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ABSTRACT

The most popular approaches for reconstructing phyloge-
netic trees attempt to solve NP-hard optimization criteria
such as maximum parsimony (MP). Currently, the best-
performing heuristic for reconstructing MP trees is Recursive-
Iterative DCM3 (Rec-I-DCM3), which uses a single tree (or
solution) to guide its way through an exponentially-sized
tree space. To improve performance further, we designed
Cooperative Rec-I-DCM3, a population-based approach for
utilizing a population of Rec-I-DCMS3 trees.

We compare the performance of Cooperative Rec-I-DCM3
to Rec-I-DCM3 on four large biological datasets. Of partic-
ular interest is Cooperative Rec-I-DCM3'’s selection criteria
for maintaining a population of solutions. Our experiments
reveal that diverse populations outperform Rec-I-DCM3 in
terms of average rates of convergence to best-known MP
scores. To achieve greater performance, we designed an eli-
tist population strategy, in which each solution’s tree score
matches that of the best score found in each generation. The
elitist strategy was by far the worst overall performer in our
experiments. Hence, being greedy is not always the best ap-
proach. Instead, a population of diverse solutions allows our
cooperative algorithm to achieve the greatest performance
improvements.

Categories and Subject Descriptors

1.2.8 [Problem Solving, Control Methods, and Search]:
Heuristic methods; J.3 [Life and Medical Sciences]: Bi-
ology and genetics

General Terms
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1. INTRODUCTION

Given a collection of n organisms (or taxa), the objective
of phylogeny reconstruction is to produce an evolutionary
tree describing the evolutionary relationships between the
organisms (or taxa). Here, the leaves of the tree denote the
taxa of interest, and the edges denote the evolutionary re-
lationships between the organisms. A phylogenetic tree is a
hypothesis of the evolutionary history of the n taxa under
study. Hence, evolutionary trees attempt to predict the past
with information (e.g., biomolecular sequences, morpholog-
ical data) from current-day species. The ultimate challenge
is to reconstruct the Tree of Life, the evolutionary history
of all-known organisms.

Unfortunately, current approaches are several orders of
magnitude away from being able to infer the Tree of Life;
estimates indicate it consists of 10 to 100 million organisms.
Here, we tackle the problem by applying evolutionary com-
puting techniques (e.g., selection and recombination) to a
population of evolutionary trees, each reconstructed by a
local search heuristic. Our approach could be categorized
as a memetic algorithm [14], which combines a population-
based global search and an individual local search to exploit
problem-domain knowledge.

The novelty of our cooperative approach—as applied to
phylogenetics—reflects our curiosity as to whether main-
taining a population of tree solutions outperforms heuris-
tics that manipulate a single tree solution. A population-
based approach seems more suited to balance the orthogonal
search objectives of exploration and exploitation, where ex-
ploration helps the search avoid getting trapped in local op-
tima and exploitation investigates promising regions of the
search space more effectively.

We developed Cooperative Rec-I-DCM3 [21], a memetic
algorithm that maintains a population of Rec-I-DCM3 [18]
trees to search the tree landscape. Rec-I-DCM3 reconstructs
trees using maximum parsimony (MP) as an optimization
criterion. MP is a commonly used criteria for reconstructing
evolutionary trees that is based on Occam’s Razor, which
states that the simplest explanation that accounts for the
data is the best. Hence, the tree that explains the data
with the fewest evolutionary events (i.e., mutations) is the
one that is preferred under MP. Experiments have shown
that Rec-I-DCM3 consistently outperforms traditional ap-
proaches such as parsimony ratchet [16] and TNT [7] on
large biological datasets.

Our study compares the performance of Cooperative Rec-
I-DCM3 to Rec-I-DCM3 on four datasets ranging from 921
to 4,114 taxa. Our study addresses the following questions.



1. Can a cooperative approach to inferring phylogenetic
trees outperform a highly-tuned local search heuristic
such as Rec-I-DCM3?

2. What effect do different cooperation strategies have
on performance? In particular, does a population that
consists entirely of elitist solutions (i.e., the best solu-
tions in terms of their tree score) outperform a diverse
strategy, which is composed of a heterogeneous range
of tree scores?

