
A New Ant Colony Algorithm for Multi-Label Classification
with Applications in Bioinformatics

Allen Chan and Alex A. Freitas
Computing Laboratory

University of Kent
Canterbury, CT2 7NZ, UK

achan.83@googlemail.com, A.A.Freitas@kent.ac.uk

ABSTRACT
The conventional classification task of data mining can be called
single-label classification, since there is a single class attribute to be
predicted. This paper addresses a more challenging version of the
classification task, where there are two or more class attributes to be
predicted. We propose a new ant colony algorithm for the multi-
label classification task. The new algorithm, called MuLAM (Multi-
Label Ant-Miner) is a major extension of Ant-Miner, the first ant
colony algorithm for discovering classification rules. We report
results comparing the performance of MuLAM with the
performance of three other classification techniques, namely the
very simple majority classifier, the original Ant-Miner algorithm
and C5.0, a very popular rule induction algorithm. The experiments
were performed using five bioinformatics datasets, involving the
prediction of several kinds of protein function.

Categories and Subject Descriptors
I.2.6 [Artificial Intelligence]: Learning – concept learning,
induction.

General Terms: Algorithms, Performance, Experimentation.

Keywords
Ant Colony Optimization, Data Mining, Bioinformatics.

1. INTRODUCTION
This work proposes a new ant colony algorithm tailored for a kind
of classification task in data mining, called multi-label
classification. In essence, this is a more challenging version of the
conventional (single-label) classification task, as follows. In
conventional classification the goal is to predict a single class for an
example (a record or case), based on the values of predictor
attributes describing that example. By contrast, in multi-label
classification there are two or more classes to be predicted for an
example. A more detailed discussion of the differences between
single-label and multi-label classification will be discussed in
section 2. For now it should be noted that multi-label classification
is an active and increasingly important research area, due to the
growing interest in datasets which naturally have multiple classes to
be predicted, particularly in the areas of text mining and
bioinformatics [12], [17], [3].
The proposed ant colony algorithm is called MuLAM (Multi-Label
Ant-Miner), and is a major extension of the Ant-Miner algorithm
proposed in [13]. Ant-Miner addresses the conventional, single-

label classification task. It discovers classification rules of the form:
IF (conditions) THEN (predicted class)

with the meaning that, if an example satisfies the conditions in the
rule antecedent, that example is assigned the class predicted by the
rule consequent. In the rules discovered by Ant-Miner, each
consequent contains exactly one predicted class.
MuLAM extends this rule representation to allow more than one
predicted classes in the rule consequent. This extension in the kind
of knowledge discovered by the algorithm required a major re-
design of several parts of the Ant-Miner algorithm, as will be
discussed in section 4.
The remainder of this paper is organised as follows. Section 2
discusses single-label and multi-label classification. Section 3
presents a review of the original Ant-Miner algorithm. Section 4
describes the proposed ant colony algorithm for multi-label
classification. Section 5 reports computational results evaluating the
proposed algorithm. Section 6 concludes the paper and suggests
future work.

2. SINGLE-LABEL VS. MULTI-LABEL
CLASSIFICATION
Classification is one of the most investigated data mining tasks,
with numerous commercial and industrial applications [20]. In
essence, the classification task consists of discovering knowledge
that can be used to predict the class of an example (record) whose
class is unknown, based on the values of predictor attributes
describing the example. This task generally involves splitting a data
set into a training set and a test set. A classification algorithm is
applied to all examples in the training set, where the class of each
example is available to the algorithm. The algorithm analyses the
relationship between the predictor attributes and the class for all
training examples, and discovers a classification model for the data.
Then the discovered model is applied to examples in the test set,
where the class of each example is unknown to the system, in order
to evaluate the predictive accuracy of the discovered model. It is
crucial that the training and test sets contain disjoint sets of
examples, i.e., the test set examples should never be used in the
training set, in order to characterize a truly predictive scenario. We
can then compute a measure of predictive accuracy on the test set.
More precisely, for each example in the test set, the class predicted
by the classification model is compared with the actual class of the
example, in order to evaluate whether or not the prediction was
correct. Then the standard definition of the predictive accuracy of a
classification model is simply the number of examples in the test set
correctly classified by that model divided by the total number of
examples in the test set.

There are two versions of the classification task, according to the
number of classes to be predicted for each example: a) Single-Label
Classification and b) Multi-Label Classification. Single-label

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, or
republish, to post on servers or to redistribute to lists, requires prior
specific permission and/or a fee.
GECCO’06, July 8–12, 2006, Seattle, Washington, USA.
Copyright 2006 ACM 1-59593-186-4/06/0007…$5.00.

