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ABSTRACT 
The conventional classification task of data mining can be called 
single-label classification, since there is a single class attribute to be 
predicted. This paper addresses a more challenging version of the 
classification task, where there are two or more class attributes to be 
predicted. We propose a new ant colony algorithm for the multi-
label classification task. The new algorithm, called MuLAM (Multi-
Label Ant-Miner) is a major extension of Ant-Miner, the first ant 
colony algorithm for discovering classification rules. We report 
results comparing the performance of MuLAM with the 
performance of three other classification techniques, namely the 
very simple majority classifier, the original Ant-Miner algorithm 
and C5.0, a very popular rule induction algorithm. The experiments 
were performed using five bioinformatics datasets, involving the 
prediction of several kinds of protein function.  

Categories and Subject Descriptors 
I.2.6 [Artificial Intelligence]: Learning – concept learning, 
induction. 

General Terms: Algorithms, Performance, Experimentation. 

Keywords 
Ant Colony Optimization, Data Mining, Bioinformatics. 

1. INTRODUCTION 
This work proposes a new ant colony algorithm tailored for a kind 
of classification task in data mining, called multi-label 
classification. In essence, this is a more challenging version of the 
conventional (single-label) classification task, as follows. In 
conventional classification the goal is to predict a single class for an 
example (a record or case), based on the values of predictor 
attributes describing that example. By contrast, in multi-label 
classification there are two or more classes to be predicted for an 
example. A more detailed discussion of the differences between 
single-label and multi-label classification will be discussed in 
section 2. For now it should be noted that multi-label classification 
is an active and increasingly important research area, due to the 
growing interest in datasets which naturally have multiple classes to 
be predicted, particularly in the areas of text mining and 
bioinformatics [12], [17], [3]. 
The proposed ant colony algorithm is called MuLAM (Multi-Label 
Ant-Miner), and is a major extension of the Ant-Miner algorithm 
proposed in [13]. Ant-Miner addresses the conventional, single-

label classification task. It discovers classification rules of the form: 
IF (conditions) THEN (predicted class) 

with the meaning that, if an example satisfies the conditions in the 
rule antecedent, that example is assigned the class predicted by the 
rule consequent. In the rules discovered by Ant-Miner, each 
consequent contains exactly one predicted class. 
MuLAM extends this rule representation to allow more than one 
predicted classes in the rule consequent. This extension in the kind 
of knowledge discovered by the algorithm required a major re-
design of several parts of the Ant-Miner algorithm, as will be 
discussed in section 4.  
The remainder of this paper is organised as follows. Section 2 
discusses single-label and multi-label classification. Section 3 
presents a review of the original Ant-Miner algorithm. Section 4 
describes the proposed ant colony algorithm for multi-label 
classification. Section 5 reports computational results evaluating the 
proposed algorithm. Section 6 concludes the paper and suggests 
future work. 

2. SINGLE-LABEL VS. MULTI-LABEL 
CLASSIFICATION 
Classification is one of the most investigated data mining tasks, 
with numerous commercial and industrial applications [20]. In 
essence, the classification task consists of discovering knowledge 
that can be used to predict the class of an example (record) whose 
class is unknown, based on the values of predictor attributes 
describing the example. This task generally involves splitting a data 
set into a training set and a test set. A classification algorithm is 
applied to all examples in the training set, where the class of each 
example is available to the algorithm. The algorithm analyses the 
relationship between the predictor attributes and the class for all 
training examples, and discovers a classification model for the data. 
Then the discovered model is applied to examples in the test set, 
where the class of each example is unknown to the system, in order 
to evaluate the predictive accuracy of the discovered model. It is 
crucial that the training and test sets contain disjoint sets of 
examples, i.e., the test set examples should never be used in the 
training set, in order to characterize a truly predictive scenario. We 
can then compute a measure of predictive accuracy on the test set. 
More precisely, for each example in the test set, the class predicted 
by the classification model is compared with the actual class of the 
example, in order to evaluate whether or not the prediction was 
correct. Then the standard definition of the predictive accuracy of a 
classification model is simply the number of examples in the test set 
correctly classified by that model divided by the total number of 
examples in the test set. 

