

The S-system model [21] of gene networks is based on the
Biochemical System Theory (BST) - a generalized frame-
work for modeling and analyzing biological systems [19, 20].
The model is organizationally rich enough to reasonably cap-
ture various dynamics and mechanisms that could be present
in a complex system of genetic regulation. S-system is a
dynamic model for biochemical pathways, having a good
compromise between accuracy and mathematical flexibility.
Nevertheless, inferring the genetic networks using S-system
is occluded by the number of the parameters (2N (N + 1),
where N is the number of genes in the network) that has
to be estimated. In order to deal with the problem of high-
dimensionality, decoupling of the original model was per-
formed and has been used successfully in gene network re-
construction [12, 14, 17, 26].

In this work we have used the decoupled form of the S-
system model for representing gene regulatory networks and
for reconstruction we used an evolutionary algorithm based
on Trigonometric Differential Evolution (TDE). For fitness
evaluation of the candidate models we have used an Akaike’s
Information Criteria (AIC) based fitness function. For ob-
taining the sparse architecture we embedded a hill climb-
ing local search process in our algorithm. We tested the
proposed method using artificial gene regulatory networks
of different dimensions. Experiments showed that the pro-
posed approach can estimate the correct network structure
and precise kinetic parameter values. The next section of
the paper describes the S-system model both in its canon-
ical form and decoupled form. The third section discusses
the traditional fitness estimation methods and presents the
proposed fitness evaluation criterion for evaluating the can-
didate networks. In section four, our algorithm for inferring
S-system model based gene networks is described. Section
five reports the experiments with the results to verify the
effectiveness of the proposed algorithm and the fitness func-
tion. Some general discussions are presented in section six
and finally section seven concludes the paper.



2. THE SSYSTEM MODEL FOR GENE

NETWORKS

2.1 Canonical Form

Savageau proposed the S-system model [21] as a set of
tightly-coupled non-linear differential equations and the sys-
tematic structure of the model is given by
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where N is the number of genes in the system and X is the
expression level of i-th gene. The terms g¢;; (hi;) represent
the strength of the regulation exerted by X; on the synthesis
(degradation) of X;. Therefore, the first term in right-hand
side of (1) represents all influences that increase X;, whereas
the second term represents all influences that decrease X;.
An exponent of zero for any X; means that variable has no
direct influence on the rate of the corresponding aggregate
process; a positive exponent means they are positively cor-
related, and a negative exponent means they are negatively
correlated. The set of parameters that defines a S-system
model is: Q{a, 3,9,h}. In a biochemical engineering con-
text, the non-negative parameters «; , §; are called rate con-
stants, and real-valued exponents g;; and h;; are referred to
as kinetic orders. It is known that biological networks are
sparse[4], which means the number of regulators that have
effect on a single gene is relatively small; so many of the
kinetic orders are zero in real condition.

Usually the inference method tries to estimate the set
of model parameters 2 such that it minimizes the Mean
Squared Error (MSE) between the experimentally obtained
gene expression levels and the gene expression levels numer-
ically calculated by solving (1). But for an N-dimensional
network the number of system parameters to be estimated is
2N (N + 1) which increases quadratically with the network
size. Moreover, as the model is described as a system of
nonlinear differential equations the regression task becomes
more difficult especially for larger networks. That is why,
application of the model was limited to small-scale gene reg-
ulatory networks.

X _
a

(1)

2.2 Decoupled Form

As mentioned earlier, in order to deal with problem of
high-dimensionality and to facilitate the regression task, de-
coupling of the original model has been performed [12, 14].
This decoupled S-system model allows its application to
larger gene network inference problems. Using the suggested
decomposition strategy the original optimization problem is
divided into N sub-problems [12, 14]. In each of these sub-
problems the parameter values of gene ¢ (au, (3;, gij and h;;)
are individually estimated for capturing the dynamics of
gene i. In other words, this disassociation technique di-
vides a 2N(N+1) dimensional optimization problem into N
sub-problems of 2(N+1) dimensions. In i-th sub-problem
for gene i, X{*'(t) is calculated by solving the following dif-
ferential equation instead

dX N N N

i 9ij . ij
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(2)

For solving the system of differential equation (1) we need
the concentration levels X; (5 =1,---,N) each of which