27

classification refers to the standard task of classification, where
there is only one class attribute (target attribute) to be predicted.
The basic principles in multi-label classification are similar to those
in single-label classification; however, in multi-label classification
there are two or more class attributes to be predicted. As a result, the
consequent of a classification rule contains one or more predictions,
each prediction involving a different class attribute.
There has been relatively little work in the area of multi-label
classification, by comparison with the vast amount of work in
standard single-label classification. In addition, most of the works in
multi-label classification have been applied to text classification
[10], [12], [17]. An exception is the work of [3], which has been
applied to the area of bioinformatics.
Traditional classification algorithms are unable to cope with a multi-
label dataset, since those algorithms predict a single class attribute.
A simple workaround is to split the original dataset into near
identical datasets, where each contains all predictor attributes and
their values for each example, but each dataset produced in this way
contains only one of the class attributes to be predicted. This results
in requiring the classification algorithm to be trained on nearly the
same dataset multiple times. More precisely, the algorithm has to be
run once for predicting each of the class attributes. This is not a very
good solution to the problem of multi-label classification [3], [18],
for two main reasons. First, we would discover a set of rules for
predicting each class attribute, but each of the class attributes would
be treated individually, ignoring possible correlations between class
attributes. Intuitively, an algorithm that discovers rules predicting
more than one class attribute can capture some correlations between
class attributes and discover a simpler rule set (with a smaller
number of rules) than an algorithm that discovers only rules
predicting a single class attribute. Second, the approach of running
the classification algorithm once for each class attribute has the
drawback of being computationally expensive.
One other approach that can be used to solve the multi-label
classification problem consists of converting the existing class
attributes into a single class attribute, where each value of this new
class attribute represents a combination of the class attributes that
were initially present in the data set. Using a simple example to
illustrate this, consider a data set with three class attributes to be
predicted, where each class attribute can have the value of either yes
or no. Table 1 illustrates the possible combinations of class values
in this dataset.
Table 1 shows that it is possible to convert multi-label problems
into a single-label problem. But it is also evident that, by carrying
out such a conversion, the number of values of the new single-class
attribute will increase exponentially with the number of original
class attributes. Hence, it becomes increasingly more difficult to
predict a class value, as the number of examples associated with any
given value of the new single class attribute decreases considerably,
reducing the amount of information to effectively predict each class
value.
In order to avoid these disadvantages associated with the conversion
of a multi-label problem into one or more single-label problems,
this paper directly addresses the multi-label classification task. That
is, we propose a new multi-label classification algorithm (described
in section 4) that was designed so that different class attributes can
be potentially predicted using the same rule antecedent, which
shows some correlations between the class attributes to be
predicted.

Table 1. Transforming a multi-label problem into a single-label
problem

Class Attr. 1 Class Attr. 2 Class Attr. 3 Single class
Attribute

Yes Yes Yes YYY
Yes Yes No YYN
Yes No Yes YNY
Yes No No YNN
No Yes Yes NYY
No Yes No NYN
No No Yes NNY
No No No NNN

3. AN OVERVIEW OF ANT-MINER
At first glance, ants are seen as small unintelligent individuals, but
on closer inspection, as a collective group (a swarm) they appear to
be highly organised and yet require no supervision at all [1], [2].
The “intelligent” foraging behaviour of ant colonies has been
studied in detail, as discussed in [5], [8]; and these studies have led
to the development of the ACO (Ant Colony Optimisation) meta-
heuristic, on which the Ant-Miner algorithm is based. Hence, before
we review Ant-Miner, let us first briefly review this meta-heuristic.
The ACO meta-heuristic, as proposed by [6], is normally used to
solve discrete optimization problems. In essence, each ant
corresponds to a candidate solution to the target problem. The
search space is conceptually represented as a graph, where nodes
correspond to parts of a candidate solution and edges correspond to
movements performed by ants in the search space. Hence, the path
followed by an ant in that graph corresponds to the process of
incrementally constructing a candidate solution. In other words,
when an ant follows an edge leading to a given node i, the part of
the candidate solution represented in node i is added to the current
candidate solution. Each ant keeps following a path in the graph
incrementally constructing a candidate solution, until a complete
solution is constructed.
This process is performed by a population of ants (an ant colony)
for a number of iterations. During the construction of a candidate
solution, an ant usually has to choose between two or more paths,
i.e., it has to choose which edge it will follow (or which node it will
visit) next. This choice depends on two factors, namely:
• The value of a problem-dependent heuristic function

associated with each edge or node of the graph representing the
search space.

• The amount of pheromone associated with each edge or node.

When an ant follows a path in the graph, it updates the amount of
pheromone along that path. More precisely, the amount of
pheromone deposited on the path followed by an ant is proportional
to the quality of the candidate solution represented by that path. It is
this pheromone updating mechanism that implements the concept of
stigmergy [9], where ants modify the environment (amount of
pheromone on edges or nodes of the graph) as an indirect means of
communication, which allows them to cooperate to find good
solutions to the target problem.

3.1 Ant-Miner
Ant-Miner was initially developed by Parpinelli and his colleagues
[13], [14]. It was the first ACO algorithm for discovering
classification rules and it has been shown to be competitive against
the CN2 [4] and C4.5 [16] algorithms for classification. Ant-Miner

28

generates solutions in the form of classification rules. Conventional
classification rules are in the form of IF <antecedent> THEN
<consequent>, where the antecedent contains an arbitrary number
of terms, from zero to potentially the number of predictor attributes
in the data being mined. However, in practice one expects a rule to
contain a number of terms much smaller than the total number of
predictor attributes, since many attributes can be irrelevant to
predict the class of a given set of examples. Ant-Miner uses a
propositional logic representation, where each term takes the form
of a triplet <attribute, operator, value>, where the attribute is one
of the predictor attributes in the data, the value is one of the values
that the attribute can take on, and the operator is a relational
operator. This relational operator could in principle be =, ≠, <, ≤, >,
or ≥, but the original version of Ant-Miner has the limitation that it
can only process discrete values – a common limitation in ACO
algorithms. As a result, Ant-Miner only uses the “=” operator. So
each term takes on the triplet <attribute=value>. Also, each rule
cannot contain the same attribute twice, e.g. <sex=m> AND
<sex=f>, otherwise the rule would contain a contradiction and so it
would never be satisfied by any example.