There are two versions of the classification task, according to the 
number of classes to be predicted for each example: a) Single-Label 
Classification and b) Multi-Label Classification. Single-label 
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classification refers to the standard task of classification, where 
there is only one class attribute (target attribute) to be predicted.  
The basic principles in multi-label classification are similar to those 
in single-label classification; however, in multi-label classification 
there are two or more class attributes to be predicted. As a result, the 
consequent of a classification rule contains one or more predictions, 
each prediction involving a different class attribute.  
There has been relatively little work in the area of multi-label 
classification, by comparison with the vast amount of work in 
standard single-label classification. In addition, most of the works in 
multi-label classification have been applied to text classification 
[10], [12], [17]. An exception is the work of [3], which has been 
applied to the area of bioinformatics. 
Traditional classification algorithms are unable to cope with a multi-
label dataset, since those algorithms predict a single class attribute. 
A simple workaround is to split the original dataset into near 
identical datasets, where each contains all predictor attributes and 
their values for each example, but each dataset produced in this way 
contains only one of the class attributes to be predicted. This results 
in requiring the classification algorithm to be trained on nearly the 
same dataset multiple times. More precisely, the algorithm has to be 
run once for predicting each of the class attributes. This is not a very 
good solution to the problem of multi-label classification [3], [18], 
for two main reasons. First, we would discover a set of rules for 
predicting each class attribute, but each of the class attributes would 
be treated individually, ignoring possible correlations between class 
attributes. Intuitively, an algorithm that discovers rules predicting 
more than one class attribute can capture some correlations between 
class attributes and discover a simpler rule set (with a smaller 
number of rules) than an algorithm that discovers only rules 
predicting a single class attribute. Second, the approach of running 
the classification algorithm once for each class attribute has the 
drawback of being computationally expensive. 
One other approach that can be used to solve the multi-label 
classification problem consists of converting the existing class 
attributes into a single class attribute, where each value of this new 
class attribute represents a combination of the class attributes that 
were initially present in the data set. Using a simple example to 
illustrate this, consider a data set with three class attributes to be 
predicted, where each class attribute can have the value of either yes 
or no. Table 1 illustrates the possible combinations of class values 
in this dataset. 
Table 1 shows that it is possible to convert multi-label problems 
into a single-label problem. But it is also evident that, by carrying 
out such a conversion, the number of values of the new single-class 
attribute will increase exponentially with the number of original 
class attributes. Hence, it becomes increasingly more difficult to 
predict a class value, as the number of examples associated with any 
given value of the new single class attribute decreases considerably, 
reducing the amount of information to effectively predict each class 
value. 
In order to avoid these disadvantages associated with the conversion 
of a multi-label problem into one or more single-label problems, 
this paper directly addresses the multi-label classification task. That 
is, we propose a new multi-label classification algorithm (described 
in section 4) that was designed so that different class attributes can 
be potentially predicted using the same rule antecedent, which 
shows some correlations between the class attributes to be 
predicted.  

Table 1. Transforming a multi-label problem into a single-label 
problem 

Class Attr. 1 Class Attr. 2 Class Attr. 3 Single class 
Attribute 

Yes Yes Yes YYY 
Yes Yes No YYN 
Yes No Yes YNY 
Yes No No YNN 
No Yes Yes NYY 
No Yes No NYN 
No No Yes NNY 
No No No NNN 

3. AN OVERVIEW OF ANT-MINER 
At first glance, ants are seen as small unintelligent individuals, but 
on closer inspection, as a collective group (a swarm) they appear to 
be highly organised and yet require no supervision at all [1], [2]. 
The “intelligent” foraging behaviour of ant colonies has been 
studied in detail, as discussed in [5], [8]; and these studies have led 
to the development of the ACO (Ant Colony Optimisation) meta-
heuristic, on which the Ant-Miner algorithm is based. Hence, before 
we review Ant-Miner, let us first briefly review this meta-heuristic. 
The ACO meta-heuristic, as proposed by [6], is normally used to 
solve discrete optimization problems. In essence, each ant 
corresponds to a candidate solution to the target problem. The 
search space is conceptually represented as a graph, where nodes 
correspond to parts of a candidate solution and edges correspond to 
movements performed by ants in the search space. Hence, the path 
followed by an ant in that graph corresponds to the process of 
incrementally constructing a candidate solution. In other words, 
when an ant follows an edge leading to a given node i, the part of 
the candidate solution represented in node i is added to the current 
candidate solution. Each ant keeps following a path in the graph 
incrementally constructing a candidate solution, until a complete 
solution is constructed.  
This process is performed by a population of ants (an ant colony) 
for a number of iterations. During the construction of a candidate 
solution, an ant usually has to choose between two or more paths, 
i.e., it has to choose which edge it will follow (or which node it will 
visit) next. This choice depends on two factors, namely: 
• The value of a problem-dependent heuristic function 

associated with each edge or node of the graph representing the 
search space. 

• The amount of pheromone associated with each edge or node. 

When an ant follows a path in the graph, it updates the amount of 
pheromone along that path. More precisely, the amount of 
pheromone deposited on the path followed by an ant is proportional 
to the quality of the candidate solution represented by that path. It is 
this pheromone updating mechanism that implements the concept of 
stigmergy [9], where ants modify the environment (amount of 
pheromone on edges or nodes of the graph) as an indirect means of 
communication, which allows them to cooperate to find good 
solutions to the target problem. 