The elitist (greedy) strategy was motivated, in part, by tech-
niques employed in PAUP* [20], a widely-used phylogenetic
application. Our experimental results show that Coopera-
tive Rec-I-DCM3 with diverse tree scores outperforms Rec-
I-DCM3 in terms of average rate of convergence to the best-
known scores. Moreover, our results clearly demonstrate
that a diverse population outperforms its elitist counter-
part. In many cases, the elitist strategy performs worse
than Rec-I-DCM3. Hence, being greedy is not always the
best approach. By maintaining a population of diverse solu-
tions, our cooperative algorithm is able to more fully reach
its potential.

Related Work. Evolutionary computing is not a stranger
to phylogenetic algorithms. While we are unaware of other
phylogenetic techniques that use a memetic-based approach,
there are several phylogenetic heuristics that employ genetic
algorithms [1, 3, 11, 12, 17]. Unfortunately, the performance
of these genetic algorithms are often not compared to the
top performing phylogenetic heuristics. Thus, it is difficult
to evaluate the performance of the algorithms when the top
competitors are missing. We explicitly compare our coop-
erative algorithm to Rec-I-DCM3, which is the best MP
algorithm available. Moreover, Rec-I-DCM3 has been ex-
tensively tested against other MP approaches such as TNT
and parsimony ratchet and has consistently outperformed
them on large datasets. Besides MP, maximum likelihood
(ML) is another highly regarded optimization criterion; but
its feasibility is limited to much smaller sets of taxa than
the datasets analyzed in our experiments.

2. BACKGROUND

2.1 Maximum parsimony

The MP problem seeks the tree 7' with the minimum
length. In biological terms this is the same as seeking the
tree with the smallest number of point mutations for the
data. MP is an NP-hard problem [5], but the problem of
scoring a fixed tree is polynomial [4]. MP heuristics use poly-
nomial time algorithms for scoring individual trees along
with techniques for moving through the exponentially-sized
tree space.

Formally, given two sequences a and b of the same length,
the Hamming distance between them is defined as |{i : a; #
b;}| and denoted as H(a,b). Let T be a tree whose nodes are
labeled by sequences of length k over X, and let H(e) denote
the Hamming distance of the sequences at each endpoint of
edge e. Let E(T) be set of edges in T'. The parsimony score
of the tree T"is 3=  p(r) H (€).

2.2 Tree-Bisection and Reconnection (TBR)

Iterative improvement methods are some of the most pop-
ular heuristics in phylogeny reconstruction. A fast technique
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is used to find an initial tree, then a local search mecha-
nism is applied repeatedly to find trees with a better score.
One popular local search technique is based on using Tree-
Bisection and Reconnection (TBR) [13] moves to locate bet-
ter scoring trees. In a TBR operation, an edge is removed
from the given tree T' and each pair of edges touching each
endpoint merged, thereby creating two subtrees, ¢t and T —t;
the two subtrees are then reconnected by subdividing two
edges (one in each subtree) and adding an edge between the
newly introduced nodes.

2.3 Disk-Covering Methods (DCMs)

Disk-Covering Methods (DCMs) [8, 9, 15, 18] use a divide-
and-conquer technique for reconstructing phylogenetic trees.
DCMs consist of four main stages. First, divide the dataset
into overlapping subsets (or subproblems), which are sets
of taxa with nonempty intersections. Secondly, solve the
subproblems. Here, any phylogenetic method of choice can
be applied to solve the subproblems from the first stage.
Each such solution is a tree whose leaf nodes correspond
to one of the sets of taxa from stage one. Third, merge
the solutions back together, recombining each of the solved
subtrees back into a single tree. The hope is, the resulting
tree at this stage is in someway better than the tree we
began with during the first stage. Chances are, however,
the resulting tree is also multifurcating. This presents a
problem, because many existing phylogeny reconstruction
techniques require bifurcating trees. Therefore, the fourth
stage of a DCM consists of refining the tree from stage three
so that it is a bifurcation.

While all DCMs consist of the above steps, variations
result from different strategies during the first stage. We
can strategize how to decompose subsets of taxa based on
existing inter-taxa relationship measures, such as pairwise
distances; or even leverage information from subtrees of
the given tree. Regardless of the method of decomposition
(which has a significant effect on overall performance of the
DCM), the remaining three stages all work the same way.

2.4 Consensus Methods

A maximum parsimony analysis typically produces a col-
lection of trees with the same score. In these circumstances,
the standard practice is to output a single tree (or consen-
sus tree) that summarizes the result of the search. Bryant
provides an excellent overview of the wealth of consensus
techniques available to summarize the results of a phyloge-
netic analysis [2]. However, we have another purpose for
considering consensus techniques. Here, we use consensus
techniques as a mechanism for creating new trees to ex-
plore during a phylogenetic analysis. It forms the major
component of the recombination phase of our cooperative
algorithm (see Section 3).