TrainingSet = {all training examples};
DiscoveredRuleList = []; /* rule list is
initialized with an empty list */

WHILE (TrainingSet > MaxUncoveredExamples)

t = 1; /* ant index */

j = 1; /* convergence test index */

Initialize all trails with the same amount of
pheromone;

REPEAT

Antt starts with an empty rule and
incrementally constructs a classification
rule Rt by adding one term at a time to the
current rule;

Prune rule Rt;

Update the pheromone of all trails by
increasing pheromone in the trail followed
by Antt (proportional to the quality of Rt)
and decreasing pheromone in the other trails
(simulating pheromone evaporation);

IF (Rt is equal to Rt – 1) /* update
convergence test */

THEN j = j + 1;

ELSE j = 1;
END IF

 t = t + 1;

UNTIL (i ≥ No_of_ants) OR

 (j ≥ No_rules_converg)

Choose the best rule Rbest among all rules Rt
constructed by all the ants;

Add rule Rbest to DiscoveredRuleList;

TrainingSet = TrainingSet - {set of examples
correctly covered by Rbest};

END WHILE

Pseudocode 1. High-level description of Ant-Miner [13]

The consequent contains the class attribute value to be predicted by
the rule. Ant-Miner however was designed initially to solve a

single-label classification task and so the consequent of the rules
generated by the original Ant-Miner will contain only one class
attribute value.
Let us now briefly review the main aspects of the rule discovery
process performed by Ant-Miner, as described by Pseudocode 1
[13]. For more details about the algorithm the reader is referred to
that reference.
Ant-Miner uses a sequential covering approach to discover a list of
classification rules, by discovering one rule at a time until all or
almost all the examples in the training set are covered by the
discovered rules. When the algorithm first starts, the training set
holds all the original training examples and the discovered rule list
is empty. Every iteration of the WHILE loop illustrated in
Pseudocode 1 creates a population of ants, each ant corresponding
to one iteration of the REPEAT-UNTIL loop. Each ant constructs
one rule. At the end of the WHILE loop, the best rule from the set
of constructed rules is added to the discovered rule list. Examples
correctly covered by this rule – i.e. examples satisfying the rule
antecedent and having the class predicted by the rule – are removed
from the training set before the next iteration of the WHILE loop.
This rule discovery process is repeated until the number of
uncovered examples in the training set is less than a user-specified
threshold (MaxUncoveredExamples).
Every iteration of the REPEAT-UNTIL loop consists of three
stages: rule construction, rule pruning, and pheromone updating. In
the rule construction stage, every Antt starts off with an empty rule
with no term in its antecedent, and adds one term at until one of two
criteria is met:
• Any term added to the current rule Rt, would make the rule

cover a number of examples less than a user specified
threshold (MinExamplesPerRule).

• All attributes have been used by the current ant Antt, which
means there are no more terms which can be added to the rule
antecedent. As mentioned earlier, no rule can contain any
attribute twice, e.g. <sex=m> AND <sex=f>.

The current partial rule being constructed by Antt represents the
path being taken by that ant, and every term added to the current
partial rule constitutes the direction of how the path is being
extended. The next term to be added to the current partial rule is
selected using the same kind of roulette wheel mechanism often
used in evolutionary algorithms [7], where the probability of a term
being selected is given by the product of the value of a problem-
dependent heuristic function and the amount of pheromone
associated with the term.
After the rule construction stage, every rule Rt then undergoes rule
pruning, where the aim is to remove all irrelevant terms and also to
improve the predictive power of the current rule Rt. This process is
necessary as some of the terms added to the rule antecedent may
have been unduly selected by the probabilistic roulette wheel
mechanism, and/or due to a local heuristic function that only
considers one attribute at a time, which has the drawback of
ignoring interactions between attributes.
Rule pruning consists of iteratively removing one term at a time
from the rule while this improves the quality of the rule. During this
stage, the consequent of the rule can change as the majority class
covered by the pruned rule can be different to that of the original
rule. This process repeats until there is only one term left in the rule,
or any term to be removed next will not improve the quality of the
rule.
After the rule pruning stage, pheromone levels of the path taken by
the current ant are increased. More precisely, the amount of

29

pheromone associated with each term in the antecedent of the just-
pruned is increased in proportion to the quality (predictive accuracy)
of the rule. The other terms – i.e. the terms that are not present in the
rule antecedent – have their pheromone reduced, to simulate
pheromone evaporation in real ants. This is implemented by a
simple normalization procedure: after increasing the pheromone of
the terms used in the rule, the pheromone of each term (either used
or not in the rule) is divided by the total sum of pheromones for all
terms. Since the terms not used in the rule did not have their
pheromone levels increased, their pheromone levels will be
effectively reduced, by comparison with the terms used in the rule.
The REPEAT-UNTIL loop is repeated till at least one of the
following terminating criteria is met:
• The number of constructed rules is equal or greater than the

number of ants specified by the user.
• The rule constructed by Antt is exactly the same as the rule

constructed by the previous No_rules_converg – 1 rules, where
No_rules_converg is a user-defined parameter.