264

are numerically integrated. But in the decoupled formal-
ism, while solving the differential equation (2) in i-th sub-
problem (corresponding to gene %), the concentration level
Y;—; is obtained by solving the differential equation whereas
the other expression levels Yj-; are to be estimated directly
from observed time-series data. The optimization task for
the tightly coupled S-system model is not trivial because
Eq. (1) is non-linear in all relevant cases, thus requiring it-
erative optimization in a larger parameter space, where 95%
of the total optimization time is expended in numerical in-
tegration of the differential equations [26]. Therefore such
disassociation could be very useful in reducing the compu-
tational burden. Moreover the experimental results showed
their usefulness in estimating the network parameters [12,
14, 17]. In this work we have applied linear spline interpo-
lation [18] for direct estimation of expression levels Yj;.

3. MODEL EVALUATION CRITERIA

3.1 Generic Fitness Evaluation Function

We need some measure for evaluating different candidate
models that are encountered while searching for the set of
optimal parameters for the target network. As mentioned
earlier, the most commonly used evaluation criterion is the
discrepancy between the numerical solution of the differen-
tial equation and the observed system dynamics. Tominaga
et al. gave the MSE as the fitness evaluation function which
should be minimized by Genetic Algorithm (GA) [25]. But
the search space is notoriously multimodal and easily traps a
search algorithm in some local optima that is capable of re-
producing the almost same time-course. Since a single set of
time course data can not give any general conclusion about
the overall behavior of a complex dynamic system [24], use
of multiple sets of time course data was found more useful.
And using multiple set of dynamics, the MSE based fitness
evaluation function for the canonical problem becomes

Xgal(e) - Xxpr ()

where X;(t) is the experimentally observed expression
level of gene-i in the k-th set of time courses at time ¢
and X, Iﬁaf (t) is the numerically calculated expression level
of gene-i in the k-th set of time series at time t. M is the
set of time series used, T is the number of sampling points of
the experimental data. In this form of optimization problem
the search algorithm tries to find a set of parameters that
minimizes fM5F.

In the decoupled form the relative error for the expression
levels of each gene is considered individually for evaluating
the candidate set of parameters for that particular gene.
In other words, the sum of squared relative errors between
experimental and calculated gene expression levels of gene
i is used as the fitness function in subproblem i. So the
objective function of the subproblem corresponding to the
i-th gene becomes

M T
MSE _
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And in subproblem i
Qi ={ ai, Bi, gij, hij (j=1--
mizes fM5F
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we try to estimate the parameters
-N) } for gene ¢ that mini-



3.2 Attaining Skeletal Network Structure

Generally, very few genes or proteins interact with a par-
ticular gene in biological networks [4]. But one major dif-
ficulty in the S-system based network inference process is
detecting the skeletal system architecture that generates
the experimentally observed dynamics. Because of the high
degree-of-freedom of the model there exist many local min-
ima in the search space that mimic the time-courses very
closely. Therefore any method attempting to reproduce the
time dynamics only, often gets stuck to some local opti-
mum solution and fails to obtain the skeletal structure [10].
Kikuchi et al. suggested to penalize the fitness function by
using all the kinetic orders (i.e. gi; and h;; ) of the network
[10]. Use of such pruning term or penalty term, based on
Laplacian regularization term, in the basic fitness function
of (3) was useful for finding a sparse network architecture
in the canonical optimization problem [10, 16]. But because
of high dimensionality these fitness functions have been ap-
plied to small scale networks only.

Based on the same notion, Kimura et al. added another
more effective penalty term to the objective function of (4)
for obtaining sparse network structure in the decoupled form
of the problem [11, 12]

Xi (1) - Xp7 ()
X (8)
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where G;; and H;; are given by rearranging g;; and h;j, re-
spectively, in ascending order of their absolute values (i.e.,
|Gi1| < |Gi2| < -+ < |Gin| and |Hi| < |Hig| < --- <
|H;n]). And I is the maximum allowed cardinality (in-
degree) of the network and c is the penalty constant. The
superiority of this penalty term lies in including the max-
imum cardinality of the network. And thereby, this prun-
ing term will penalize only when the number of genes that
directly affect the i-th gene is higher than the maximum
allowed in-degree I, thereby will cause most of the genes
to disconnect when this penalty term is applied. However,
very few genes affect both activation and repression of a spe-
cific gene. Therefore designing the penalty term considering
both synthetic and degradative regulations together rather
than separately will be more effective. Because such penalty
will penalize whenever total number of regulators (whether
synthetic or degradative) is greater than maximum allowed
cardinality. Therefore, Noman and Iba suggested a further
modification to the penalty term of (5) as follows [17]