3.1 Ant-Miner 
Ant-Miner was initially developed by Parpinelli and his colleagues 
[13], [14]. It was the first ACO algorithm for discovering 
classification rules and it has been shown to be competitive against 
the CN2 [4] and C4.5 [16] algorithms for classification. Ant-Miner 
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generates solutions in the form of classification rules. Conventional 
classification rules are in the form of IF <antecedent> THEN 
<consequent>, where the antecedent contains an arbitrary number 
of terms, from zero to potentially the number of predictor attributes 
in the data being mined. However, in practice one expects a rule to 
contain a number of terms much smaller than the total number of 
predictor attributes, since many attributes can be irrelevant to 
predict the class of a given set of examples. Ant-Miner uses a 
propositional logic representation, where each term takes the form 
of a triplet <attribute, operator, value>, where the attribute is one 
of the predictor attributes in the data, the value is one of the values 
that the attribute can take on, and the operator is a relational 
operator. This relational operator could in principle be =, ≠, <, ≤, >, 
or ≥, but the original version of Ant-Miner has the limitation that it 
can only process discrete values – a common limitation in ACO 
algorithms. As a result, Ant-Miner only uses the “=” operator. So 
each term takes on the triplet <attribute=value>. Also, each rule 
cannot contain the same attribute twice, e.g. <sex=m> AND 
<sex=f>, otherwise the rule would contain a contradiction and so it 
would never be satisfied by any example. 

 
TrainingSet = {all training examples}; 
DiscoveredRuleList = [ ]; /* rule list is 
initialized with an empty list */ 

WHILE (TrainingSet > MaxUncoveredExamples) 

t = 1; /* ant index */ 

j = 1; /* convergence test index */ 

Initialize all trails with the same amount of 
pheromone; 

 
REPEAT 

Antt starts with an empty rule and 
incrementally constructs a classification 
rule Rt by adding one term at a time to the 
current rule; 

Prune rule Rt; 

Update the pheromone of all trails by 
increasing pheromone in the trail followed 
by Antt (proportional to the quality of Rt) 
and decreasing pheromone in the other trails 
(simulating pheromone evaporation); 

 
IF (Rt is equal to Rt – 1) /* update 
convergence test */ 

THEN j = j + 1;  

ELSE j = 1; 
END IF 

  t = t + 1; 

UNTIL (i ≥ No_of_ants) OR  

   (j ≥ No_rules_converg) 

 
Choose the best rule Rbest among all rules Rt 
constructed by all the ants; 

Add rule Rbest to DiscoveredRuleList; 

TrainingSet = TrainingSet - {set of examples 
correctly covered by Rbest}; 

END WHILE 
 

Pseudocode 1. High-level description of Ant-Miner [13] 

The consequent contains the class attribute value to be predicted by 
the rule. Ant-Miner however was designed initially to solve a 

single-label classification task and so the consequent of the rules 
generated by the original Ant-Miner will contain only one class 
attribute value.  
Let us now briefly review the main aspects of the rule discovery 
process performed by Ant-Miner, as described by Pseudocode 1 
[13]. For more details about the algorithm the reader is referred to 
that reference. 
Ant-Miner uses a sequential covering approach to discover a list of 
classification rules, by discovering one rule at a time until all or 
almost all the examples in the training set are covered by the 
discovered rules. When the algorithm first starts, the training set 
holds all the original training examples and the discovered rule list 
is empty. Every iteration of the WHILE loop illustrated in 
Pseudocode 1 creates a population of ants, each ant corresponding 
to one iteration of the REPEAT-UNTIL loop. Each ant constructs 
one rule. At the end of the WHILE loop, the best rule from the set 
of constructed rules is added to the discovered rule list. Examples 
correctly covered by this rule – i.e. examples satisfying the rule 
antecedent and having the class predicted by the rule – are removed 
from the training set before the next iteration of the WHILE loop. 
This rule discovery process is repeated until the number of 
uncovered examples in the training set is less than a user-specified 
threshold (MaxUncoveredExamples).  
Every iteration of the REPEAT-UNTIL loop consists of three 
stages: rule construction, rule pruning, and pheromone updating. In 
the rule construction stage, every Antt starts off with an empty rule 
with no term in its antecedent, and adds one term at until one of two 
criteria is met: 
• Any term added to the current rule Rt, would make the rule 

cover a number of examples less than a user specified 
threshold (MinExamplesPerRule). 

• All attributes have been used by the current ant Antt, which 
means there are no more terms which can be added to the rule 
antecedent. As mentioned earlier, no rule can contain any 
attribute twice, e.g. <sex=m> AND <sex=f>.  

The current partial rule being constructed by Antt represents the 
path being taken by that ant, and every term added to the current 
partial rule constitutes the direction of how the path is being 
extended. The next term to be added to the current partial rule is 
selected using the same kind of roulette wheel mechanism often 
used in evolutionary algorithms [7], where the probability of a term 
being selected is given by the product of the value of a problem-
dependent heuristic function and the amount of pheromone 
associated with the term. 
After the rule construction stage, every rule Rt then undergoes rule 
pruning, where the aim is to remove all irrelevant terms and also to 
improve the predictive power of the current rule Rt. This process is 
necessary as some of the terms added to the rule antecedent may 
have been unduly selected by the probabilistic roulette wheel 
mechanism, and/or due to a local heuristic function that only 
considers one attribute at a time, which has the drawback of 
ignoring interactions between attributes. 
Rule pruning consists of iteratively removing one term at a time 
from the rule while this improves the quality of the rule. During this 
stage, the consequent of the rule can change as the majority class 
covered by the pruned rule can be different to that of the original 
rule. This process repeats until there is only one term left in the rule, 
or any term to be removed next will not improve the quality of the 
rule. 
After the rule pruning stage, pheromone levels of the path taken by 
the current ant are increased. More precisely, the amount of 