4. THE PROPOSED MULTI-LABEL
ANT-MINER
This section will describe the complete Multi-Label Ant-Miner
(MuLAM) algorithm. Firstly, a high-level pseudocode is presented
in Pseudocode 2, outlining the main functional behaviour of
MuLAM.
At the start of the algorithm, MuLAM assigns all available training
examples to the training set and it initialises the discovered rule list
with an empty list. In MuLAM, each ant does not produce a single
rule like in the original Ant-Miner. Rather, each ant discovers a
candidate rule set – a very significant change. The reason for this is
due to addressing the multi-label classification task, where there are
multiple class attributes to be predicted. Each ant discovers at least
one rule and at most a number of rules equal to the number of class
attributes, i.e. a different rule for each class to be predicted. An ant
will discover a single rule only in the case where that rule is
considered good enough to predict all class attributes – according to
a criterion to be defined later.
At the end of each outer WHILE loop iteration, examples that have
all their class attributes correctly covered by any of the rules in the
just discovered rule set are removed from the current training set.
Hence, the training set gradually reduces in size. This brings us to
the condition of this WHILE loop, which is executed as long as the
number of examples left in the training set is greater than a user-
defined parameter: MaxUncovExamples (maximum number of
uncovered examples).
At the start of each iteration of the outer WHILE loop, the algorithm
carries out pre-processing calculations which will be needed to
calculate the probability of selecting a term to be added to a rule
later. There are two kinds of calculation that are performed here, in
the order they appear in Pseudocode 2. First, the algorithm
calculates and stores the information gain [16] associated with each
term. Note that the value of a term’s information gain does not
change throughout the iteration of this outer WHILE loop.
Secondly, a pheromone matrix is created for each class attribute.
This is a generalisation of the original Ant-Miner where there is a
single pheromone matrix because there is a single class attribute.
Each of the pheromone matrices contains one cell for each term,
representing the amount of pheromone associated with that term.
Each pheromone matrix is initialized by assigning an amount of
pheromone deposited directly proportional to the previously
computed information gain of each term.

After the initialization of the pheromone matrices, the algorithm
starts a REPEAT loop. Each iteration of this loop corresponds to a
single ant constructing a candidate rule. The constructed rule can
potentially be decomposed into a set of rules later in the algorithm,
as will be explained later. The REPEAT loop stops when the ant
with index t reaches a user-defined value, the parameter:
MaxNoAnts, which is the maximum number of ants to be used for
discovering a rule set in the current iteration of the outer WHILE
loop.
Every ant in MuLAM starts off with an empty partial rule, i.e. a rule
with no term in its antecedent. In addition, the rule set constructed
by this ant, denoted RSt, is also initialized with the empty set. Next
the WHILE statement inside this REPEAT loop decides if the
current ant should proceed to select a term to be added to the partial
rule, based on two conditions, both of which must be satisfied. The
first condition makes sure that the ant can only select a new term to
add to the partial rule if there are still unused attributes from the set
of predictor attributes in the data. This condition is also used in Ant-
Miner. The second condition ensures that there is still one or more
classes that has not been predicted up to this point of the WHILE
loop. This condition is used in MuLAM, but not in Ant-Miner. It
represents an adaptation of MuLAM to the multi-label classification
task. When both conditions evaluate true, the algorithm proceeds to
the inside of this WHILE loop, where a new term is selected.
Each ant selects a term to potentially add to the current partial rule
using a roulette wheel selection technique analogous to the roulette
wheel selection method popularly used in evolutionary algorithms
[7]. Each term occupies a slot of the roulette wheel with size
proportional to the probability of selecting that particular term. The
probability of selecting any given term is given by the product of
the amount of pheromone associated with that term and the value of
a heuristic measure for that term. Once a term has been selected,
this term is only added to the current partial rule as long as it
satisfies the condition of the IF statement; that is, as long as the
inclusion of the selected term in the partial rule does not make the
antecedent cover a number of examples smaller than the parameter
MinExamplesPerRule (Minimum Number of Examples per Rule).
Once a term has been successfully added to the antecedent of the
current partial rule, the algorithm then tries to make a prediction for
each and every class attribute in the training set that has not been
predicted up to this point of the algorithm.
Before the algorithm makes a prediction for this current partial rule,
it initialises the rule consequent with the empty set. This rule
consequent holds all class attribute values that are being predicted
by the rule. The ant enters the FOR loop, where it processes each
class attribute separately. So for every class attribute, the algorithm
then decides under a certain pre-pruning criteria whether the current
class attribute should be added to the rule consequent as a
prediction.
The pre-pruning criteria used in MuLAM is based on Cramer’s V
coefficient [11]. This criterion consists of applying pre-pruning
when the value of Cramer’s V coefficient is greater than a certain
threshold calculated based on the data, using the method described
in [18]. If this criterion is satisfied, then the current class attribute is
predicted by the rule. This means the algorithm adds to the rule
consequent a term <Ci=Vij>, where Ci is the current (i-th) class
attribute and Vij is the value of Ci having the largest frequency
among all examples covered by the rule. This class attribute Ci is
then marked as predicted for this ant. After the FOR loop, if the rule
consequent is not empty, i.e. it contains one or more class attribute-
value pairs, then the ant creates a complete rule using the current
rule antecedent and predicting all class attributes held in rule

30

consequent. This rule is added to the current ant’s rule set RSt, and
the WHILE loop repeats for any class attribute that still exists to be
predicted.