The two most popular techniques, strict and majority
trees, use the notion of splits to construct the resulting con-
sensus tree. Since a phylogenetic tree is an unrooted tree,
every leaf is identified with a unique taxon (or sequence).
Removing a branch (edge) of an unrooted tree divides the
tree into two connected parts. If A is the group of taxa on
one side of the branch and B is the group of taxa on the
other, then A|B is said to be the split corresponding to that
branch. Given a collection of unrooted trees, the strict con-
sensus tree contains exactly those splits common to all the
trees in the collection (see Figure 1). The majority rule tree
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Figure 1: Strict-consensus tree. A strict consensus
preserves only those subtrees in common between
the input trees.

contains exactly those splits that appear in more than half
of the input trees.

3. Cooperative Rec-I-DCM3

Cooperative Rec-I-DCM3 [21] is a new approach for re-
constructing phylogenetic trees that maintains a population
of cooperating solutions to guide its search for better MP
trees. It consists of the following steps (see Figure 2).

1. Create a population of p starting trees, which repre-
sents the initial population of solutions.

2. Run Rec-I-DCM3 on each of the p trees.

3. Create a new population of p trees by performing se-
lection and recombination on the trees returned from
the Rec-I-DCM3 search.

4. Repeat steps 2 and 3 for the required number of gen-
erations.

We describe each of these steps in more detail below.

3.1 Algorithm Details

Sarting trees. Any approach may be used to populate
the population with w initial trees. In our implementa-
tion, we used an approach known as Greedy-MP (or ran-
dom sequence addition) to create the u trees. To construct
a Greedy-MP tree, we first randomize the ordering of the
sequences in the dataset. Afterwards, the first three taxa
are used to create an unrooted binary tree, T'. The fourth
taxon is added to the internal edge of T' that results in the
best MP score. This process continues until all taxa have
been added to the tree.

Local search. Although our cooperative algorithm is capa-
ble of handling any phylogenetic search technique in step 2
of the algorithm, we choose to use Rec-I-DCM3 since it is
the best performing MP heuristic and thus the hardest to
improve. Rec-I-DCM3 combines both recursion and it-
eration to provide a powerful technique for searching tree
space. The recursive application of the decomposition step
produces smaller and smaller subproblems until every sub-
problem is small enough to be solved directly. Once the
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dataset decomposition step is complete, subtrees are con-
structed for each subset and combined using the Strict Con-
sensus Merger [8, 9] to produce a tree on the original dataset.

Selection and recombination. The selection process de-
cides which solutions will enter the population of the next
generation. The p trees from step 2 are ranked based on
their MP scores, with the best scoring MP tree having the
best rank. Next, the trees are placed into sets A, B, and
C based on their rank. The algorithm also keeps a list of
trees with the best-scoring solution found by the current
generation of the search. These elite trees are placed into
set A. The top-ranking trees from step 2 are placed into set
B, and the lower-ranking trees are put into set C'. These
sets of trees comprise the new population. However, trees
in set C' may be recombined with trees in A U B to create
new (and more diverse) solutions. If ¢ € C is chosen for re-
combination, it will be replaced by the resulting recombined
tree.

For each tree t € C, there is a p% chance that it will
undergo recombination with a random tree t' € AUB. t and
t' are recombined by computing their strict consensus tree,
which contains all of the splits that are common between
the trees. Since the strict consensus tree typically results
in a multifurcating tree, it is refined into a binary tree and
subjected to a global search using TBR moves.

3.2 Diverse and elitist populations

Recall that at generation ¢, selection places solutions in
the population into one of three sets, A, which represents the
best solutions found by generation i; B, which contain the
top-ranking trees from generation i, and C, the lower-ranked
trees from generation . Our diverse strategy, sets |A| = 1,
|B| = 0.4u, and |C| = p — |A U B|. Moreover, the chance
of a solution in set C' recombining with the high-scoring
individuals in AU B is 20%. In the elitist strategy, |A| = p
and |B U C| = 0. Moreover, there is no recombination in
this strategy.

3.3 Cooperation and DCMs

The familiar reader may perceive apparent similarities be-
tween DCM approaches (such as Rec-I-DCM3) and our co-
operative approach. Both algorithms are examples of divide-
and-conquer strategies designed to boost the performance of
existing algorithms. In fact, one could characterize Cooper-
ative Rec-I-DCM3’s use of a population of trees as a natural
extension of subproblems in DCMs.

