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ABSTRACT
We examine the dynamical and game-theoretic proper-
ties of several selection methods in the context of two-
population coevolution. The methods we examine are
fitness-proportional, linear rank, truncation, and (μ, λ)-ES
selection. We use simple symmetric variable-sum games in
an evolutionary game-theoretic framework. Our results in-
dicate that linear rank, truncation, and (μ, λ)-ES selection
are somewhat better-behaved in a two-population setting
than in the one-population case analyzed by Ficici et al.
[4]. These alternative selection methods maintain the Nash-
equilibrium attractors found in proportional selection, but
also add non-Nash attractors as well as regions of phase-
space that lead to cyclic dynamics. Thus, these alterna-
tive selection methods do not properly implement the Nash-
equilibrium solution concept.

Categories and Subject Descriptors
I.2.8 [Computing Methodologies]: Artificial Intelli-
gence—Problem Solving, Control Methods, and Search; I.2.6
[Computing Methodologies]: Artificial Intelligence—
Learning

General Terms
Theory

Keywords
Coevolution, selection method, population dynamics, solu-
tion concept

1. INTRODUCTION
Recent work by Ficici et al. [4] examines the game-

theoretic and dynamical properties of several selection meth-
ods in the context of single-population coevolution. They
use simple 2x2 symmetric two-player games that have poly-
morphic Nash equilibria. In particular, they focus on poly-
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morphic Nash equilibria that are attractors of the canon-
ical replicator dynamics [10], in which agents are selected
to reproduce in proportion to fitness. Though proportional
selection has been extensively studied from the perspective
of evolutionary game theory [11, 10], the many alternative
selection methods that are used in evolutionary algorithms
have not. Ficici et al. [4] show that most alternatives to
proportional selection are unable to converge onto polymor-
phic Nash equilibria; instead, they find a variety of other
dynamics, including convergence to non-Nash fixed-points,
cyclic dynamics, and chaos.

In this paper, we broaden the scope of their investiga-
tion by looking at 2x2 symmetric variable-sum games in the
context of two-population coevolution. We consider both
classes of 2x2 games that have polymorphic Nash equilib-
ria. We examine the behaviors of linear rank, truncation,
and (μ, λ)-ES selection, and contrast them to the dynamics
of proportional selection. Our empirical results show that
the alternative selection methods maintain the attractors
found in proportional selection, but also add non-Nash at-
tractors as well as regions of phase-space that lead to cyclic
dynamics. Thus, these alternative selection methods do not
properly implement the Nash-equilibrium solution concept.

The paper is organized as follows. Section 2 defines the
classes of games that we will use in our investigation. Section
3 details how we embed these games into a two-population
coevolutionary framework. Section 4 describes how popula-
tions represent Nash equilibria. Section 5 completes the de-
scription of the evolutionary framework. Sections 6 through
9 describe our results, and Section 10 provides concluding
thoughts.

2. 2X2 SYMMETRIC GAMES
We examine 2x2 symmetric variable-sum games for two

players. A two-player game is symmetric when both players
have available the same set of strategies and the identity
(i.e., Player 1 or Player 2) of the player playing a particu-
lar strategy has no effect on the payoffs obtained. Exam-
ples of such games include the Hawk-Dove game [11] and
the Prisoner’s Dilemma [1]. A generic payoff matrix for a
two-strategy symmetric variable-sum game for two-players
is given by Equation 1. By convention, the payoffs are for
the row player; thus, if one player uses Strategy X and the
other uses Strategy Y, then the X-strategist earns a pay-
off of b and the Y-strategist earns c. (Since we are dealing
with symmetric games, the column and row players are in-
terchangeable.) We can divide the space of possible 2x2
games into three mutually exclusive and exhaustive classes,
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as follows. (We will find that the first two classes hold the
most interest for us, below.)

G =

X Y
X a b
Y c d

(1)

2.1 Game Type A
The 2x2 games in this class have payoffs a > c and b < d;

these games are known as coordination games [7], since the
players are always better off if they play the same pure
strategy (i.e., coordinate). These coordinated configurations
(both playing X or both playing Y) are Nash equilibria in
pure strategies: neither player has incentive to deviate uni-
laterally from the pure strategy it is using. For example,
if the column player uses strategy X, then the row player
should also use X; if the column player instead uses Y, then
so too should the row player. Coordination games also have
a mixed-strategy Nash equilibrium where both players ran-
domize over X and Y with a particular distribution (which
we will discuss below).