As previously explained, inside the second WHILE loop, the
condition in the first IF statement determines whether the current
ant should add the newly selected term to its rule antecedent.

TrainingSet = {set of all training examples}

DiscoveredRuleList = {}

WHILE (TrainingSet > MaxUncovExamples)
t = 1; /* ant index */

Calculate information gain of each term considering all class attributes based on current training
examples;

For each class attribute Ci, initialize all cells of the pheromone matrix
 REPEAT
 Antt starts with an empty partial rule Rt;
 Current ruleset RSt = { };
 WHILE ((there is at least 1 unused attribute) AND (there is at least 1 unpredicted class
 attribute)) Antt chooses, out of the unused terms, a term to be added to current partial rule Rt,
 with a probability proportional to the product of a heuristic function and the pheromone;

 IF (after adding the chosen term to the partial rule Rt the rule will still cover more than
 MinExamplesPerRule) THEN
 Add the chosen term to the current partial rule Rt;
 RuleCons = ∅;

 FOR EACH (Class attribute Ci)
 IF (partial Rule Rt predicts class attribute Ci with high confidence) THEN
 RuleCons = RuleCons ∪ (predicted class for class attribute Ci);
 Mark class attribute Ci as predicted;
 END IF
 END FOR EACH

 IF (RuleCons ≠ ∅) THEN
 Create complete rule CRti (with rule format IF term1 … AND … termn THEN RuleCons);

 RSt = RSt U CRti;
 END IF

 ELSE
 Quit this WHILE loop;
 END IF-THEN-ELSE
 END WHILE

 IF (there are still unpredicted class attributes) THEN
 Create one complete rule predicting each of those class attributes;

 FOR EACH (class attribute Ci predicted by this rule)
 Create a temporary rulei IF (antei) THEN Ci;
 Use original Ant-Miner pruning technique to prune this temporary rule. Instead of allowing
 the consequent to be modified during pruning, the current consequent is kept fixed, which
 will potentially produce a new antei only;
 END FOR
 END IF

 FOR EACH (rule in RSt)
 Update pheromone matrix for each predicted class attribute Ci in the rule, increasing pheromone
 of terms in rule antecedent and reducing pheromone (evaporation via normalisation) of terms
 not used in the rule. Pheromone increasing is based on quality of partial rule predicting
 class attribute Ci only;
 t = t + 1;
 END FOR

 UNTIL (t ≥ MaxNoAnts)
 Choose best set of rules RSbest among those generated by all Ants in current population by using
 the rule quality measure;

 Add RSbest to DiscoveredRuleList;
 TrainingSet = TrainingSet – {set of examples where all the class attributes have been correctly
 predicted by RSbest };
END WHILE

Pseudocode 2. A high-level description pseudocode of Multi-Label Ant-Miner (MuLAM)

31

If this condition fails, then the algorithm will not run the rest of
the procedures within this second WHILE loop. Instead it exits
the WHILE loop prematurely, and proceeds to the IF statement
right after this WHILE loop. This IF statement tests if there are
still unpredicted class attributes left for this ant to predict. If so,
we need a method to complete predicting these class attributes.
This is where the IF statement takes over and builds one rule
using original Ant-Miner’s rule generation procedure, whereby
the rule antecedent is constructed by adding one term at a time to
the rule antecedent until the addition of a term causes the
antecedent to cover less than a predefined number of examples
(similar to the MinExamplesPerRule parameter in MuLAM). The
rationale for this step is that for the class attributes that are not
predicted up to this point, it is better to build a new rule predicting
the classes not predicted by the current rule than to attempt to
correct the current rule, which is badly predicting these classes.
This is because the current ant has already found a good rule
predicting a subset of all class attributes, and by attempting to
correct this rule to predict those currently unpredicted classes, the
result would tend to be a bad rule predicting the majority of the
classes. Once the antecedent of a rule is finished, in Ant-Miner the
majority value of the class attribute is predicted. The majority
class value is simply the class value with the largest frequency in
the set of examples covered by the rule. In this IF statement,
MuLAM generates each rule in a similar way as to Ant-Miner.
The difference is that, instead of predicting just one class as in
Ant-Miner, MuLAM will predict the majority value of each class
attribute that has not been predicted up to this point, by creating
one complete rule for those class attributes.
If a rule has been generated as a result of the IF statement
mentioned above, this rule will undergo pruning as this rule can
potentially be very large with respect to the number of terms in
the rule antecedent as mentioned in [13]. The pruning technique
used in MuLAM is an iterative procedure partly inherited from
original Ant-Miner, whereby in each iteration the term whose
removal best improves the rule quality is pruned out, and this
process repeats till the rule quality can no longer be improved. In
Ant-Miner, the class value predicted by the rule can potentially
change. With Ant-Miner, as there was always only a single class
attribute to be considered, this was not a problem. However, with
MuLAM, if we allowed the procedure to alter the predicted class
values for several class attributes, this process would become very
computationally expensive. After all, every time a term is
evaluated for its removal, the training set would need to be
scanned for the possibility of the class attributes’ values changing
and, if we considered all possible combinations of class attributes’
values, there would be a large number of combinations of values
of unpredicted class attributes to be considered. In particular, this
number would seriously reduce the scalability of the algorithm to
problems with many class attributes. Hence, in MuLAM, to avoid
this problem, all the predicted class attribute values in the
consequent of the rule being pruned remain the same during the
pruning procedure.
Once the current ant has finished generating one or more rules to
predict all class attributes, pheromone trails are then updated
simulating real world ants where they lay pheromone as they
travel along their selected paths, as explained earlier in the
description of Ant-Miner (Section 3.1).
Pheromone updating is carried out for each rule in the set of rules
constructed by the current ant. For each rule, the pheromone
matrix associated with each class attribute predicted by the rule is
updated, by increasing the amount of pheromone of all matrix