However, our cooperative algorithm extends the notion of
decomposition and merging that is inherent in DCMs. Co-
operative Rec-I-DCM3’s use of a population of trees may
be viewed as a partial decomposition of the exponentially
large space of tree solutions. Each of the individuals in the
population represents a decomposition of that space. DCMs
decompose a single guide tree (or the original dataset of n se-
quences) into a population of overlapping subsets of the orig-
inal problem. Hence, in DCMs, the population represents
partial solutions to the original problem whereas in Coop-
erative Rec-I-DCM3 the population contains complete solu-
tions. Although both approaches use techniques to merge
solutions in the population, the purpose of merging is quite
different. Cooperative Rec-I-DCM3 uses merging (or recom-
bination) to create new, more diverse solutions. DCMs, on
the other hand, require merging in order to obtain a sin-
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Figure 2: A generation of the Cooperative Rec-I-DCMS3 algorithm. The population size (or p) is four. Each

solution (e.g., (t1, 39)) is identified by a tree and its score.

Rec-I-DCM3 is applied to each tree in the

starting population. The resulting trees are then subjected to selection and recombination. We represent
the recombination of two trees by the composition operator (o).

gle, complete solution on the entire dataset from the partial
solutions.

4. EXPERIMENTAL METHODOLOGY

Datasets. Our experiments compared the performance of
the algorithms on four biological datasets ranging from 921
to 4,114 sequences. Below, we provide the details of each
dataset along with their best-known score under maximum
parsimony since the optimal score is not known. Each of
these datasets were obtained from the recent analysis of Rec-
I-DCM3 by Roshan et al. [18].

1. A set of 921 aligned Avian Cytochrome b DNA se-
quences (713 sites) [10]. A best score of 40,494 was es-
tablished by Cooperative Rec-I-DCMS3 on this dataset.

2. A set of 1,127 aligned large subunit ribosomal RNA
sequences (1078 sites) obtained from the Ribosomal
rRNA database [22]. The best score of 52,056 was
established by Rec-I-DCM3 and Cooperative Rec-I-
DCMS3 on this dataset.

3. A set of 2,000 aligned Eukaryotic SRNA sequences
(1251 sites) obtained from the Gutell Lab at the Insti-
tute for Cellular and Molecular Biology, The Univer-
sity of Texas at Austin. Our runs of both Rec-I-DCM3
and Cooperative Rec-I-DCM3 established a best score
of 74,534.

A set of 4,114 Actinobacteria 16s TRNA sequences
(1263 sites) from the Ribosomal Database Project. The
best score for this dataset is 60,887, which was estab-
lished by Cooperative Rec-I-DCM3.

Experiments. All experiments consisted of five runs of Rec-
I-DCM3 and Cooperative Rec-I-DCM3. We ran Rec-I-DCM3
with the recommended default settings. Hence, the maxi-
mum subproblem sizes were set to 50% of the original prob-
lem size on Dataset #1 and 25% on Datasets #2, #3, and #4.
In the Cooperative Rec-I-DCM3 algorithm, Rec-I-DCM3
was executed for one iteration. Both Rec-I-DCM3 and Co-
operative Rec-I-DCM3 were given sufficient time to find the
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best-known score. Hence, Rec-I-DCM3 ran for 1,000 iter-
ations, and its cooperative counterpart ran for 100 genera-
tions with population sizes of 2, 4, 8, and 16 individuals.

Implementation. We used TCP Linda [19], an implemen-
tation of Gelernter’s Linda [6] model of concurrency, to im-
plement our cooperative algorithm. Our TCP Linda pro-
grams were written in the C-Linda language, which aug-
ments the C language with four primitive operations that
permit process creation and access to tuple space — an as-
sociative, distributed shared memory. Rec-I-DCM3 is open-
source software provided by Usman Roshan. TNT was used
as the base method for Rec-I-DCM3, and we used TNT’s
implementation of TBR for the global search phase of our
recombination operator. We used PAUP*’s implementation
of strict consensus.