2.2 Game Type B
The games in this class have payoffs a < c and b > d;

an example of this type of game is the Hawk-Dove game
[11]. Games in this class have a single Nash equilibrium in
pure strategies: one player uses the X strategy and the other
uses Y; given this configuration, neither player has incentive
to deviate unilaterally. There also exists a mixed-strategy
Nash equilibrium where both players use the same mixed
strategy (we discuss this below, as well).

2.3 Game Type C
The final class of 2x2 games has payoffs a < c and b < d.

Here, Strategy X is the preferred strategy for a player re-
gardless of what the other player does. Thus, we say that X
dominates Y. A weaker form of domination can be obtained
if one of the inequalities is replaced by equality. (Note that
the payoff structure a > c and b > d is structurally identical,
except that now Strategy Y is preferred.)

3. TWO-POPULATION SYSTEMS
Following Ficici et al. [4], we will use infinitely large pop-

ulations of agents; we depart from this earlier work by ex-
amining two-population systems. Each agent in each popu-
lation will play one of the two pure strategies of the game
(X or Y); agents are not allowed to play mixed strategies
(probability distributions over the pure strategies). Because
we have only two pure strategies, we can represent the state
of our two-population system with two variables. Let p rep-
resent the proportion of X-strategists in Population 1, and
q the proportion of X-strategists in Population 2.

We assume complete mixing, that is, every agent in Pop-
ulation 1 interacts with every agent in Population 2 and
vice versa. Agents accumulate payoffs as they interact with
each other. Let wX1and wY1 be the cumulative payoffs re-
ceived by X- and Y-strategists, respectively, in Population
1; similarly, let wX2 and wY2 be the cumulative payoffs for
individuals in Population 2. Given the population states p
and q, we can calculate cumulative payoffs with the linear
equations in Equation 2.

wX1 = qa + (1 − q)b

wY1 = qc + (1 − q)d

wX2 = pa + (1 − p)b

wY2 = pc + (1 − p)d

(2)

To gain some insight into the dynamics we might expect,
we can plot how the cumulative payoffs vary over the two-
dimensional phase space. Figure 1 provides such a plot for
example games of types A (top) and B (bottom). The hori-
zontal span of an arrow indicates the difference wX1 −wY1 ,
while the vertical span indicates the difference wX2 − wY2 ;
thus each arrow indicates, for a particular location in phase
space, the strategy that is most advantageous (and by how
much) with respect to each population. The pure-strategy
Nash equilibria are indicated by the solid circles, and the
mixed-strategy Nash equilibrium is indicated by the open
circle. This mixed-strategy Nash equilibrium is also known
as a polymorphic Nash equilibrium.

4. MIXED STRATEGIES AND POLYMOR-
PHIC POPULATIONS

Though individual agents cannot play mixed strategies,
we can view a population as a whole to play one. We in-
terpret the proportion p of X-strategists in Population 1 as
specifying a mixed strategy where the probability of playing
X is p and Y is (1 − p); similarly, the proportion q of X-
strategists in Population 2 specifies a mixed strategy where
the probability of playing X is q and Y is (1 − q). Given a
two-player game, we may view Populations 1 and 2 as rep-
resenting mixed strategies for Players 1 and 2, respectively.

The support of a mixed strategy is the set of pure strate-
gies played with probability greater than zero. (Note that we
may view a pure strategy as a degenerate mixture.) A pop-
ulation that contains more than one pure strategy is termed
polymorphic; otherwise, the population is monomorphic.

In a symmetric game with a Nash-equilibrium mixed-
strategy m, if Player 1 plays m, then the highest payoff
obtainable by Player 2 is received by also playing m. But
Player 2 has other choices, as well. In particular, if Player
2 plays any pure strategy in support of m, the same payoff
is received [8]. Thus, the strategies in support of a Nash-
equilibrium mixed-strategy will be at fitness equilibrium
[11]. For game types A and B, above, this means that Pop-
ulation 1 is playing the Nash mixture when wX2 = wY2 (a
similar statement applies to Population 2); we need merely
solve for p to discover the proportion of X-strategists needed
to achieve fitness equilibrium (a similar statement applies to
q), as shown in Equation 3. Since the game is symmetric,
we have p = q when both populations are playing the Nash
mixture.

peq =
d − b

a − c + d − b
(3)