M T xeal _ xewp 2 ON-—I
fi—zz{—’“ b (t)} e 3 1K) ©)

exr
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where K;; are the kinetic orders (i.e. g;; and h;j) of gene
i sorted in ascending order of their absolute values. Use of
(6) instead of (5) as fitness function can identify the zero
valued parameters increasingly and thus obtain the skeletal
network structure more precisely.

3.3 Proposed Fitness Evaluation Criterion

Information criteria provide a simple method to choose
from a range of competing models. Many information cri-
teria are available such as AIC, BIC, HQ, GCV, FPE etc,
but it is not clear which one is the best for a given selection
task and none perform well for all model selection problems.
However, Akaike’s Information Criteria (AIC) [1] is most
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commonly used in statistical modeling to show disparity be-
tween the true model and the estimated one. Suppose e ;(t)
is the error between the experimental and calculated expres-
sion level of gene-i in the k-th set of time course at instant ¢,
ie. eni(t) = (Xi4(b) — X0 (t)). If we assume ep,i(t) is nor-
mally distributed with mean p; = 0 and standard deviation
o, which are constant for all sets of dynamics of gene-i and
over time, then the probability density function of e ;(t) is
(Xid () - X7 ()2

given by
1
V2ro? b { - 207 } @)

The log-likelihood A; of the expression data of gene-i for a
set of parameters 2; for gene-i is

pd.f, =

TM

> (X () = XpT (1)

1

1

5 2
20;

— gln(%m?)

(8)

and the maximum likelihood estimate of o7 is obtained from

Ai(Qi, O’i) =

TM
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The log-likelihood of the estimated model is obtained by
substituting (9) into (8).

Different information criteria are formulated as a penal-
ized log-likelihood and particularly AIC is defined as [1]

AIC = —2A + 2® (10)

where ® is the is the number of parameters included in the
model. When AIC is used for selecting among the alterna-
tive models then the model with lowest AIC value is chosen.
This original form of AIC has been used for model selec-
tion by Ando and Iba [2]. The second term of AIC is the
penalty term which penalizes for addition of model parame-
ters. However many modification or extension of the penalty
term has been suggested resulting in various modified forms
of AIC. For obtaining a network model with sparse con-
nectivity among the components we propose the following
fitness evaluation criterion for subproblem-i corresponding
to gene-1

2N—-1I
MO = 2N + 205 +¢ Y (1K)

Jj=1

(11)

As mentioned in section 3.2, this additional penalty term
in (11) was designed to penalize a model only if the number
of regulators included is higher than the maximum allowed
for the network. Therefore, as long as the number of regu-
lators is smaller than the maximum in-degree allowed, this
additional penalty term will have zero effect in model se-
lection. But it will interfere with the regular AIC fitness
function only when the number of genes that directly influ-
ence the gene under consideration is higher than maximum
allowed in-degree and will assist it in finding a sparse net-
work architecture. This penalty term also introduces an-
other parameter ¢ in the fitness function but the value of
this parameter can be chosen in a very easy empirical way
as will be explained later. Using the fitness function given
n (11) both the discrepancy in the expression levels and
degree of freedom is considered for model selection as well
as the sparse network structure is searched. Furthermore,
in our experiment we have found that without this penalty



term the pure AIC alone cannot identify the precise skeletal
network structure as will be shown later.

4. INFERENCE METHOD

Due to the complexity of the problem, finding an optimal
solution using analytical techniques is not feasible because
it would need significant amount of time and computational
power. Evolutionary Computation (EC) has proven itself
as a useful technique for exploring complex and high di-
mensional search spaces. Therefore, many of the real world
problems involving finding optimal parameters, which might
be difficult for traditional methods, are ideal for EC. Con-
sequently the problem of network reconstruction has seen
many applications of EC [8, 10, 13, 27]. In the following
subsections we describe an extended evolutionary approach,
based on Trigonometric Differential Evolution (TDE), for
estimating the parameters for target genetic network.