cells referring to the terms occurring in the antecedent of the rule.
The REPEAT-UNTIL loop terminates when the number of ants
reaches a user-defined parameter: MaxNoAnts (maximum number
of ants). When this terminating condition is met, from the set of
rule sets discovered by all the ants, the best rule set is chosen.
Each of the rules in that best rule set is then added to the
DiscoveredRuleList, which holds all the rules that will be used to
classify the test data. To determine which rule set is the best out of
all the rule sets constructed by all ants during the entire REPEAT
loop, each rule set has its quality computed as the average of the
quality measure of all rules in that set. (The formula for
computing a rule quality is a natural extension of the formula used
in Ant-Miner, viz. the product Sensitivity (Se) × Specificity (Sp)
[13]. The extension is that, instead of computing this product for a
single class attribute, in MuLAM the rule quality is the arithmetic
average of this product over all class attributes predicted by the
rule.) The rule set with the best quality is chosen to be added to
the DiscoveredRuleList. This rule set is then used to mark the
training examples it correctly covers, i.e. examples matching both
the antecedent and the consequent of one of the rules in the
discovered rule set. Since there are multiple class attributes in the
training set, one discovered rule may only predict a subset of class
attributes, and so effectively MuLAM does not physically remove
the examples from the training set. Instead it uses a virtual
flagging system whereby for each class attribute predicted by a
rule, the examples that match both the rule antecedent and the
predicted class value are flagged to be considered out of the
training set when later iterations of the algorithm try to predict
this class attribute. That is, any future calculations regarding the
number of examples (and referring to this class attribute) will not
include these covered examples. Once a reduced training set is
produced, the outer WHILE loop will continue to run provided
that the number of examples which are not covered by the rules
discovered so far is greater than the previously-mentioned
parameter MaxUncovExamples.

5. COMPUTATIONAL RESULTS
This section will briefly explain the data sets used in the
experiments and then present the obtained results.

5.1 Biological Data Sets
The data sets used in our experiments originate from Uniprot [19],
which is one of the largest bioinformatics databases holding
information on sequenced proteins and their functions. Each
record of the Uniprot database essentially contains information
about a protein. We obtained, from Uniprot, 5 datasets, each with
two class attributes to be predicted, as shown in Table 2. In order
to create the predictor attributes for these datasets, out of the many
fields describing a protein in Uniprot, we used a field which has a
set of references to PROSITE patterns [15]. In other words, each
protein’s record contains a reference to each PROSITE pattern (a
biological motif) present in that protein. Prosite is actually a
separate database which stores sequenced protein families and
domains. Hence, our datasets were created by using cross
references from Uniprot to the PROSITE database for each of the
proteins included in our datasets. Each PROSITE pattern is used
as a binary attribute. In other words, in each dataset, each example
(protein) is described by a set of binary attributes, each attribute
taking the value “yes” or “no”, indicating whether or not the
corresponding PROSITE pattern is present in that protein.
Therefore, the discovered rules take, for instance, the following
form: “IF (prX = yes) AND (prY = no) … THEN (anti-oncogene
= yes) AND (apoptosis = no)”, where prX and prY are certain
PROSITE patterns, whilst anti-oncogene and apoptosis are class

32

attributes of dataset 1 in Table 2. The class attributes and the
number of attributes and examples for each dataset is summarised
in Table 2.

Table 2. Summary of five data sets used in experiment
Data
set Class Attributes No. of

Attributes
No. of

Examples
1 Anti-oncogene 153 540
 Apoptosis

2 Cell-cycle 156 1343
 Cell-division

3 DNA-repair 102 1872
 DNA-damage

4 DNA-repair 101 1826
 SOS-response

5 DNA-damage 34 622
 SOS-response

5.2 Results
We applied Multi-Label Ant-Miner (MuLAM) to each of the data sets
listed in Table 2, and compared these results with the results of three
other classification techniques. First, as a very simple baseline, we
used the trivial majority classifier technique to classify the examples
in the test set. This technique simply assigns, to every test example
(unseen during training), the class with the largest frequency in the set
of training examples. Second, we used the original Ant-Miner
algorithm. Third, we used Clementine’s implementation of the
popular, industrial-strength C5.0 algorithm. Since Ant-Miner and
C5.0 are single-label algorithms, they were run twice for each dataset.
These two runs used the same set of predictor attributes, but each run
aimed at discovering rules predicting the value of a different class
attribute. This approach has the disadvantages discussed in section 2,
but it is a fair way of comparing MuLAM with the above techniques.
The comparison with original Ant-Miner is important since MuLAM
is a major extension of Ant-Miner, and the comparison with C5.0 is
important because this is a very popular classification-rule discovery
algorithm.