5. REPLICATION
Once cumulative payoffs are obtained, we create the next

generation of the population. Following conventional evo-
lutionary game theory [11], offspring are generated asexu-
ally and are clones of their parents; that is, we do not use
variation operators. As a result, strategies absent from the
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Figure 1: Variation of cumulative payoffs in two-
dimensional phase space for Type-A (top) and Type-
B (bottom) games. The horizontal span of an ar-
row indicates the difference wX1 − wY1 ; the vertical
span indicates the difference wX2 − wY2 . For exam-
ple, in the Type-B game, the arrow that originates
at p = 1, q = 0 indicates that when Strategies X
and Y each play a population of all Y-Strategists
(q = 0), then Strategy X strongly out-scores Strat-
egy Y; further, when Strategies X and Y each play
a population of all X-Strategists (p = 1), then Strat-
egy Y weakly out-scores Strategy X. The arrows do
not locate the point in phase space to which the
two populations will go; the arrows merely indicate
which pure strategy is most advantageous (and by
how much) with respect to each population’s state.

initial population cannot appear later in time. The way we
calculate the number of offspring each agent receives is de-
termined by the selection method we use. We next discuss
the dynamical and game-theoretic properties of various se-
lection methods, beginning with a conventional replication
dynamic that is used in evolutionary game theory.

6. PROPORTIONAL SELECTION
Here we review the properties of proportional selection

when applied to symmetric games in a two-population frame-
work [10]. Given states p and q for Populations 1 and 2, re-
spectively, Equation 4 shows how to calculate the next pop-
ulation states f(p) and g(q); individuals generate offspring
in proportion to their fitness (i.e., cumulative payoff).

f(p) =
wX1p

wX1p + wX1(1 − p)

g(q) =
wX2q

wX2q + wX2(1 − q)

(4)

6.1 Type-A Games
Figure 2 (top) illustrates the phase plot of proportional

selection on a Type-A game, defined above. The payoffs we
use in this example are a = 3, b = 2, c = 2, d = 4 (we use this
game as our Type-A exemplar throughout the paper); using
Equation 3, we find the Nash-equilibrium mixed-strategy to
be at p = q = 2/3 (open circle). The dynamical system has
two point-attractors, one at p = q = 0.0 and the other at
p = q = 1.0 (closed circles); these attractors correspond to
the “coordinated” pure-strategy Nash equilibria. The basin
of attraction for the latter attractor is smaller as a result
of the asymmetry in the payoffs. The mixed-strategy Nash
equilibrium is an unstable fixed-point. Thus, if we begin
the system at p = q = 2/3, then it will remain there; if we
perturb either one of the population states (or both), then
the system will diverge from the unstable fixed-point and
move to one of the two attractors.

We can collapse this two-dimensional system down to one
dimension by setting the initial condition such that p = q;
this gives us the dynamics of a single population. Since all
three Nash equilibria lie on the diagonal p = q, we know
that the dynamics of the Type-A game remain essentially
unchanged as we move from one population to two.

6.2 Type-B Games
Figure 2 (bottom) shows the phase plot of proportional se-

lection on a Type-B game. The payoffs here are a = 2, b =
4, c = 3, d = 2 (we use this game as our Type-B exem-
plar throughout the paper); this is identical to the Type-A
game, above, except we have switched the rows of the payoff
matrix. Note that the mixed Nash equilibrium remains an
unstable fixed-point at p = q = 2/3. The two pure-strategy
Nash equilibria, however, have moved off of the p = q diag-
onal; now, these point-attractors are found at p = 0, q = 1
and p = 1, q = 0. Though we still have two basins of at-
traction, note that the basins now have equal size; all points
above the p = q diagonal go to p = 0, q = 1, points below go
to p = 1, q = 0. If we begin the system on the diagonal p = q
(collapsing it to the single-population case), we converge to
the mixed-strategy equilibrium (i.e., both populations are
polymorphic and have 2/3 X-strategists). The mixed Nash
equilibrium is a saddle-point of the two-population system,
and the p = q line is the stable (attracting) manifold.
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Figure 2: Proportional selection in Type-A games
(top) and Type-B games (bottom). Each line traces
a trajectory in phase space, with most trajectories
leading to one of the pure-strategy Nash equilibria
(solid circles). Note that each game-type includes
two non-Nash fixed-points where both populations
are monomorphic. For example, in the Type-A
game at p = 0, q = 1, we know from Figure 1 that X-
Strategists out-score Y-Strategists when they play
against Population 2 at q = 1. Nevertheless, Popu-
lation 1 does not contain any X-strategists at p = 0,
and so its state cannot change; a similar statement
applies to the fact that Y-Strategists out-score X-
Strategists when they play against Population 1 at
p = 0. The two populations lack a common strategy
on which they can coordinate.