4.1 TrigonometricDifferential Evolution (TDE)

One of most recent evolutionary optimization approaches
is Differential Evolution(DE) proposed by Storn and Price
[23]. Because of its effectiveness and efficiency it has been
successfully applied to many fields where we need to find
the global optimal solution of the problem, e.g. pattern
recognition, communication, engineering etc. Introducing
another new operator called Trigonometric Mutation Oper-
ation (TMO), Fan and Lampinen have extended the basic
algorithm for higher convergence speed and greater robust-
ness [7]. This modified DE algorithm, known as Trigonomet-
ric mutation DE (TDE), is used as the optimization agent
in the core of our algorithm.

Like other Evolutionary Algorithms (EAs) TDE is a population-

based search heuristic. Each population consists of a certain
number of individuals where each individual represents a
candidate solution for the problem. A new generation (an
instance of population) is created from the current genera-
tion and the new one replaces the current one. Thus produc-
ing and replacing new generations in an iterative manner,
TDE searches for the optimal solution of the problem. We
explain the search procedure for sub-problem i.

For estimating the solution for sub-problem i an initial
population of random individuals is created where each indi-
vidual consists of parameters Q;={ s, 3s, gij, hij (j =1,
,N) } for gene i. Then the fitness of each individual is
evaluated using Eq. (11). Then new individuals are gen-
erated by the combination of randomly chosen individuals
from the current population. Specifically, for each individ-
ual 2%,4=1,--- , P, three other random individuals x, zf
and z% (such that 7,k and le{1,--- ,P} and i # j # k # 1)
are selected from generation G; P is the number of indi-
viduals in G. Then a new trial individual y5 (i.e. a new
candidate solution) is generated using probabilistic muta-
tion operation according to the following equations

Vo = 2 + F(z& — 16) (12)

Yo = (x5 + 36+ 26)/3+ (pr — py)(ah — 26) +

(ot — i) (26 — 26) + (p; — p) (G — o) (13)
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where

pi = f@L)I/p
and

pr=f@)l/p p=f@e)l/p
P =11 @) + 1f(@8)] + |f (26)]

F' is called the scaling factor or amplification factor. Eq.
(12) represents the regular mutation operation in DE and
Eq. (13) represents TMO proposed by Fan and Lampinen
[7]. This TMO is applied with probability M; and the reg-
ular one is applied with probability (1 — M¢). In order to
achieve higher diversity the mutated individual y% is mated
with the current population member z% using a crossover
operation to generate the offspring y& +1. The parameters
of solution yé;_H are randomly inherited from z¥ or y& de-
termined by a parameter called crossover factor CF, i.e.
if r < CF (where r is a uniform random number in [0, 1])
then it is inherited from z& otherwise from y&. Finally
the offspring is evaluated and replaces its parent % in next
generation if and only if its fitness is better than that of
its parent. This is the replacement process for producing
new generation. And this process is repeated until a solu-
tion satisfying our criteria is found or a maximum number
of generations have elapsed.

In TDE, the trigonometric mutation operation, a rather
greedy search operator, makes it possible to straightfor-
wardly adjust the balance between the convergence rate and
the robustness through the newly introduced parameter, M.
The greediness of the algorithm can be tuned conveniently
by increasing or decreasing M;. Experimental results have
shown that TDE has good convergence properties, outper-
forms other well known EAs [7] and is effective in genetic
network inference [16]. Because of these admirable proper-
ties, we have chosen TDE as optimization tool in our algo-
rithm (explained in the next section) for the gene network
reconstruction problem.

4.2 Proposed Algorithm

In this section we present the optimization algorithm that
we have designed for estimating the parameters of S-system
model of genetic networks. We explain the algorithm taking
the sub-problem corresponding to gene ¢ as an example.