Table 3. Number of ants used in Ant-Miner for each dataset

Data Set MuLAM
(time in sec)

Ant-Miner
(time in sec)

Max No of Ants in
Ant-Miner

1 228.7 210.4 300
2 627.2 644.7 450
3 308.1 310.0 250
4 266.9 265.0 300
5 67.8 61.2 3000

All experiments with each of the four techniques (MuLAM plus the
other three techniques) were conducted running a 5-fold cross

validation procedure [20] for each dataset. When running this
procedure, exactly the same folds (partitions) of the data were used
by each of the four techniques, in order to make their comparison as
fair as possible.
C5.0 was used with its default parameters in all datasets. MuLAM
was used with the following default parameters in all datasets:
MaxUncovExamples = 10, MinExamplesPerRule = 10, MaxNoAnts
= 100. These values of MaxUncovExamples and
MinExamplesPerRule are actually the default values of these
parameters in Ant-Miner too. Ant-Miner was used with its default
values in all datasets, with the exception of its parameter
MaxNoAnts, which was set to a different value for each dataset in
order to perform more controlled experiments, for the following
reason. We wanted to compare MuLAM and Ant-Miner by giving
each algorithm roughly the same amount of computational time to
solve the target classification problem. Otherwise the better result of
an algorithm could be attributed just to it spending more time to
solve the problem, rather than be due to its better effectiveness in
discovering accurate rules. In order to give MuLAM and Ant-Miner
roughly the same computational time in a controlled way, we first
ran MuLAM and, for each dataset, we set the parameter MaxNoAnts
of Ant-Miner to a value which makes an Ant-Miner run to take
about the same amount of time as a MuLAM run. The parameter
MaxNoAnts was chosen to be varied in these experiments because
this is the parameter that most influences the computational time of
Ant-Miner. Table 3 shows, for each dataset, the resulting
MaxNoAnts value adjusted for Ant-Miner and the computational
time taken for each algorithm, in seconds.
The predictive accuracy for each algorithm, for each class attribute in
each dataset, is reported in Table 4. The numbers after the “±” symbol
denote standard deviations. In the last three columns of Table 4, some
cells are marked by (-), which means the corresponding accuracy is
significantly worse than MuLAM’s accuracy. (In principle a cell in
the last three columns could alternatively be marked as (+), which
would mean the corresponding accuracy is significantly better than
MuLAM’s accuracy for the same class attribute, by this result was not
observed in Table 4.) A difference in accuracy was considered
significant if the corresponding standard deviation intervals do not
overlap. The majority classifier’s accuracy was significantly lower
than MuLAM’s accuracy in 6 out of the 10 class attributes in Table 4.
In the other 4 class attributes the differences in accuracies obtained by
these two techniques was not significant. There was no significant
difference between the accuracies obtained by MuLAM and Ant-
Miner in any of the 10 class attributes. Finally, C5.0’s accuracy was
significantly lower than MuLAM’s accuracy in 6 class attributes, and
there was no significant difference in the other 4 class attributes.

Table 4. Predictive accuracy (%) in the test set for each algorithm, using 5-fold cross validation

Data
Set

Class
Attributes MuLAM Majority

classifier Ant-Miner C5.0

1 Anti-oncogene 79.57±3.56 77.41±0.13 72.56±18.61 77.41±0.51
 Apoptosis 85.09±2.57 85.74±0.13 76.25±23.42 88.33±5.02

2 Cell-cycle 63.27±5.54 53.98±0.03 (-) 67.51±7.17 53.90±0.0 (-)
 Cell-division 78.87±1.65 77.29±0.01 71.87±16.09 77.17±0.2

3 DNA repair 97.20±3.0 85.79±0.03 (-) 97.68±1.35 85.65±0.12 (-)
 DNA damage 92.09±2.24 78.63±0.01 (-) 93.85±3.24 78.51±0.15 (-)

4 DNA repair 99.21±2.19 87.96±0.0 (-) 99.58±0.0 87.76±0.13 (-)
 SOS response 82.82±5.17 70.87±0.03 (-) 92.52±6.01 70.71±0.13 (-)

5 DNA damage 84.70±9.19 64.31±0.07 (-) 96.75±4.84 64.00±0.0 (-)
 SOS response 85.02±4.60 85.53±0.02 91.24±14.22 85.12±0.44

33

Table. 5 Some rules found by MuLAM and Ant-Miner

MuLAM’s Rule:
IF PS00321=0 THEN DNA-repair=1 DNA-damage=0

Ant-Miner’s Rules:
IF PS00321=0 AND PS50162=1 THEN DNA-repair=1
IF PS00321=0 AND PS00618=0 THEN DNA-damage=0

Recall that, unlike Ant-Miner, MuLAM is a multi-label classifier
and as such it will try to predict one or more class attributes with
the same rule when possible. Table 5 shows examples of rules
produced by MuLAM and Ant-Miner. The top section shows a
rule discovered by MuLAM and how the rule predicts two classes
(DNA-repair = 1 and DNA-damage = 0). The bottom section
shows two rules discovered by Ant-Miner, one of them predicting
only the class DNA-repair = 1 and the other one predicting only
the class DNA-damage = 0. Hence, in this example MuLAM
found a very generic, simple rule using a single Prosite pattern
(PS00321=0) to predict two classes, whereas Ant-Miner found
instead two more specific rules, each of them using not only the
Prosite pattern PS00321=0 but also another Prosite pattern, each
each of these more specific rules predicts just one of those two
classes.