For Type-B games, therefore, we find that the dynamics
do change as we move from one population to two. This
result holds relevance to practitioners; the mere addition of
a second population changes the solutions the system can
deliver. Given a single population, the mixed-strategy Nash
equilibrium (polymorphic population) is the single attractor;
this outcome represents the Nash equilibrium where Players
1 and 2 adopt the same mixed strategy. When two popu-
lations are involved, the Nash-equilibrium mixed strategy is
unstable, and one of two pure-strategy Nash equilibria will
emerge instead; one population will converge to all-X while
the other converges to all-Y. Note that a single population
cannot represent such outcomes. For example, the Nash
equilibrium where Player 1 adopts Strategy X and Player 2
adopts Strategy Y specifies that each of the two players uses
a different pure strategy. A single population cannot simul-
taneously represent two distinct (pure or mixed) strategies,
one for each player of the game. A population may con-
tain two distinct pure strategies, but such a polymorphic
population represents a single mixed strategy.

7. LINEAR RANKING
Linear ranking is an alternative to proportional selection

that is often used in evolutionary computation [9, 12]. The
general process begins by sorting the individuals in a pop-
ulation according to their cumulative scores; then, the indi-
vidual(s) with the lowest cumulative score receives a rank
value of 1.0, the individual(s) with the next highest cumu-
lative score receives a rank value of 2.0, and so on. Individ-
uals then reproduce in proportion to their rank values. For
our simple 2x2 games, each agent playing the lower-scoring
strategy in the population receives a rank value of 1.0, while
agents playing the other strategy receive a rank value of 2.0.

7.1 Type-A Games
With Type-A games, linear ranking in a single-population

will always converge onto one of the two pure-strategy Nash
equilibria [4]. With the addition of a second population,
however, we find that period-two cycles are also possible.
Figure 3 (top) shows a phase plot for linear ranking in
our example Type-A game. We notice that the trajectories
are less smooth. The filled squares indicate initial condi-
tions that lead to period-two cycles. The cycle-inducing re-
gion surrounds the stable (attracting) manifold of the saddle
point located at the mixed Nash equilibrium (open circle).
A cyclic trajectory oscillates across the p = q diagonal.

7.2 Type-B Games
With Type-B games, linear ranking in a single population

will always produce cyclic dynamics [4]. With the addition
of a second population, we find that linear ranking is some-
what better behaved. Figure 3 (bottom) shows a phase plot
for linear ranking in our example Type-B game. We notice
that most initial conditions manage to converge to one of
the two pure-strategy Nash equilibria. On the p = q diag-
onal, however, we know that the single-population results
will emerge; period-two cycles will be found. We find that
the cycle-inducing region (filled squares) is not only on the
diagonal, but also surrounds it. In Type-B games, the mixed
Nash equilibrium is again a saddle point, but now the p = q
diagonal is the stable (attracting) manifold. Now, a cyclic
trajectory oscillates across the unstable manifold (which is
stable in Type-A games).
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Figure 3: Linear ranking selection in Type-A games
(top) and Type-B games (bottom). We sample the
phase space at regular intervals to obtain our ini-
tial conditions; filled squares indicate initial condi-
tions that lead to cyclic dynamics. For example,
the initial condition p = 0.60, q = 0.51 has a cyclic
orbit in the Type-B game. At this initial condi-
tion, Strategy X is the higher-scoring strategy in
both populations; thus, the fitness of X and Y is
2 and 1, respectively. The next population state is
p = 0.75, q ≈ 0.6755 (this is across the unstable man-
ifold from p = 0.60, q = 0.51); now, Strategy Y is the
higher-scoring strategy in both populations. At this
point, linear rank selection reverses the fitness val-
ues and so brings us back to the initial condition.