For identifying the most robust regulatory interactions in
the network and kinetic parameters for the regulations we
applied double optimization in our algorithm. In double op-
timization a second phase of optimization is performed on
different local solutions obtained in the first phase. Double
optimization is useful for identifying essential parameters
automatically and hence was found useful for detecting ro-
bust regulatory interactions in genetic networks [2, 10]. The
two phases of our algorithm are as follows:

Phase 1: At first, we perform I' repeated trials of opti-
mization of the fitness function of (11) starting from differ-
ent random initial solutions. In each of these trials, we per-
formed optimization using a modified TDE algorithm with a
hill climbing local search procedure (explained later). Each
of these trial runs gives a solution of the sub-problem i.e.
a set of parameters for the target gene. However some op-
timization trials may converge to some local optimum and
may fail to infer the actual parameter set.

Phase 2: Since we assume some solutions in Phase 1
are possibly local solutions, they may not identify all the
target regulations and the parameter values may be signif-
icantly different in different solutions. Therefore, in order
to obtain a more robust network structure and accurate pa-



rameter values we perform another optimization on the elite
individuals from different trials of Phase 1. We select the
best individual from each of the I" trials and some randomly
initialized individuals as initial population and perform op-
timization using the same fitness function and algorithm.

If the solutions obtained from different trials of Phase 1
are local solutions they retain some essential regulations. So
applying another optimization on these solutions we expect
to identify all the correct regulations with accurate strengths
and avoid the loss of any necessary interaction.

As mentioned earlier, the solution space of the problem
contains many local optima which may lead the search algo-
rithm to wrong directions and eventually the global solution
may remain undetected. For locating the global optimal so-
lution in such a search space we need to maintain population
diversity. Mutation is the operator that has been tradition-
ally used in EAs to introduce diversity in the population.
TDE does not apply any immediate mutation operation, so
we occasionally apply a mutation operation in our algorithm
for higher diversity in the population. If the fitness of the
elite individual does not improve for G, generations then
the mutation operation is evoked which mutates all the other
individuals in the current generation. We applied the Gaus-
sian mutation with mutation probability p,,. Gaussian mu-
tation realizes the mutation operation by adding a random
value from the Gaussian distribution. For mutating the rate
constants of an individual the random numbers are drawn
from a Gaussian distribution with mean p, =0 and stan-
dard deviation o, and for mutating the kinetic orders the
random numbers are drawn from a distribution with mean
pr = 0 and standard deviation oy.

4.3 Hill Climbing Local Search

Incorporating problem-dependent heuristics, such as ap-
proximation algorithms, local search techniques, specialized
recombination operators, etc., are often very useful in de-
signing an effective global optimization technique. In order
to obtain the skeletal network structure efficiently we em-
bedded a local search method in our algorithm. Our local
refinement procedure performs a hill climbing search opera-
tion around the best individual and a random individual of
each generation for obtaining a sparser architecture.The hill
climbing search operation on an individual Indiv is shown
below:

HCLS (Indiv)

1. SORT the kinetic orders (i.e. gi; and hij) of Indiv all
together in ascending order of their absolute values.
ie. |K(@)| <|K(@+1)| for 4 =1,---,2N — 1) and
SETi=1

2. Generate a new solution Indiv’ from Indiv by setting
K(i)=0

3. IF f(Indiv') < f(Indiv) SET Indiv = Indiv’
4. SET i =i+ 1 and GOTO Step 2

This hill-climbing local search process allows us to identify
the non-existing regulations by mutating the kinetic orders
to zero in the increasing order of their strength and thus
helps us to identify the skeletal network structure. And the
restore capability of the greedy search also allows to recover
from wrong elimination of any essential regulation. Hy-
bridizing this hill-climbing search procedure with the TDE
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algorithm we can identify the sparse network structure ef-
ficiently and estimate the strengths of the regulations more
accurately.

5. RECONSTRUCTIONEXPERIMENTSAND

RESULTS

To see how successfully the proposed method can recon-
struct network topology and estimate kinetic parameters we
evaluate it by simulation. We used two artificial networks of
different dimensions and simulated those to obtain synthetic
microarray data sets. And we applied our method to reverse
engineer the networks from these data sets. The details of
the experiments and the outcomes follow in the subsequent
sections.

5.1 Small Scale Network Inference

As a first study, we tested our approach using a well stud-
ied small scale network model NET1. The system, consist-
ing of five genes, adequately demonstrates different types
of positive and negative mode of regulatory controls among
the reactants. The target parameters for the system, listed
in Table 1, are the same as found in many other studies [10,
12, 17, 25]. Choosing this network model we get a chance
to compare our method to early approaches.