29



pheromone associated with each term in the antecedent of the just-
pruned is increased in proportion to the quality (predictive accuracy) 
of the rule. The other terms – i.e. the terms that are not present in the 
rule antecedent – have their pheromone reduced, to simulate 
pheromone evaporation in real ants. This is implemented by a 
simple normalization procedure: after increasing the pheromone of 
the terms used in the rule, the pheromone of each term (either used 
or not in the rule) is divided by the total sum of pheromones for all 
terms. Since the terms not used in the rule did not have their 
pheromone levels increased, their pheromone levels will be 
effectively reduced, by comparison with the terms used in the rule. 
The REPEAT-UNTIL loop is repeated till at least one of the 
following terminating criteria is met: 
• The number of constructed rules is equal or greater than the 

number of ants specified by the user. 
• The rule constructed by Antt is exactly the same as the rule 

constructed by the previous No_rules_converg – 1 rules, where 
No_rules_converg is a user-defined parameter.  

4. THE PROPOSED MULTI-LABEL  
ANT-MINER 
This section will describe the complete Multi-Label Ant-Miner 
(MuLAM) algorithm. Firstly, a high-level pseudocode is presented 
in Pseudocode 2, outlining the main functional behaviour of 
MuLAM.  
At the start of the algorithm, MuLAM assigns all available training 
examples to the training set and it initialises the discovered rule list 
with an empty list. In MuLAM, each ant does not produce a single 
rule like in the original Ant-Miner. Rather, each ant discovers a 
candidate rule set – a very significant change. The reason for this is 
due to addressing the multi-label classification task, where there are 
multiple class attributes to be predicted. Each ant discovers at least 
one rule and at most a number of rules equal to the number of class 
attributes, i.e. a different rule for each class to be predicted. An ant 
will discover a single rule only in the case where that rule is 
considered good enough to predict all class attributes – according to 
a criterion to be defined later. 
At the end of each outer WHILE loop iteration, examples that have 
all their class attributes correctly covered by any of the rules in the 
just discovered rule set are removed from the current training set. 
Hence, the training set gradually reduces in size. This brings us to 
the condition of this WHILE loop, which is executed as long as the 
number of examples left in the training set is greater than a user-
defined parameter: MaxUncovExamples (maximum number of 
uncovered examples).  
At the start of each iteration of the outer WHILE loop, the algorithm 
carries out pre-processing calculations which will be needed to 
calculate the probability of selecting a term to be added to a rule 
later. There are two kinds of calculation that are performed here, in 
the order they appear in Pseudocode 2. First, the algorithm 
calculates and stores the information gain [16] associated with each 
term. Note that the value of a term’s information gain does not 
change throughout the iteration of this outer WHILE loop. 
Secondly, a pheromone matrix is created for each class attribute. 
This is a generalisation of the original Ant-Miner where there is a 
single pheromone matrix because there is a single class attribute. 
Each of the pheromone matrices contains one cell for each term, 
representing the amount of pheromone associated with that term. 
Each pheromone matrix is initialized by assigning an amount of 
pheromone deposited directly proportional to the previously 
computed information gain of each term.  