8. TRUNCATION
Truncation selection is often used in evolutionary pro-

gramming [5] and the particular form we examine can be
found in [6], for example. In this selection process, we begin
by sorting the individuals in a population according to their
cumulative scores. Each individual in the highest-scoring
γ fraction of the population will create one offspring to re-
place one individual in the lowest-scoring γ fraction of the
population; thus, γ expresses selection pressure. For exam-
ple, let us suppose that wX1 > wY1 , p = 0.6, and γ = 0.1.
The highest-scoring tenth of the population is entirely X-
strategists and the worst-scoring tenth is all Y-strategists;
truncation will cause p to increase from 0.6 to 0.7.

8.1 Type-A Games
For Type-A games, one of the two pure-strategy Nash

equilibria will always be obtained under truncation selec-
tion, given a single-population system [4]. We find that,
with a two-population system, this is not always the case.
Indeed, the behavior of truncation selection can be quite
similar to that of linear ranking. Figure 4 (top) shows the
phase diagram for our example Type-A game when γ = 0.15.
We see that most initial conditions converge to one of the
two pure-strategy Nash equilibria; there also exists a region
of initial conditions (filled squares), surrounding the stable
manifold, that lead to cyclic dynamics.

8.2 Type-B Games
For Type-B games, truncation selection cannot converge

onto a Nash equilibrium, given a single population, regard-
less of γ > 0 [4]. With the addition of a second population,
however, the two pure-strategy Nash equilibria become ac-
cessible from most initial conditions. Like linear rank selec-
tion, there exists a region of initial conditions surrounding
the stable manifold that lead to cyclic dynamics. Figure
4 (bottom) shows the phase plot for our example Type-B
game, when γ = 0.15.

If we set γ = 0.5, we know that virtually all initial con-
ditions on the p = q diagonal will cause the system to con-
verge to p = 1.0, q = 1.0, which is not a Nash equilibrium
[4]. We find that there exists, in addition, a region of ini-
tial conditions (filled squares) surrounding the stable man-
ifold (p = q diagonal) that also converge to this non-Nash
fixed-point. The convergence to p = 1.0, q = 1.0 is eas-
ily explained. For example, let both p and q be between
1/2 and 2/3; with these population states, it is the case
that X-strategists have higher cumulative payoffs than Y-
strategists. Since X-strategists form at least half of the pop-
ulation, the next generation will necessarily be composed
entirely of X-strategists. Thus, the largest box on the diag-
onal represents the critical region in which we transition to
p = 1.0, q = 1.0 in the very next time-step. The remaining
initial conditions belong to the iterated pre-image of this
critical region; that is, they are initial conditions that will
eventually fall into the critical region.

9. (μ, λ)-ES
(μ, λ)-ES selection is often used in evolution strategies [2].

Given our simple framework, which lacks variation mecha-
nisms, (μ, λ)-ES reduces to a variation of the truncation
method we examine above. As with truncation, the selection-
pressure parameter γ indicates the fraction of the highest-
scoring individuals in a population that will create offspring;
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Figure 4: Truncation selection in Type-A games
(top) and Type-B games (bottom), with γ = 0.15.
We sample the phase space at regular intervals to
obtain our initial conditions; filled squares indicate
initial conditions that lead to cyclic dynamics. As
with linear rank selection, the cycles obtained under
truncation selection involve discontinuities.
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Figure 5: Truncation selection in Type-B game with
γ = 0.5. We sample the phase space at regular inter-
vals to obtain our initial conditions; filled squares
indicate initial conditions that lead to a non-Nash
attractor at p = 1.0, q = 1.0.

rather than just replace the lowest-scoring γ fraction of the
population, we create enough offspring to replace the entire
population. For example, let us suppose that wX1 > wY1 ,
p = 0.1, and γ = 0.2. The highest-scoring two-tenths of
the population is composed of all the X-strategists (the top
tenth) and an equal proportion of Y-strategists (the next-
best tenth). The subsequent generation will therefore be
composed of equal numbers of X- and Y-strategists (i.e., p
will move from 0.1 to 0.5).

9.1 Type-A Games
With Type-A games, one of the two pure-strategy Nash

equilibria will be obtained, given a single population, re-
gardless of the selection pressure γ > 0 [4]. We find that,
with a two-population system, (μ, λ)-ES selection can also
find these Nash equilibria, provided that selection pressure
is not too severe. For high selection pressures (i.e., low γ),
(μ, λ)-ES creates non-Nash attractors that we have not seen
above. While most initial conditions do converge to a Nash
equilibrium, many do not. Figure 6 (top) shows the phase
plot for our example Type-A game with γ = 0.1; the fig-
ure indicates initial conditions (filled squares) that converge
to the fixed-point p = 0.0, q = 1.0. This fixed-point rep-
resents a non-coordinated configuration between the game
players, where one player uses Strategy X while the other
uses Y. Similarly, Figure 6 (bottom) shows the initial con-
ditions that converge onto the fixed-point p = 1.0, q = 0.0,
again a non-coordinated state.