Platforms. Our experiments were performed on two high-
performance computing clusters: an Apple Workgroup Clus-
ter for Bioinformatics and a Linux Beowulf cluster. Both
clusters are similarly configured, each consisting of four, 64-
bit, dual-processor nodes (eight total CPUs) with gigabit-
switched interconnects. However, the underlying hardware
of the clusters is quite different. The Apple Workgroup Clus-
ter consists of Xserve G5 nodes, each of which contains two,
2 GHz PowerPC G5 processors. Each processor contains 512
KB of L2 cache and a 1 GHz front-side bus; the two proces-
sors on each node share 4 GB of DDR 400 MHz SDRAM
(16 GB total RAM across the cluster). The Linux Beowulf
cluster consists of four nodes; each node contains two, 2 GHz
Intel Xeon processors. Each processor contains 512 KB of
L2 cache, but only a 400 MHz front-side bus; the two pro-
cessors on each node share 2 GB of DDR 266 MHz SDRAM
(8 GB total RAM across the cluster).

5. EXPERIMENTAL RESULTS

We compare the performance of our cooperation strategies
(diverse and elitist) to Rec-I-DCM3. Typically, heuristics
are evaluated by how fast good solutions can be obtained
and by how far such solutions are from optimal. However,
the optimal solution is unknown on the biological datasets
used in this study. As a result, we plot performance in



Table 1: The average time per generation (in sec-
onds) of Rec-I-DCM3 (u = 1) and Cooperative Rec-
I-DCM3 (u = 2, 4, 6, and 8) using a diverse popu-
lation on the four biological datasets.

Dataset 1 | Dataset 2 | Dataset 3 | Dataset 4
n 921 taxa | 1,127 taxa | 2,000 taxa | 4,114 taxa
1 52.66 56.20 118.41 191.37
2 55.20 59.73 161.49 254.07
4 59.33 64.22 185.43 282.33
8 115.50 103.70 337.95 468.44
16 272.92 245.61 535.79 887.45

terms of the number of steps, s, a solution is from the best
known score, b, found by any MP phylogenetic analysis.
More specifically, if b; is the best score found by genera-
tion ¢, then s = b; - b. Best-known scores for our datasets
are provided in Section 4. Moreover, all data points in the
plots are the average of five runs.

5.1 Diverse populations

First, we compare the performance of Cooperative Rec-1-
DCMS3 using a diverse population with that of Rec-I-DCMS3.
Figure 3 shows the results. The plots clearly demonstrate

that Cooperative Rec-I-DCM3 outperforms Rec-I-DCM3 within

100 generations. Even after 1,000 generations, Rec-I-DCM3
is unable to match Cooperative Rec-I-DCM3’s performance.

Both algorithms converged to the best-known score on Dataset

# 2 (1,127 taxa), but Cooperative Rec-I-DCM3 also con-
verged to the best-known score on Dataset # 3 (2,000 taxa).
Larger population sizes result in increased performance, where
populations sizes of 8 and 16 perform the best.

Traditional evolutionary approaches use larger population
sizes than we employ in our experimental study. For our
memetic-based approach, the local search phase accounts
for the majority of the running time within a generation.
The runtime requirement for the Rec-I-DCM3 search cou-
pled with the large dataset sizes limit the number of indi-
viduals that can be effectively handled on our experimental
platform. Table 1 shows the time required per generation for
each of the algorithms under study. On the largest dataset,
1,000 generations of the Rec-I-DCM3 algorithm (= 1) re-
quires 53.16 hours whereas 100 generations of Cooperative
Rec-I-DCM3 require 24.65 hours when p = 16.

Figure 4 compares the performance of the algorithms within
a 24 hour time period on the two largest datasets. (Space
limitations prevent us from showing such graphs for our
smallest datasets.) The plots show that the wall-clock per-
formance of Cooperative Rec-I-DCM3 is better than that
of Rec-I-DCM3 after 24 hours. More specifically, Figure 4
shows that Rec-I-DCM3 cannot reach scores obtained by Co-
operative Rec-I-DCM3 on these datasets within the allotted
time.

Implementation. Table 1 shows that there is a substantial
runtime penalty for using populations of size 8 and 16. This
is a result of our implementation of the Cooperative Rec-1-
DCMS3 algorithm. Our implementation takes advantage of
a parallel platform, where each solution in the population
is assigned to a separate processor. Since our parallel plat-
forms have a maximum of eight processors, on populations
of size 16, the processors perform twice more work each gen-
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eration, which translates into larger wall-clock times.
Moreover, there are other processes (besides the u Rec-
I-DCM3 workers) needed to manage the cooperative algo-
rithm. For example, we use a startup worker, who oversees
the entire computation, and a merger worker, who is respon-
sible for selection and recombination. Each of these workers
is assigned to a separate processor as well. So, even for
u = 8, our current implementation requires some processors
to perform more work than others—especially during the lo-
cal search phase of the algorithm. Our implementation can
be improved by more efficient use of idle workers. In general,
if v is greater than the number of processors, p, each pro-
cessor will on average have to process % trees. The results
shown in Figure 3 assumes that ¢ = p and the overhead
associated with creating a new population is negligible.
Even with the above implementation and resource con-

cerns, Cooperative Rec-I-DCMS3 still outperforms Rec-I-DCMS3.