After the initialization of the pheromone matrices, the algorithm 
starts a REPEAT loop. Each iteration of this loop corresponds to a 
single ant constructing a candidate rule. The constructed rule can 
potentially be decomposed into a set of rules later in the algorithm, 
as will be explained later. The REPEAT loop stops when the ant 
with index t reaches a user-defined value, the parameter: 
MaxNoAnts, which is the maximum number of ants to be used for 
discovering a rule set in the current iteration of the outer WHILE 
loop.  
Every ant in MuLAM starts off with an empty partial rule, i.e. a rule 
with no term in its antecedent. In addition, the rule set constructed 
by this ant, denoted RSt, is also initialized with the empty set. Next 
the WHILE statement inside this REPEAT loop decides if the 
current ant should proceed to select a term to be added to the partial 
rule, based on two conditions, both of which must be satisfied. The 
first condition makes sure that the ant can only select a new term to 
add to the partial rule if there are still unused attributes from the set 
of predictor attributes in the data. This condition is also used in Ant-
Miner. The second condition ensures that there is still one or more 
classes that has not been predicted up to this point of the WHILE 
loop. This condition is used in MuLAM, but not in Ant-Miner. It 
represents an adaptation of MuLAM to the multi-label classification 
task. When both conditions evaluate true, the algorithm proceeds to 
the inside of this WHILE loop, where a new term is selected.  
Each ant selects a term to potentially add to the current partial rule 
using a roulette wheel selection technique analogous to the roulette 
wheel selection method popularly used in evolutionary algorithms 
[7]. Each term occupies a slot of the roulette wheel with size 
proportional to the probability of selecting that particular term. The 
probability of selecting any given term is given by the product of 
the amount of pheromone associated with that term and the value of 
a heuristic measure for that term. Once a term has been selected, 
this term is only added to the current partial rule as long as it 
satisfies the condition of the IF statement; that is, as long as the 
inclusion of the selected term in the partial rule does not make the 
antecedent cover a number of examples smaller than the parameter 
MinExamplesPerRule (Minimum Number of Examples per Rule).  
Once a term has been successfully added to the antecedent of the 
current partial rule, the algorithm then tries to make a prediction for 
each and every class attribute in the training set that has not been 
predicted up to this point of the algorithm.  
Before the algorithm makes a prediction for this current partial rule, 
it initialises the rule consequent with the empty set. This rule 
consequent holds all class attribute values that are being predicted 
by the rule. The ant enters the FOR loop, where it processes each 
class attribute separately. So for every class attribute, the algorithm 
then decides under a certain pre-pruning criteria whether the current 
class attribute should be added to the rule consequent as a 
prediction. 
The pre-pruning criteria used in MuLAM is based on Cramer’s V 
coefficient [11]. This criterion consists of applying pre-pruning 
when the value of Cramer’s V coefficient is greater than a certain 
threshold calculated based on the data, using the method described 
in [18]. If this criterion is satisfied, then the current class attribute is 
predicted by the rule. This means the algorithm adds to the rule 
consequent a term <Ci=Vij>, where Ci is the current (i-th) class 
attribute and Vij is the value of Ci having the largest frequency 
among all examples covered by the rule. This class attribute Ci is 
then marked as predicted for this ant. After the FOR loop, if the rule 
consequent is not empty, i.e. it contains one or more class attribute-
value pairs, then the ant creates a complete rule using the current 
rule antecedent and predicting all class attributes held in rule 
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consequent. This rule is added to the current ant’s rule set RSt, and 
the WHILE loop repeats for any class attribute that still exists to be 
predicted.  

As previously explained, inside the second WHILE loop, the 
condition in the first IF statement determines whether the current 
ant should add the newly selected term to its rule antecedent.

 
TrainingSet = {set of all training examples} 
 
DiscoveredRuleList = {} 
 
WHILE (TrainingSet > MaxUncovExamples) 
t = 1;  /* ant index */ 
 
Calculate information gain of each term considering all class attributes based on current training 
examples; 
 
For each class attribute Ci, initialize all cells of the pheromone matrix   
 REPEAT 
  Antt starts with an empty partial rule Rt;   
  Current ruleset RSt = { };  
  WHILE ((there is at least 1 unused attribute) AND (there is at least 1 unpredicted class  
   attribute)) Antt chooses, out of the unused terms, a term to be added to current partial rule Rt,  
   with a probability proportional to the product of a heuristic function and the pheromone; 
 
   IF (after adding the chosen term to the partial rule Rt the rule will still cover more than  
   MinExamplesPerRule) THEN 
    Add the chosen term to the current partial rule Rt;  
    RuleCons = ∅;  
 
    FOR EACH (Class attribute Ci)       
     IF (partial Rule Rt predicts class attribute Ci with high confidence) THEN  
      RuleCons = RuleCons ∪ (predicted class for class attribute Ci);  
      Mark class attribute Ci as predicted;  
     END IF 
    END FOR EACH 
 
    IF (RuleCons ≠ ∅) THEN 
     Create complete rule CRti (with rule format IF term1 … AND … termn THEN RuleCons);  
 
     RSt = RSt U CRti; 
    END IF 
 
   ELSE 
     Quit this WHILE loop; 
   END IF-THEN-ELSE 
  END WHILE 
 
  IF (there are still unpredicted class attributes) THEN  
   Create one complete rule predicting each of those class attributes; 
 
   FOR EACH (class attribute Ci predicted by this rule)  
    Create a temporary rulei IF (antei) THEN Ci;  
    Use original Ant-Miner pruning technique to prune this temporary rule. Instead of allowing  
    the consequent to be modified during pruning, the current consequent is kept fixed, which  
    will potentially produce a new antei only; 
   END FOR 
  END IF 
 
  FOR EACH (rule in RSt) 
   Update pheromone matrix for each predicted class attribute Ci in the rule, increasing pheromone  
   of terms in rule antecedent and reducing pheromone (evaporation via normalisation) of terms  
   not used in the rule. Pheromone increasing is based on quality of partial rule predicting  
   class attribute Ci only;   
   t = t + 1; 
  END FOR 
 
 UNTIL ( t ≥ MaxNoAnts) 
 Choose best set of rules RSbest among those generated by all Ants in current population by using  
 the rule quality measure; 
 
 Add RSbest to DiscoveredRuleList;  
 TrainingSet = TrainingSet – {set of examples where all the class attributes have been correctly  
 predicted by RSbest };  
END WHILE 