Generally, a single time series cannot provide insight into
the mechanism of a dynamic system[24]. And multiple dif-
ferent candidate solutions evolve if the model parameters
are estimated using insufficient amounts of time series data.
Therefore we used M = 10 sets of time series data for en-
suring sufficient amount of observed gene expression levels.
The sets of time-series were obtained by solving (1) on the
model of Table 1. Initial concentration level for each time
series was generated randomly in [0.0,1.0]. Sampling 11
points from each time-course we used 10 x 11 = 110 gene
expression levels for each gene.

511 Experimental Setup

We performed the experiment under the following setup.
The search regions of the parameters were [0.0, 20.0] for o
and (;, and [—3.0,3.0] for g;; and h;;. The maximum al-
lowed cardinality I was chosen to be 5, and the penalty
coefficient ¢ was 1000.0. The parameter values for the TDE
algorithm were F' = 0.5, CF = 0.8 and M; = 0.05, popula-
tion size was 60 and the maximum number of generations
in each trial of Phase 1 and in Phase 2 was 850. In Phase
1 we evolved 5 (I'=1,---,5) independent trial solutions
from which we selected elite individuals for optimization
in Phase 2. The parameter values for the mutation phase
were pm = 0.01, 0 = 3.0 and o = 1.2. In Phase 1 of the
optimization, G,, = 100 and in Phase 2, G,, = 200 were
used. Our algorithm was implemented in Java language
and the time required for solving each subproblem was ap-
proximately 10 minutes using a PC with a 1700 MHz Intel
Pentium processor and 512 MB of RAM.

In order to reduce the computational burden, a structure
skeletalizing was applied in a similar fashion used by Tomi-
naga et al. [25]. If the absolute value of a parameter is less
than a threshold value § then structure skeletalizing resets
it to zero. This process reduces the computational cost as
well as helps to identify the zero valued parameters. In our
experiment § = 0.001 was used. We used 5 repetitions for
each experiment to assure soundness of our stochastic search
algorithm.



Table 1: S-system parameters for network model NET1

Gene i « gi1  gi2 g3 G4 Gis Bi hii hi2  his  hia his
1 50 00 00 1.0 00 -1.0 100 2.0 00 0.0 0.0 0.0
2 100 2.0 00 00 00 00 100 0.0 20 00 0.0 0.0
3 100 00 -1.0 00 0.0 0.0 100 0.0 -1.0 2.0 0.0 0.0
4 80 00 00 20 00 -1.0 100 0.0 00 0.0 20 0.0
5 100 0.0 00 00 20 00 100 0.0 0.0 00 0.0 20
Table 2: Inferred parameters for network model NET1
Gene i a; gi1 gi2 gi3 gia gis Bi hi hiz his hia his
1 4.990 0.000 -0.008 0.980 -0.004 -0.997 10.003 1.978 0.000 0.000 0.000 0.000
2 10.051  1.995 0.004 0.009 0.002 -0.002 10.060 0.000 1.998 0.012 0.000 0.001
3 9.936 -0.004 -1.001 -0.001 0.000 0.000 9.937 -0.004 -1.001 2.007 0.000 0.001
4 8.032 0.000 -0.011 1.949 0.000 -0.996 10.153 0.000 0.007 0.000 1.972 0.000
5 10.011  0.000 0.003 0.023 2.002 -0.009 9.992 0.006 0.000 0.002 0.000 1.990
Table 3: Target parameters for NET2
(67} ﬁz 10.0
Gij g3,15 = —0.7, g5s1 = 1.0, g6,1 = 2.0, g7,2 = 1.2,
gr,3 = —0.8, gr,10 = 1.6, gs,3 = —0.67 g9,4 = 0.57
go,5 = 0.7, gr0,6 = —0.3, g10,14 = 0.9, g11,7 = 0.5,
gi2,1 = 1.0, g13,10 = —0.4, g13,17 = 1.3, g14,11 = —0.4,
gi5,8 = 0~57 gis5,11 = —1.07 gdi5,18 = —0.97 gi6,12 = 2.07
g17,13 = —0.5, g18,14 = 1.2, g19,12 = 1.4, g19,17 = 0.6
g20,14 = 10, g20,17 = 15, other gi,j = 0.0
hij 1.0 if (¢ = j), 0.0, otherwise
Table 4: Estimated parameters for NET2
Gene a1 =9.90, g1,3 = 0.002, g1,20 = 0.001, 81 = 9.87,