9.2 Type-B Games
With Type-B games, (μ, λ)-ES cannot converge onto a

Nash-equilibrium, given a single population, regardless of
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Figure 6: Type-A games under (μ, λ)-ES selection
with γ = 0.1. We sample the phase space at
regular intervals to obtain our initial conditions;
filled squares indicate initial conditions that con-
verge onto a non-Nash attractor. Top: Initial con-
ditions that converge onto p = 0.0, q = 1.0. Bottom:
Initial conditions that converge onto p = 1.0, q = 0.0.
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Figure 7: Type-B games under (μ, λ)-ES selection
with γ = 0.1. We sample the phase space at
regular intervals to obtain our initial conditions;
filled squares indicate initial conditions that con-
verge onto a non-Nash attractor. Top: Initial condi-
tions that converge onto p = q = 0.0. Bottom: Initial
conditions that converge onto p = q = 1.0.
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γ > 0 [4]. We find that with two populations, (μ, λ)-ES is
capable of converging onto either of the pure-strategy Nash
equilibria, again provided that selection pressure is not too
severe. Figure 7 shows the phase diagram for our example
Type-B game with γ = 0.1. While the pure-strategy Nash
equilibria are still accessible from some initial conditions,
we find that most of the phase space converges onto a non-
Nash attractor. The top and bottom graphs in Figure 7
indicate the initial conditions (filled squares) that converge
onto p = q = 0.0 and p = q = 1.0, respectively. Note that
the initial conditions are on the opposite side of the saddle-
point from the fixed-point they converge onto.

10. REVIEW AND CONCLUSION
We use a simple evolutionary game-theoretic framework to

examine the dynamics of several selection methods—fitness-
proportional, linear rank, truncation, and (μ, λ)-ES—in the
context of two-population coevolution. We use simple (2x2)
symmetric variable-sum games for two players. We focus on
two classes of game. Games in either class have three Nash-
equilibrium fixed-points in the two-dimensional phase-space;
two of the Nash equilibria involve pure strategies while the
third is a mixed-strategy Nash equilibrium.

The selection methods we consider have been analyzed by
Ficici et al. [4] in the context of single-population coevolu-
tion; their results show that all selection methods will con-
verge onto Nash equilibrium if the game belongs to the game
class Type-A (see Section 2.1). In contrast, only fitness-
proportional selection converges to Nash equilibrium if the
game belongs to class Type-B (see Section 2.2); the other
methods (that we consider in this paper) cannot converge
onto Nash equilibrium. Instead a variety of other dynam-
ics are reported; these include cyclic dynamics, non-Nash
attractors, and chaos.

Our findings in this paper show that linear rank, trunca-
tion, and (μ, λ)-ES selection are better-behaved in a two-
population setting than in the one-population case analyzed
in [4]. The mixed-strategy Nash-equilibrium (in the inte-
rior of the phase space) is well known to be unstable with
fitness-proportional selection [10]; the alternative selection
methods we examine are no different in this respect. The
pure-strategy Nash equilibria are known to be attractors of
fitness-proportional selection [10], and they remain attrac-
tors for the alternative methods we examine.

Nevertheless, the alternative selection methods we con-
sider do introduce some additional behaviors that are not
found with fitness-proportional selection. Many initial con-
ditions lead to cyclic dynamics, while others converge onto
non-Nash fixed-points. Thus, one cannot use these selec-
tion methods with confidence if the desired solution concept
is Nash equilibrium. On a more general note, our results
further demonstrate that the mechanisms at work in a co-
evolutionary algorithm (here, we look at selection methods)
can profoundly affect the de facto solution concept that is
implemented, and may cause it to diverge from the solution
concept that we intend to implement [3].

While we use only two exemplar games in our investi-
gation (one each from Type-A and Type-B), our results
generalize across the games in these classes; results for dif-
ferent games will differ in numerical detail, but be quali-
tatively identical. Future work will expand our results by
moving to higher dimensions (where the games have more
than two strategies) and by moving to asymmetric (or bima-

trix) games (where the two populations use different strat-
egy sets).
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