Pseudocode 2. A high-level description pseudocode of Multi-Label Ant-Miner (MuLAM) 
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If this condition fails, then the algorithm will not run the rest of 
the procedures within this second WHILE loop. Instead it exits 
the WHILE loop prematurely, and proceeds to the IF statement 
right after this WHILE loop. This IF statement tests if there are 
still unpredicted class attributes left for this ant to predict. If so, 
we need a method to complete predicting these class attributes. 
This is where the IF statement takes over and builds one rule 
using original Ant-Miner’s rule generation procedure, whereby 
the rule antecedent is constructed by adding one term at a time to 
the rule antecedent until the addition of a term causes the 
antecedent to cover less than a predefined number of examples 
(similar to the MinExamplesPerRule parameter in MuLAM). The 
rationale for this step is that for the class attributes that are not 
predicted up to this point, it is better to build a new rule predicting 
the classes not predicted by the current rule than to attempt to 
correct the current rule, which is badly predicting these classes. 
This is because the current ant has already found a good rule 
predicting a subset of all class attributes, and by attempting to 
correct this rule to predict those currently unpredicted classes, the 
result would tend to be a bad rule predicting the majority of the 
classes. Once the antecedent of a rule is finished, in Ant-Miner the 
majority value of the class attribute is predicted. The majority 
class value is simply the class value with the largest frequency in 
the set of examples covered by the rule. In this IF statement, 
MuLAM generates each rule in a similar way as to Ant-Miner. 
The difference is that, instead of predicting just one class as in 
Ant-Miner, MuLAM will predict the majority value of each class 
attribute that has not been predicted up to this point, by creating 
one complete rule for those class attributes.  
If a rule has been generated as a result of the IF statement 
mentioned above, this rule will undergo pruning as this rule can 
potentially be very large with respect to the number of terms in 
the rule antecedent as mentioned in [13]. The pruning technique 
used in MuLAM is an iterative procedure partly inherited from 
original Ant-Miner, whereby in each iteration the term whose 
removal best improves the rule quality is pruned out, and this 
process repeats till the rule quality can no longer be improved. In 
Ant-Miner, the class value predicted by the rule can potentially 
change. With Ant-Miner, as there was always only a single class 
attribute to be considered, this was not a problem. However, with 
MuLAM, if we allowed the procedure to alter the predicted class 
values for several class attributes, this process would become very 
computationally expensive. After all, every time a term is 
evaluated for its removal, the training set would need to be 
scanned for the possibility of the class attributes’ values changing 
and, if we considered all possible combinations of class attributes’ 
values, there would be a large number of combinations of values 
of unpredicted class attributes to be considered. In particular, this 
number would seriously reduce the scalability of the algorithm to 
problems with many class attributes. Hence, in MuLAM, to avoid 
this problem, all the predicted class attribute values in the 
consequent of the rule being pruned remain the same during the 
pruning procedure. 
Once the current ant has finished generating one or more rules to 
predict all class attributes, pheromone trails are then updated 
simulating real world ants where they lay pheromone as they 
travel along their selected paths, as explained earlier in the 
description of Ant-Miner (Section 3.1).  
Pheromone updating is carried out for each rule in the set of rules 
constructed by the current ant. For each rule, the pheromone 
matrix associated with each class attribute predicted by the rule is 
updated, by increasing the amount of pheromone of all matrix 

cells referring to the terms occurring in the antecedent of the rule. 
The REPEAT-UNTIL loop terminates when the number of ants 
reaches a user-defined parameter: MaxNoAnts (maximum number 
of ants). When this terminating condition is met, from the set of 
rule sets discovered by all the ants, the best rule set is chosen. 
Each of the rules in that best rule set is then added to the 
DiscoveredRuleList, which holds all the rules that will be used to 
classify the test data. To determine which rule set is the best out of 
all the rule sets constructed by all ants during the entire REPEAT 
loop, each rule set has its quality computed as the average of the 
quality measure of all rules in that set. (The formula for 
computing a rule quality is a natural extension of the formula used 
in Ant-Miner, viz. the product Sensitivity (Se) × Specificity (Sp) 
[13]. The extension is that, instead of computing this product for a 
single class attribute, in MuLAM the rule quality is the arithmetic 
average of this product over all class attributes predicted by the 
rule.) The rule set with the best quality is chosen to be added to 
the DiscoveredRuleList. This rule set is then used to mark the 
training examples it correctly covers, i.e. examples matching both 
the antecedent and the consequent of one of the rules in the 
discovered rule set. Since there are multiple class attributes in the 
training set, one discovered rule may only predict a subset of class 
attributes, and so effectively MuLAM does not physically remove 
the examples from the training set. Instead it uses a virtual 
flagging system whereby for each class attribute predicted by a 
rule, the examples that match both the rule antecedent and the 
predicted class value are flagged to be considered out of the 
training set when later iterations of the algorithm try to predict 
this class attribute. That is, any future calculations regarding the 
number of examples (and referring to this class attribute) will not 
include these covered examples. Once a reduced training set is 
produced, the outer WHILE loop will continue to run provided 
that the number of examples which are not covered by the rules 
discovered so far is greater than the previously-mentioned 
parameter MaxUncovExamples. 