6. CONCLUSION AND FUTURE WORK
The results of the experiments showed that, overall, MuLAM
obtained predictive accuracies considerably better than the
predictive accuracies obtained by the simple majority classifier
and by C5.0. This clear superiority over the majority classifier
was expected, given the extreme simplicity of that classifier,
which actually ignores the values of all predictor attributes. The
superiority over C5.0 was a positive result which was not
expected, considering that C5.0 is an industry-strength algorithm
resulting from several decades of research in decision tree
induction, whereas MuLAM is a new algorithm. On the other
hand, there was no significant difference between MuLAM’s
accuracy and Ant-Miner’s accuracy in the experiments reported
here. In any case, MuLAM at least has the advantage of
discovering some rules that predict (using the same rule
antecedent) two class attributes, which explicitly shows some
correlations between different class attributes. Ant-Miner is of
course unable to discover such correlations, since it is a single-
label classification algorithm.

Recall that all results reported here used default parameters for all
algorithms, in order to make the comparison among the
algorithms as fair as possible. One direction for future work is to
try to optimise the parameters of each algorithm to the datasets
used in the experiments, to maximize the accuracy of the
discovered rules. Another future work is to do experiments with
more datasets and more class attributes per dataset.

7. REFERENCES
[1] Bonabeau, E. and Theraulaz, G. Swam Smarts, Scientific

American, March 2000, pp. 54-56.

[2] Bonabeau, E., Dorigo, M. and Theraulaz, G. Swarm
Intelligence: from natural to artificial systems, Oxford
University Press, 1999.

[3] Clare, A. and King, R.D. Knowledge discovery in multi-label
phenotype data, Proc. PKDD-2001, LNAI 2168, pp. 42-53.
Springer, 2001.

[4] Clark, P. and Niblett, T. The CN2 induction algorithm,
Machine Learning, Vol. 3, pp 261-283, 1989.

[5] Deneubourag, J.L., Aron, S., Goss, S. and Pasteels, J.M. The
self-organizing exploratory pattern of the argentine ant,
Journal of Insect Behaviour, 3: 159-168, 1990.

[6] Dorigo, M., Caro, G.D. and Gambardella, L.M. Ant
Algorithms for Discrete Optimization, Artificial Life, Vol 5,
No.3, pp. 137-172, 1999.

[7] Freitas, A.A. Data Mining and Knowledge Discovery with
Evolutionary Algorithms, Springer, 2002.

[8] Goss, S., Aron, S., Deneuborg, J.L. and Pasteels, J.M. Self-
organized shortcuts in the Argentine Ant,
Naturwissenschaften, 76:579-581, 1989.

[9] Grassé, P.P. La théorie de la stigmergie: essai
d’interprétation du comportement des termites constructeurs,
Insectes Sociaux, 6: 41-81, 1959.

[10] Karalic, A. and Pirnat, V. Significance level based
classification with multiple trees, Informatica, 15(5), 1991.

[11] Kendall, M.G. Multivariate Analysis, Second Edition,
Charles Griffin, High Wycombe, England, 1980.

[12] McCallum, A.K. Multi-Label Text Classification with a
Mixture Model Trained by EM, AAAI 99 Workshop on Text
Learning, 1999.

[13] Parpinelli, R.S., Lopes, H.S. and Freitas, A.A. Data Mining
with an Ant Colony Optimization Algorithm, IEEE Trans.
On Evolutionary Computation, 6(4), Aug 2002, pp. 321-332.

[14] Parpinelli, R.S., Lopes, H.S. and Freitas, A.A. An Ant
Colony Algorithm for Classification Rule Discovery, In:
Data Mining: a Heuristic Approach, pp. 191-208. Idea
Group, 2002.

[15] Prosite, http://ca.expasy.org/prosite/ (visited 2005)
[16] Quinlan, J.R. C4.5: Programs for Machine Learning,

Morgan Kaufmann, 1993.
[17] Schapire, R. and Singer, Y. BoosTexter: A boosting-based

system for text categorization, Machine Learning, 39(2/3):
135-168, 2000.

[18] Suzuki, E., Gotoh, M. and Choki, Y. Bloomy Decision Tree
for Multi-objective Classification, Proc. PKDD 2001, LNAI
2168, pp. 436-447, 2001.

[19] Uniprot database, http://www.unirpot.org (visited 2005)
[20] Witten, I.H. and Frank, E. Data Mining –Practical Machine

Learning Tools and Techniques, 2nd Ed. Morgan Kaufmann,
2005.

34

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.3
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2001
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