Figure 1: Structure of Genetic Network NET2

512 Result

Table 2 shows the parameters estimated by our algorithm
in a typical run. As shown in Table 2 our method was able
to attain the exact network topology and parameter values
were almost the same as the target values. Many of the zero
valued parameters were identified correctly and the values
of the others are close enough to zero to indicate (possible)
false positive interactions.

5.2 Medium Scale Network Inference

In this experiment we investigate the performance of our
algorithm using a 20 gene network NET2. The topology
of the network was created randomly with a maximum in-
degree limit and then we formulated the network in S-system
formalism. Figure 1 shows the network structure and Ta-
ble 3 contains the parameters which were chosen arbitrarily.
We simulated the network model NET2 with random initial
concentrations chosen from [0.0, 1.0] to generate 20 sets of
synthetic microarray data. We used 11 samples from each
time course data and used them for inferring the model pa-
rameters.

521 Experimental Setup

Since ours is a stochastic search process we employed our
algorithm to reconstruct the target network in five repeated
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1 h1,1 = 1.007, h1 3 = 0.009, hy,13 = 0.003

Gend as =9.99, g5,1 = 1.026, g5,2 = —0.007, g5,20 = —0.007,
5 Bs = 10.03, hs,1 = 0.030, hs,5 = 0.990, hs9 = —0.007,
hs,13 = 0.007, hs 15 = —0.006, hs,16 = —0.003

Geng a5 = 12.01, g15,8 = 0.413, g15,11 = —0.904, g15,18 = —0.849,
15 Bis = 12.804, his,8 = —0.058, hi15,15 = 0.876

Gend azg = 7.56, g20,7 = —0.002, g20,14 = 1.246, g20,17 = 1.717,
20 920,20 = —0.181, B20 = 7.60, h20’7 = —0.010, h20710 = 0.001,

hoo,17 = —0.142, hog 19 = —0.002, hag 20 = 1.03

runs under the following conditions. The search regions of
the parameters were [0.0, 20.0] for «; and S;, and [—3.0, 3.0]
for g;; and h;;. The population size was 210 and the max-
imum number of generations in each trial of Phase I and
in Phase 2 was 2400. Other conditions were the same as in
Sec. 5.1.1. The average time for solving each sub-problem
was approximately 13.5 hours using a PC with a 1700 MHz
Intel Pentium processor and 512 MB of RAM.

5.2.2 Results

In each run our method successfully predicted the exact
network architecture and also determined the type of reg-
ulation (activation/inhibition) correctly. The process also
estimated the kinetic parameters with high accuracy. Table
4 shows a typical estimation of parameters for genes with
different number of regulators. Again it can be stated that
the method successfully identified the network dynamics but
also falsely predicted some regulators which can be easily ig-
nored because of the strength of their regulations.



6. DISCUSSION

One of the major challenges the emerging field of Systems
Biology facing, is identifying the sophisticated mechanism
that regulates gene expression. Among different available
models, S-systems has been found to provide valid represen-
tations in a large number of theoretical and practical stud-
ies. Moreover, its parameters have well-defined meanings in
biological context, which makes its application more realis-
tic for modeling metabolic networks. Nevertheless, due to
its tightly coupled form it has found limited application to
larger network. Reformulation of the model in decoupled
form has made its application computationally tractable in
networks consisting of many metabolites.