5. COMPUTATIONAL RESULTS 
This section will briefly explain the data sets used in the 
experiments and then present the obtained results. 

5.1 Biological Data Sets 
The data sets used in our experiments originate from Uniprot [19], 
which is one of the largest bioinformatics databases holding 
information on sequenced proteins and their functions. Each 
record of the Uniprot database essentially contains information 
about a protein. We obtained, from Uniprot, 5 datasets, each with 
two class attributes to be predicted, as shown in Table 2. In order 
to create the predictor attributes for these datasets, out of the many 
fields describing a protein in Uniprot, we used a field which has a 
set of references to PROSITE patterns [15]. In other words, each 
protein’s record contains a reference to each PROSITE pattern (a 
biological motif) present in that protein. Prosite is actually a 
separate database which stores sequenced protein families and 
domains. Hence, our datasets were created by using cross 
references from Uniprot to the PROSITE database for each of the 
proteins included in our datasets. Each PROSITE pattern is used 
as a binary attribute. In other words, in each dataset, each example 
(protein) is described by a set of binary attributes, each attribute 
taking the value “yes” or “no”, indicating whether or not the 
corresponding PROSITE pattern is present in that protein. 
Therefore, the discovered rules take, for instance, the following 
form: “IF (prX = yes) AND (prY = no) … THEN (anti-oncogene 
= yes) AND (apoptosis = no)”, where prX and prY are certain 
PROSITE patterns, whilst anti-oncogene and apoptosis are class 
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attributes of dataset 1 in Table 2. The class attributes and the 
number of attributes and examples for each dataset is summarised 
in Table 2. 

Table 2. Summary of five data sets used in experiment 
Data 
set Class Attributes No. of 

Attributes 
No. of 

Examples 
1 Anti-oncogene 153 540 
 Apoptosis   

2 Cell-cycle 156 1343 
 Cell-division   

3 DNA-repair 102 1872 
 DNA-damage   

4 DNA-repair 101 1826 
 SOS-response   

5 DNA-damage 34 622 
 SOS-response   

5.2 Results 
We applied Multi-Label Ant-Miner (MuLAM) to each of the data sets 
listed in Table 2, and compared these results with the results of three 
other classification techniques. First, as a very simple baseline, we 
used the trivial majority classifier technique to classify the examples 
in the test set. This technique simply assigns, to every test example 
(unseen during training), the class with the largest frequency in the set 
of training examples. Second, we used the original Ant-Miner 
algorithm. Third, we used Clementine’s implementation of the 
popular, industrial-strength C5.0 algorithm. Since Ant-Miner and 
C5.0 are single-label algorithms, they were run twice for each dataset. 
These two runs used the same set of predictor attributes, but each run 
aimed at discovering rules predicting the value of a different class 
attribute. This approach has the disadvantages discussed in section 2, 
but it is a fair way of comparing MuLAM with the above techniques. 
The comparison with original Ant-Miner is important since MuLAM 
is a major extension of Ant-Miner, and the comparison with C5.0 is 
important because this is a very popular classification-rule discovery 
algorithm. 

Table 3. Number of ants used in Ant-Miner for each dataset 

Data Set MuLAM 
(time in sec) 

Ant-Miner 
(time in sec) 

Max No of Ants in 
Ant-Miner 

1 228.7 210.4 300 
2 627.2 644.7 450 
3 308.1 310.0 250 
4 266.9 265.0 300 
5 67.8 61.2 3000 

All experiments with each of the four techniques (MuLAM plus the 
other three techniques) were conducted running a 5-fold cross 

validation procedure [20] for each dataset. When running this 
procedure, exactly the same folds (partitions) of the data were used 
by each of the four techniques, in order to make their comparison as 
fair as possible. 
C5.0 was used with its default parameters in all datasets. MuLAM 
was used with the following default parameters in all datasets: 
MaxUncovExamples = 10, MinExamplesPerRule = 10, MaxNoAnts 
= 100. These values of MaxUncovExamples and 
MinExamplesPerRule are actually the default values of these 
parameters in Ant-Miner too. Ant-Miner was used with its default 
values in all datasets, with the exception of its parameter 
MaxNoAnts, which was set to a different value for each dataset in 
order to perform more controlled experiments, for the following 
reason. We wanted to compare MuLAM and Ant-Miner by giving 
each algorithm roughly the same amount of computational time to 
solve the target classification problem. Otherwise the better result of 
an algorithm could be attributed just to it spending more time to 
solve the problem, rather than be due to its better effectiveness in 
discovering accurate rules. In order to give MuLAM and Ant-Miner 
roughly the same computational time in a controlled way, we first 
ran MuLAM and, for each dataset, we set the parameter MaxNoAnts 
of Ant-Miner to a value which makes an Ant-Miner run to take 
about the same amount of time as a MuLAM run. The parameter 
MaxNoAnts was chosen to be varied in these experiments because 
this is the parameter that most influences the computational time of 
Ant-Miner. Table 3 shows, for each dataset, the resulting 
MaxNoAnts value adjusted for Ant-Miner and the computational 
time taken for each algorithm, in seconds.  
The predictive accuracy for each algorithm, for each class attribute in 
each dataset, is reported in Table 4. The numbers after the “±” symbol 
denote standard deviations. In the last three columns of Table 4, some 
cells are marked by (-), which means the corresponding accuracy is 
significantly worse than MuLAM’s accuracy. (In principle a cell in 
the last three columns could alternatively be marked as (+), which 
would mean the corresponding accuracy is significantly better than 
MuLAM’s accuracy for the same class attribute, by this result was not 
observed in Table 4.) A difference in accuracy was considered 
significant if the corresponding standard deviation intervals do not 
overlap. The majority classifier’s accuracy was significantly lower 
than MuLAM’s accuracy in 6 out of the 10 class attributes in Table 4. 
In the other 4 class attributes the differences in accuracies obtained by 
these two techniques was not significant. There was no significant 
difference between the accuracies obtained by MuLAM and Ant-
Miner in any of the 10 class attributes. Finally, C5.0’s accuracy was 
significantly lower than MuLAM’s accuracy in 6 class attributes, and 
there was no significant difference in the other 4 class attributes.  

