A Hybrid Genetic Search for Multiple Sequence Alignment

Seung-Hyun Moon
School of Computer Science
and Engineering,
Seoul National University,
Seoul 151-744, Korea

shmoon@soar.snu.ac.kr

ABSTRACT

This paper proposes a hybrid genetic algorithm for multiple
sequence alignment. The algorithm evolves guide sequences
and aligns input sequences based on the guide sequences. It
also embeds a local search heuristic to search the problem
space effectively. In the experiments for various data sets,
the proposed algorithm showed the performance comparable
to existing algorithms.

Categories and Subject Descriptors

J.3 [Life and medical sciences]: Biology and genetics,
Medical information systems; F.2.2 [Nonnumerical algo-
rithms and problems]|: Sorting and searching

General Terms
Algorithms

Keywords

Bioinformatics, genetic algorithms, local search, multiple se-
quence alignment

1. INTRODUCTION

Multiple alignment of amino acid or nucleotide sequences
is one of the most fundamental tasks in bioinformatics. For-
mally, the multiple sequence alignment (MSA) problem is
to align NV sequences, whose lengths are at most L, based
on some optimization criterion. The most popular criterion
is the sum-of-pairs score (SPS) function. This work intro-
duces a hybrid genetic algorithm for the MSA with high
performance and reasonable running time.

2. THE MSA PROBLEM

Let ¥ be a set of characters. A pairwise sequence align-
ment of two sequences S1 and S is defined as two equal-
length sequences S7 and S5 over ¥ U{—}, where the character
“—” represents a gap and removing all the gaps from S7 and
S5 gives S1 and Sa, respectively. To measure the similarity
between two equal-length sequences, a scoring matrix and a
gap penalty function are used. The scoring matrix 9t defines
matching points between all pairs of characters in X. The
gap penalty function ‘P defines penalty for occurrences of

Copyright is held by the author/owner(s).
GECCO’06, July 8-12, 2006, Seattle, Washington, USA.
ACM 1-59593-186-4/06/0007.

Sung-Soon Choi
School of Computer Science
and Engineering,
Seoul National University,
Seoul 151-744, Korea

sschoi @soar.snu.ac.kr

303

Byung-Ro Moon
School of Computer Science
and Engineering,
Seoul National University,
Seoul 151-744, Korea

moon @ soar.snu.ac.kr

the gap characters. Whenever k consecutive gap characters
are matched to non-gap characters, the penalty of the form
Pop + Pext - (k — 1) is imposed. Here, pop and pext represent
gap open penalty and gap extension penalty, respectively.
The scoring function &(S,T) that measures the similarity
between two sequences S and T of length L is defined as

&(5,7) = > 1(S[z] and T[z] € £)-M(S[a], T[a])—B(S,T),

=1

where 1(-) is the indicator function and S[x] is the z** char-
acter of a sequence S. Given two sequences S; and Sz, the
pairwise sequence alignment problem is to find a pairwise
sequence alignment, S and S5, which maximizes &(S57,.53).

For a set of N sequences S = {S1,S52,...,Sn} over X, the
multiple sequence alignment is a set of N equal-length se-
quences 8’ = {57, 55,..., SN} over ¥ U{—}, where removing
all the gaps from S; gives S;. As a measure of evaluating
the overall similarity of the multiple sequence alignment, the
sum-of-pairs score (SPS) function summates the similarity
scores over all pairs of sequences. In other words, the SPS
for a multiple sequence alignment S’ is

> eS8y

1<i<j<N

SPS(S') =

Given a set of N sequences & = {S1,52,...,Sn} over X,
the MSA problem for the SPS function is to find a multiple
sequence alignment S’ = {S1,53,...,5%} that maximizes
SPS(S’). In this paper, the multiple sequence alignment
problem refers to the MSA problem for the SPS function.

3. THE PROPOSED ALGORITHM

There are MSA algorithms that utilize a pivot sequence to
generate multiple alignment by aligning each input sequence
to the pivot. Gusfield [1] picked one of the input sequences
that has the minimum average distance to the other input
sequences as a pivot, and Shyu et al. [2] evolved consensus
sequences by GA and picked the best one. Our algorithm
takes a similar approach to [2] by evolving guide sequences
instead of the consensus sequences.

3.1 Guide Sequence

A guide sequence is a sequence consisting of subsets of .
For a guide sequence G, G[z] denotes the z'" subset, which
represents recommended characters in the z*® column of the
resulting multiple alignment. The scoring function &'(S, G)
that measures the similarity between a sequence S and a

guide sequence G of length L is defined as

1
|Gle]|

L
&'(5,6) =3 -1(S[z] € G[z]) - M(S[a], S[z]) — B(S, S"),
x=1
where S’ is any sequence consisting of non-gap characters of
length L. Each input sequence S is aligned so that &'(.S, G)
is maximized by dynamic programming. The time complex-
ity of the whole multiple alignment process is @(L* - N).