In this work we have presented a method for inferring
the transcriptional regulations in a network represented in
decoupled S-system formalism. Using an evolutionary al-
gorithm, we predicted the kinetic parameters of the system
from time series gene expression data. While searching for
the optimal set of parameters using our evolutionary algo-
rithm, we evaluated the candidate solutions using an AIC
based fitness criterion rather the conventional MSE based
fitness function. In the proposed fitness evaluation func-
tion we extended the penalty term of AIC. The purpose
of this additional penalty term is to facilitate the selection
of models with sparse network architecture. Following the
guideline of previous works, we designed this penalty term
such that it will penalize the fitness score of a candidate
network model if it has more regulators than the maximum
allowed in-degree of that network. Therefore, this penalty
term remains silent as long as the number of regulators of a
gene does not exceed the maximum given limit. Otherwise
it penalizes the competing model and thus helps to identify
the skeletal architecture. In this additional term there is an
additional parameter ¢ which has been given a value 1000.
Choice of this parameter value is very straightforward and
was determined as follows. As mentioned in section 5.1.1 our
algorithm performed a structure skeletalizing for reducing
the computational burden by setting a parameter to zero if
its absolute value is less than § = 0.001. We want to penalize
the fitness score effectively for all additional regulators (that
lie beyond the threshold of maximum allowed in-degree) un-
til their values go down below §. Therefore such a value for
the parameter ’c¢’ is quite natural and was found useful.

To further investigate the necessity of the additional penalty

term in (11) for obtaining the skeletal structure of the net-
work we perform additional experiments. We reverse engi-
neer the model of NET1 in the exact environment of section
5.1.1 except using the original AIC as fitness evaluation cri-
terion. Among the five repeated runs of the experiment the
best results are shown in Table 5. It can be found from
Table 5 that, using the original AIC as fitness evaluation
criterion, the algorithm could essentially identify the tar-
get network topology but could not estimate the parameter
values very accurately. Some of the parameter values were
pretty distant from the target. Moreover some false posi-
tive regulations had strengths very strong that can not be
ignored. On the other hand, the same method using the
fitness function of (11) could predict the parameter values
with high accuracy. We believe these results can be helpful
to justify the usefulness of the proposed fitness function of
(11) for evaluating candidate solutions in an evolutionary
approach for inferring the model parameters.

In the proposed evolutionary algorithm we used TDE as
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the core optimization unit. TDE has found a wide range of
real world applications where we need to search for an op-
timal set of real valued parameters. Therefore, we designed
our algorithm implanting TDE in the kernel and taking sev-
eral other issues in consideration, such as: we performed
double optimization for selecting robust parameter values,
included a hill-climbing local search procedure for acceler-
ating the identification of the skeletal network topology and
embedded a mutation-phase to maintain the diversity in the
population for finding the global optimal solution. We ex-
perimented with networks of different dimensions and prop-
erties to evaluate the performance of the proposed technique.
The reconstruction method identified all the regulatory in-
teractions with correct properties (activation or repression)
and also estimated the strength of the regulations with high
accuracy.

When we compared our proposed method to previous works
that used MSE based scoring it was found it performed bet-
ter in the experiment of reconstructing NET1. Compared to
the method of [17] the estimated parameters were more ac-
curate using the same number of gene expression data. And
compared to the method of [11] the proposed technique per-
formed better both in terms of computational efficiency and
parameter estimation.

7. CONCLUSION

As microarray data is becoming more easily available,
identifying the regulatory machinery in a gene circuit is be-
coming more desirable compared to a clustering method for
grouping genes with similar patterns. Genetic network esti-
mation using S-system model is often formulated as an op-
timization problem where the MSE between the estimated
expression levels and experimental expression levels is used
as the fitness evaluation criterion which should be minimized
for identifying the optimal structure and kinetic parameters.

AIC is a long existing criterion for evaluating alternative
models and making a selection among them. In this work we
proposed a new information criteria based fitness evaluation
function for reverse engineering genetic circuits from time
series data using evolutionary algorithms. We also devel-
oped an improved evolutionary algorithm for reconstructing
the underlying regulatory architecture and inferring effec-
tive kinetic parameters for the network using the proposed
fitness function. Our methodology was tested in simulation
using small-scale and medium networks and the method re-
constructed the target networks structures exactly and esti-
mated parameter values very accurately. Since our proposed
method is purely computational, it can be readily applied
to other network reconstruction problems and the proposed
evolutionary algorithm is general enough for using in other
model of biological network. We are currently investigating
the usefulness of the proposed fitness function in estimat-
ing model parameters from data corrupted with noise and
in our future work we will apply our method for inferring
large-scale genetic networks from real microarray data.
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