Better wall-clock performance can be expected with a more
efficient implementation and larger parallel platforms.

5.2 Elitist populations

Next, we explored the performance of Cooperative Rec-
I-DCM3 when it maintains a population of the best (elite)
solutions found during the search. Figure 5 compares the
performance of an elitist strategy with that of Rec-I-DCM3.
The plot shows that such an elitist approach can be detri-
mental to the overall performance of the algorithm. The eli-
tist strategy when used with small populations sizes (u =1
and 2) is especially bad; this strategy performs worse than
Rec-I-DCM3. On datasets where Cooperative Rec-I-DCM3
with a diverse group of solutions had no trouble converging
to the best known score with p = 8 and 16 (i.e., see Fig-
ures 3(b) and 3(c)), the elitist strategy performed poorly. In
fact, it’s performance was worse than that of Rec-I-DCM3.

This result has other implications, especially in the con-
text of traditional phylogenetic searches. Often, these searches
maintain a list of the best scoring trees found. When a bet-
ter tree is found, the current list of best trees is replaced
with the newly found best scoring tree. This is exactly the
elitist strategy that we employ in our experiments. Our re-
sults suggest that such a strategy should be revisited as it
may be limiting the performance of a phylogenetic analysis.

5.3 Diversity and best trees

For the diverse strategy, we look at how often the best
scoring tree by generation ¢ (b;) produces another best scor-
ing tree (bi+1) in the next generation. In other words, we
plot the percentage of time that b;4+1 < b;. For the eli-
tist strategy, this percentage is always 100% since the only
trees in the population are the best trees found so far. In
our diverse strategy, b; always appears in the population at
least once. b; appears multiple times if a new best score is
found (i.e., b; < b;—1) since it is both a new best tree and a
top-ranking tree (see Section 3.1).

Figure 6 provides some insight as to why the diverse strat-
egy outperforms its elitist counterpart. For the most part, b;
finds other best trees 40%—70% of the time. On Dataset #2
when p = 16, b; is responsible for producing better or equal
scores about 10% of the time. Hence, the other lower-scoring
trees are responsible for 90% of the search improvement in
terms of best trees found! Our results demonstrate that
access to the best tree is an important component of an ef-
fective search. Lesser solutions when coupled with the best,
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Figure 3: Performance of Rec-I-DCM3 and Cooperative Rec-I-DCM3 using a diverse population strategy
algorithms on the four datasets under study. p represents the population size used by the Cooperative
Rec-I-DCM3 algorithm. Each data point is the average of five runs.

are responsible for a significant proportion (at least 30%)
of the performance improvement exhibited by the diverse
strategy.

6. CONCLUSIONS AND FUTURE WORK

Our study investigates the role that diversity plays in
the performance of a phylogenetic analysis. Specifically, we
compare Cooperative Rec-I-DCM3, a population-based ap-
proach that uses a cooperating pool of solutions to guide the
search, and Rec-I-DCM3, the best performing MP heuristic.
We consider two population retention strategies—a diverse
strategy that maintains a heterogeneous mix of tree scores
and an elitist strategy, which only keeps the best scoring
trees found during a search.

Our experimental results show that Cooperative Rec-I-
DCM3 using a diverse selection strategy consistently out-
performs Rec-I-DCM3. However, our results also reveal that
the elitist strategy is the worst overall performer. Hence,
a cooperative approach that retains elite solution leads to
poor performance. This suggests that traditional phyloge-
netic searches that employ an elitist approach to maintain-
ing a list of trees to explore should be revisited. In both
strategies, larger population sizes translate into increased
performance.
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Of course, there is much future work still to be done. Since
population size is an important factor in improving perfor-
mance, population sizes larger than 16 should be investi-
gated. Inefficiencies in Cooperative Rec-I-DCM3’s imple-
mentation will also be improved. Other future plans include
using other heuristics in our cooperative framework besides
Rec-I-DCM3. Of particular interest are heuristics for maxi-
mum likelihood. Lastly, we are exploring other measures to
analyze the performance of a phylogenetic analysis.
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