3.2 Local Search Heuristic

Given a guide sequence G, let S’ be a multiple alignment
obtained by aligning N input sequences to G and 8’[z] be
the ' column of S’. The first step of the local search heuris-
tic is counting characters in each column of S’. The next
step is altering the guide sequence based on the counting in-
formation of the previous step. If the number of a character
c in &'[z] is less than EN‘, then c is removed from G[z]. On
the other hand, if the number of ¢ in A[z] is greater than %,
then c is added to G[z]. This induces the guide sequence to
strengthen the majority character in each column of multi-
ple alignment and lead high SPS values. The operations are
performed over all columns. The final step is aligning input
sequences to the altered guide sequence and evaluating its
MSA quality by the SPS function. If the altered guide se-
quence produces better MSA, it replaces the original guide
sequence. The time complexity of the local search heuristic
is ©(L* - N).

4. GENETIC ALGORITHM

We use a typical hybrid steady-state genetic algorithm.

- Chromosome Encoding: A chromosome represents
a guide sequence. It is composed of |X| binary strings
of the same length as the guide sequence. Each binary
string corresponds to a character in ¥ and the z*®
value of the string indicates whether the character is
included in the z*® subset of the guide sequence or not.

- Initialization: Binary strings constituting a chromo-
some are randomly generated. We set the population
size to be 20.

- Parent Selection: Binary tournament selection.
- Crossover: Two-point crossover.

- Mutation: We perform 0-1 or 1-0 conversions for each
binary character. The mutation rate is set to be 0.1.

- Local Optimization: We alter a guide sequence as
mentioned in Section 3.

- Replacement: We replace the inferior of the two par-
ents if the offspring is not worse than both parents.
Otherwise, we replace the worst member of the popu-
lation.

- Stopping Condition: GA stops when there are no
improvements over 100 generations.

S. EXPERIMENTAL RESULTS

We generated input sequences in the same way as in [2].
Firstly, a base nucleotide sequence is randomly generated
and related sequences are generated by the Jukes-Cantor

304

Table 1: Comparisons of CLUSTAL W and Our GA

CLUSTAL W Our GA
Instance SPS CPU SPS CPU
N=100 1.6M 4.7TM 2.1M 122.2M(52M)
N=200 59M | 16.8M || 8.2M 359.6M(80M)
N=300 10.9M | 37.6M || 18.5M | 505.1M(103M)
N=400 17.5M | 65.3M || 33.0M 1.1G(125M)

model with no more than 50% divergence. In this way, five
sets of various numbers of sequences, whose lengths are 100
base pairs, were generated.

For performance analysis, our GA was compared to well-
known MSA software, CLUSTAL W (v1.83). However, we
found that CLUSTAL W series (v1.80-v1.83) mistakenly do
not produce correct scores in the final evaluation step. Thus,
we patched CLUSTAL W (v1.83) so that it works correctly.

Table 1 summarizes the performance of CLUSTAL W and
our GA for 20 instances. Each row in the table is average
of the five instances each of which has N input sequences.
For each instance, quality of the solutions was measured by
the SPS function exactly the same as the default settings of
CLUSTAL W (v1.83) and computation time was measured
by the number of atomic operations. Ours are denoted in
the form of z(y), where x and y represent the number of
atomic operations to produce its best solution and the num-
ber of atomic operations to find a solution at least as good
as CLUSTAL W, respectively.

For all the instances, our GA outperformed CLUSTAL W
in terms of the scoring functions. The results of our GA were
averages of 50 runs. In the experiments, our GA always used
more computation time than CLUSTAL W. As N increases,
however, our GA has lower increase rate of the computation
time than CLUSTAL W. Thus, it seems that our algorithm
is more scalable than CLUSTAL W in terms of N.

Also, we found that the number of generations to find
the best solution was approximately the same regardless of
the number of input sequences. It is consistent with the
results in [2]. We think that it is because the size of the
search space of guide sequences depends not on the number
of input sequences but on the length of input sequences.

Acknowledgment

This work was supported by the Brain Korea 21 Project in
2006. This was also partly supported by grant No. (RO1-
2003-000-10879-0) from the Basic Research Program of the
Korea Science and Engineering Foundation. The ICT at
Seoul National University provided research facilities for this
study.

6. REFERENCES

[1] D. Gusfield. Efficient methods for multiple sequence
alignment with guaranteed error bounds. Bull. Math.
Biol., 55(1):141-154, 1993.

[2] C. Shyu, L. Sheneman, and J. A. Foster. Multiple
sequence alignment with evolutionary computation.
Genetic Programming and Evolvable Machines,
5(2):121-144, 2004.