 
Table 4. Predictive accuracy (%) in the test set for each algorithm, using 5-fold cross validation 

Data 
Set 

Class 
Attributes MuLAM Majority 

classifier Ant-Miner C5.0 

1 Anti-oncogene 79.57±3.56 77.41±0.13 72.56±18.61 77.41±0.51 
 Apoptosis 85.09±2.57 85.74±0.13 76.25±23.42 88.33±5.02 
          

2 Cell-cycle 63.27±5.54 53.98±0.03 (-) 67.51±7.17 53.90±0.0 (-) 
 Cell-division 78.87±1.65 77.29±0.01 71.87±16.09 77.17±0.2 
           

3 DNA repair    97.20±3.0 85.79±0.03 (-) 97.68±1.35 85.65±0.12 (-) 
 DNA damage 92.09±2.24 78.63±0.01 (-) 93.85±3.24 78.51±0.15 (-) 
           

4 DNA repair 99.21±2.19 87.96±0.0  (-) 99.58±0.0 87.76±0.13 (-) 
 SOS response 82.82±5.17 70.87±0.03 (-) 92.52±6.01 70.71±0.13 (-) 
           

5 DNA damage 84.70±9.19 64.31±0.07 (-) 96.75±4.84 64.00±0.0  (-) 
 SOS response 85.02±4.60 85.53±0.02 91.24±14.22 85.12±0.44 

33



 
Table. 5 Some rules found by MuLAM and Ant-Miner 

MuLAM’s Rule: 
IF PS00321=0 THEN DNA-repair=1 DNA-damage=0  

Ant-Miner’s Rules: 
IF PS00321=0 AND PS50162=1 THEN DNA-repair=1 
IF PS00321=0 AND PS00618=0 THEN DNA-damage=0 

Recall that, unlike Ant-Miner, MuLAM is a multi-label classifier 
and as such it will try to predict one or more class attributes with 
the same rule when possible. Table 5 shows examples of rules 
produced by MuLAM and Ant-Miner. The top section shows a 
rule discovered by MuLAM and how the rule predicts two classes 
(DNA-repair = 1 and DNA-damage = 0). The bottom section 
shows two rules discovered by Ant-Miner, one of them predicting 
only the class DNA-repair = 1 and the other one predicting only 
the class DNA-damage = 0. Hence, in this example MuLAM 
found a very generic, simple rule using a single Prosite pattern 
(PS00321=0) to predict two classes, whereas Ant-Miner found 
instead two more specific rules, each of them using not only the 
Prosite pattern PS00321=0 but also another Prosite pattern, each 
each of these more specific rules predicts just one of those two 
classes.  

6. CONCLUSION AND FUTURE WORK 
The results of the experiments showed that, overall, MuLAM 
obtained predictive accuracies considerably better than the 
predictive accuracies obtained by the simple majority classifier 
and by C5.0. This clear superiority over the majority classifier 
was expected, given the extreme simplicity of that classifier, 
which actually ignores the values of all predictor attributes. The 
superiority over C5.0 was a positive result which was not 
expected, considering that C5.0 is an industry-strength algorithm 
resulting from several decades of research in decision tree 
induction, whereas MuLAM is a new algorithm. On the other 
hand, there was no significant difference between MuLAM’s 
accuracy and Ant-Miner’s accuracy in the experiments reported 
here. In any case, MuLAM at least has the advantage of 
discovering some rules that predict (using the same rule 
antecedent) two class attributes, which explicitly shows some 
correlations between different class attributes. Ant-Miner is of 
course unable to discover such correlations, since it is a single-
label classification algorithm. 

Recall that all results reported here used default parameters for all 
algorithms, in order to make the comparison among the 
algorithms as fair as possible. One direction for future work is to 
try to optimise the parameters of each algorithm to the datasets 
used in the experiments, to maximize the accuracy of the 
discovered rules. Another future work is to do experiments with 
more datasets and more class attributes per dataset. 
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